Lecture 02: Discrete Mathematics

Course Title: Discrete Mathematics

Course Code: MTH211

Class: BSM-II

Objectives The main aim of the lecture is to discuss about

proposition and its truth table

References:

- S. Lipschutz and M. Lipson, Schaum's Outlines Discrete Mathematics, Third Edition, McGraw-Hil, 2007.
- K.H. Rosen, Discrete Mathematics and its Application, MeGraw-Hill, 6th edition. 2007.
- K.A. Ross, C.R.B. Wright, Discrete Mathematics, Prentice Hall. New Jersey, 2003.
- <u>https://www.freepik.com/</u> (for background image)

Propositions & Truth Tables

Let P(p, q, ...) denote an expression constructed from logical variables p, q, ..., which take on the value TRUE (T) or FALSE (F), and the logical connectives \land , \lor , and \neg (and others discussed

subsequently). Such an expression P(p, q, ...) will be called a *proposition*. For example: $\sim (p \land q) \lor r$ and $(\neg p \land q) \lor (r \lor \neg s)$.

The main property of a proposition P(p, q, ...) is that its truth value depends exclusively upon the truth values of its variables, that is, the truth value of a proposition is known once the truth value of each of its variables is known. A simple concise way to show this relationship is through a *truth table*. We describe a way to obtain such a truth table below.

For example truth tables of $p \land q$, $p \lor q$ and $\neg p$ are as follows:

As another example, consider proposition $\neg (p \land \neg q)$. Its truth table is as follows:

р	q	$\neg (p \land \neg q)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

But how we come to the last column in above table for $\neg (p \land \neg q)$. One method is as follows:

Alternate Method for Constructing a Truth Table

Another way to construct the truth table of $\neg (p \land \neg q)$ as follows:

THANKS FOR YOUR ATTENTION