Lecture 03: Discrete Mathematics

Course Title: Discrete Mathematics

Course Code: MTH211

Class: BSM-II

Objectives

The main aim of the lecture is to

- *define the notion of tautologies and contradiction.*
- define and discuss logical equivalence.
- *discuss algebra of propositions.*
- *define conditional and biconditional statements.*

References:

- S. Lipschutz and M. Lipson, Schaum's Outlines Discrete Mathematics, Third Edition, McGraw-Hil, 2007.
- K.H. Rosen, Discrete Mathematics and its Application, MeGraw-Hill, 6th edition. 2007.
- K.A. Ross, C.R.B. Wright, Discrete Mathematics, Prentice Hall. New Jersey, 2003.
- <u>https://www.freepik.com/</u> (for background image)

Tautologies and Contradictions

Some propositions P(p, q, ...) contain only *T* in the last column of their truth tables or, in other words, they are true for any truth values of their variables. Such propositions are called *tautologies*. Analogously, a proposition P(p, q, ...) is called a *contradiction* if it contains only *F* in the last column of its truth table or, in other words, if it is false for any truth values of its variables. **For example**: From the truth table, $p \lor \neg p$ is tautology and $p \land \neg p$ is contradiction.

p	$\neg p$	$p \lor \neg p$		
Т	F	Т		
F	Т	Т		

p	$\neg p$	$p \land \neg p$
Т	F	F
F	Т	F

Logical Equivalence

Two propositions P(p, q, ...) and Q(p, q, ...) are said to be *logically equivalent*, or simply *equivalent* or *equal*, denoted by

$$P(p, q, \ldots) \equiv Q(p, q, \ldots)$$

if they have identical truth tables.

For example, Consider the truth tables of $\neg (p \land q)$ and $\neg p \lor \neg q$:

Observe that both truth tables are the same, that is, both propositions are false in the first case and true in the other three cases.

р	q	$p \land q$	$\neg (p \land q)$	р	q	$\neg p$	$\neg q$	$\neg p \lor \neg q$
Т	Т	Т	F	Т	Т	F	F	F
Т	F	F	Т	Т	F	F	Т	Т
F	Т	F	Т	F	Т		F	
F	F	F	Т	F	F	Т	Т	Т
	$(a) \neg (p \land q)$		$(b) \neg p \lor \neg q$					

Accordingly, we can write: $\neg (p \land q) \equiv \neg p \lor \neg q$.

Remark: Let *p* be "Roses are red" and *q* be "Violets are blue." Let *S* be the statement: "It is not true that roses are red and violets are blue."

Then *S* can be written in the form $\neg (p \land q)$. However, as noted above, $\neg (p \land q) \equiv \neg p \lor \neg q$.

Accordingly, *S* has the same meaning as the statement:

"Roses are not red, or violets are not blue."

Algebra of Propositions

Propositions satisfy various laws which are listed in the table below. (In this table, *T* and *F* are restricted to the truth values "True" and "False," respectively.)

Idempotent laws:	(1a) $p \lor p \equiv p$	(1b) $p \land p \equiv p$			
Associative laws:	(2a) $(p \lor q) \lor r \equiv p \lor (q \lor r)$	$(2b) (p \land q) \land r \equiv p \land (q \land r)$			
Commutative laws:	(3a) $p \lor q \equiv q \lor p$	(3b) $p \wedge q \equiv q \wedge p$			
Distributive laws:	(4a) $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	(4b) $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$			
Identity laws:	(5a) $p \lor F \equiv p$	(5b) $p \wedge T \equiv p$			
fucture faws.	(6a) $p \lor T \equiv T$	(6b) $p \wedge F \equiv F$			
Involution law:	$(7) \neg \neg p \equiv p$				
Complement laws:	(8a) $p \lor \neg p \equiv T$	(8b) $p \land \neg p \equiv T$			
Complement laws.	$(9a) \neg T \equiv F$	(9b) $\neg F \equiv T$			
DeMorgan's laws:	(10a) $\neg (p \lor q) \equiv \neg p \land \neg q$	$(10b) \neg (p \land q) \equiv \neg p \lor \neg q$			

Laws of the algebra of propositions

Conditional and Biconditional Statements

A statement of the form "If *p* then *q*" is called *conditional* statement and is denoted by $p \rightarrow q$. The conditional $p \rightarrow q$ is frequently read "*p* implies *q*" or "*p* only if *q*."

A statement of the form "p if and only if q" is called *biconditional* statement and is denoted by

 $p \leftrightarrow q$.

The truth values of $p \rightarrow q$ and $p \leftrightarrow q$ are defined by the following tables:



