Lecture 05: Discrete Mathematics

Course Title: Discrete Mathematics

Course Code: MTH211

Class: BSM-II

Objectives

The main aim of the lecture is to discuss about

- Propositional Function
- Universal Quantifier
- Existential Quantifier
- Negation of Quantified Statement

References:

- S. Lipschutz and M. Lipson, Schaum's Outlines Discrete Mathematics, Third Edition, McGraw-Hil, 2007.
- K.H. Rosen, Discrete Mathematics and its Application, MeGraw-Hill, 6th edition. 2007.
- K.A. Ross, C.R.B. Wright, Discrete Mathematics, Prentice Hall. New Jersey, 2003.

Propositional Functions

Let *A* be a given set. *A propositional function* (or an *open sentence* or *condition*) defined on *A* is an expression p(x), which has the property that p(a) is true or false for each $a \in A$.

The set *A* is called the *domain* of p(x), and the set T_p of all elements of *A* for which p(a) is true is called the *truth set* of p(x). In other words,

 $T_p = \{x \mid x \in A, p(x) \text{ is true}\} \text{ or } T_p = \{x \mid p(x)\}$

Example: Consider propositional function p(x) defined on the set N of positive integers. (a) Let p(x) be "x + 2 > 7." Its truth set is {6, 7, 8, . . .} consisting of all integers greater than 5. (b) Let p(x) be "x + 5 < 3." Its truth set is the empty set. That is, p(x) is not true for any integer in N. (c) Let p(x) be "x + 5 > 1." Its truth set is N. That is, p(x) is true for every element in N.

Universal Quantifier

Let p(x) be a propositional function defined on a set A. Consider the expression

 $(\forall x \in A) p(x)$ or $\forall x p(x)$

which reads "For every *x* in *A*, p(x) is a true statement" or, simply, "For all *x*, p(x)." The symbol \forall , which reads "for all" or "for every" is called the *universal quantifier*. The above statement is equivalent to the statement

 $T_{p} = \{x \mid x \in A, p(x)\} = A$

that is, that the truth set of p(x) is the entire set A. So, we have a conclusion:

If $\{x | x \in A, p(x)\} = A$ then $\forall x p(x)$ is true; otherwise, $\forall x p(x)$ is false.

Examples

(a) The proposition $(\forall n \in \mathbf{N})(n + 4 > 3)$ is true since $\{n \mid n + 4 > 3\} = \{1, 2, 3, ...\} = \mathbf{N}$.

(b) The proposition $(\forall n \in \mathbf{N})(n + 2 > 8)$ is false since $\{n \mid n + 2 > 8\} = \{7, 8, ...\} \neq \mathbf{N}$.

(c) The symbol \forall can be used to define the intersection of an indexed collection $\{A_i \mid i \in I\}$ of sets A_i as follows:

$$\cap (A_i \mid i \in I) = \{x \mid \forall i \in I, x \in A_i\}.$$

Existential Quantifier

Let p(x) be a propositional function defined on a set A. Consider the expression

 $(\exists x \in A) p(x)$ or $\exists x, p(x),$

which reads "There exists an x in A such that p(x) is a true statement" or, simply, "For some x, p(x)." The symbol \exists , which reads "there exists" or "for some" or "for at least one" is called the *existential quantifier*. Above statement is equivalent to the statement

 $T_p = \{x \mid x \in A, p(x)\} \neq \phi$

i.e., that the truth set of p(x) is not empty. Accordingly, $\exists x p(x)$, that is, p(x) preceded by the quantifier \exists , does have a truth value. Specifically:

If $\{x \mid p(x)\} \neq \phi$ then $\exists x p(x)$ is true; otherwise, $\exists x p(x)$ is false.

Examples

(a) The proposition $(\exists n \in \mathbf{N})(n + 4 < 7)$ is true since $\{n \mid n + 4 < 7\} = \{1, 2\} \neq \phi$.

(b) The proposition $(\exists n \in \mathbf{N})(n + 6 < 4)$ is false since $\{n \mid n + 6 < 4\} = \phi$.

(c) The symbol \exists can be used to define the union of an indexed collection $\{A_i \mid i \in I\}$ of sets *A*i as follows:

 $\cup (A_i \mid i \in I) = \{x \mid \exists i \in I, x \mid \in A_i \}.$

Negation of Quantified Statements

Consider the statement: "All math majors are male." Its negation reads:

"It is not the case that all math majors are male" or, equivalently, "There exists at least one math major who is a female (not male)"

Symbolically, using *M* to denote the set of math majors, the above can be written as

 \neg ($\forall x \in M$) (x is male) \equiv ($\exists x \in M$) (x is not male)

or, when p(x) denotes "x is male,"

$$\neg$$
 ($\forall x \in M$) $p(x) \equiv (\exists x \in M) \neg p(x)$ or $\neg \forall xp(x) \equiv \exists x \neg p(x)$.

The above is true for any proposition p(x). That is:

Theorem (DeMorgan):

(a) $\neg (\forall x \in A)p(x) \equiv (\exists x \in A) \neg p(x)$ (b) $\neg (\exists x \in A)p(x) \equiv (\forall x \in A) \neg p(x)$.

Example

(a) The following statements are negatives of each other:

"For all positive integers n we have n + 2 > 8"
"There exists a positive integer n such that n + 2 ≯ 8"
(b) The following statements are also negatives of each other:
"There exists a (living) person who is 150 years old"
"Every living person is not 150 years old"

Remark: The expression $\neg p(x)$ has the obvious meaning:

"The statement $\neg p(a)$ is true when p(a) is false, and vice versa"

Previously, \neg was used as an operation on statements; here \neg is used as an operation on propositional functions.

Similarly, $p(x) \land q(x)$, read "p(x) and q(x)," is defined by:

"The statement $p(a) \land q(a)$ is true when p(a) and q(a) are true" Similarly, $p(x) \lor q(x)$, read "p(x) or q(x)," is defined by:

"The statement $p(a) \lor q(a)$ is true when p(a) or q(a) is true"

Thus, in terms of truth sets:

- (i) $\neg p(x)$ is the complement of p(x).
- (ii) $p(x) \wedge q(x)$ is the intersection of p(x) and q(x).
- (iii) $p(x) \lor q(x)$ is the union of p(x) and q(x).

€.....€

THANKS FOR YOUR ATTENTION