Lecture 04: Discrete Mathematics

Course Title: Discrete Mathematics

Course Code: MTH211

Class: BSM-II

Objectives The main aim of the lecture is to

- *define argument, valid argument, and fallacy.*
- *discuss examples and few related results.*
- *define propositional function.*

References:

- S. Lipschutz and M. Lipson, Schaum's Outlines Discrete Mathematics, Third Edition, McGraw-Hil, 2007.
- K.H. Rosen, Discrete Mathematics and its Application, MeGraw-Hill, 6th edition. 2007.
- K.A. Ross, C.R.B. Wright, Discrete Mathematics, Prentice Hall. New Jersey, 2003.
- <u>https://www.freepik.com/</u> (for background image)

ARGUMENTS

An *argument* is an assertion that a given set of propositions $P_1, P_2, ..., P_n$, called *premises*, yields (has a consequence) another proposition Q, called the *conclusion*. Such an argument is denoted by $P_1, P_2, ..., P_n \vdash Q$

The notion of a "logical argument" or "valid argument" is formalized as follows:

Valid Argument: An argument $P_1, P_2, ..., P_n \vdash Q$ is said to be *valid* if Q is true whenever all the premises $P_1, P_2, ..., P_n$ are true.

Fallacy: An argument which is not valid is called *fallacy*.

Examples:

(a) The following argument is valid:

 $p, p \rightarrow q \vdash q$ (*Law of Detachment*) (b) The following argument is a fallacy:

$p \rightarrow q, q \vdash p$

Note that propositions P_1, P_2, \ldots, P_n are true simultaneously if and only if the proposition $P_1 \wedge P_2 \wedge \ldots P_n$ is true.

So we come arrive at the following theorem.

Theorem:

The argument $P_1, P_2, \ldots, P_n \vdash Q$ is valid if and only if the proposition $(P_1 \land P_2 \ldots \land P_n) \rightarrow Q$ is a tautology.

q	$p \rightarrow q$				
Т	Т				
F	F				
Т	Т				
F	Т				
	F T				

Example: A fundamental principle of logical reasoning states:

"If *p* implies *q* and *q* implies *r*, then *p* implies *r*"

p	q	r	[(p	→	q)	^	(q	→	r)]	→	(p	→	<i>r</i>)
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	F	Т	F	F	Т	Т	F	F
Т	F	Т	Т	F	F	F	F	Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F	F	F	Т	F	Т	Т	F	F
F	Т	Т	F	Т	Т	Т	Т	Т	Т	Т	F	т	Т
F	Т	F	F	Т	Т	F	Т	F	F	Т	F	Т	F
F	F	Т	F	Т	F	Т	F	Т	Т	Т	F	Т	Т
F	F	F	F	Т	F	Т	F	Т	F	Т	F	Т	F
St	ep		1	2	1	3	1	2	1	4	1	2	1

That is, the following argument is valid: $p \rightarrow q$, $q \rightarrow r \vdash p \rightarrow r$ (*Law of Syllogism*)

This fact is verified by the above truth table which shows that the following proposition is a tautology:

 $[(p \to q) \land (q \to r)] \to (p \to r).$

For example, consider the following argument:

 S_1 : If a man is a bachelor, he is unhappy.

 S_2 : If a man is unhappy, he dies young.

Conclusion: S: Bachelors die young

Here the statement *S* below the line denotes the conclusion of the argument, and the statements S_1 and S_2 above the line denote the premises. We claim that the argument S_1 , $S_2 \vdash S$ is valid. For the argument is of the form

 $p \to q, q \to r \vdash p \to r,$

where *p* is "He is a bachelor," *q* is "He is unhappy" and *r* is "He dies young". and by "Law of Syllogism" argument *S* is valid.

Propositional Functions

Let *A* be a given set. *A propositional function* (or an *open sentence* or *condition*) defined on *A* is an expression p(x), which has the property that p(a) is true or false for each $a \in A$. The set *A* is called the *domain* of p(x), and the set T_p of all elements of *A* for which p(a) is true is called the *truth set* of p(x). In other words,

 $T_p = \{x \mid x \in A, p(x) \text{ is true}\} \text{ or } T_p = \{x \mid p(x)\}$

Example: Consider propositional function p(x) defined on the set N of positive integers.
(a) Let p(x) be "x + 2 > 7." Its truth set is {6, 7, 8, ...} consisting of all integers greater than 5.
(b) Let p(x) be "x + 5 < 3." Its truth set is the empty set. That is, p(x) is not true for any integer in N.
(c) Let p(x) be "x + 5 > 1." Its truth set is N. That is, p(x) is true for every element in N.

HANKS FOR YOUR ATTENTION