Metric Spaces: An Introduction

* Metric Spaces

Let X be a non-empty set and \mathbb{R} denotes the set of real numbers. A function $d: X \times X \rightarrow \mathbb{R}$ is said to be metric if it satisfies the following axioms $\forall x, y, z \in X$.
$\left[\mathrm{M}_{1}\right] d(x, y) \geq 0$ i.e. d is finite and non-negative real valued function.
[M_{2}] $d(x, y)=0$ if and only if $x=y$.
$\left[\mathrm{M}_{3}\right] \quad d(x, y)=d(y, x)$
(Symmetric property)
$\left[\mathrm{M}_{4}\right] d(x, z) \leq d(x, y)+d(y, z)$
(Triangular inequality)
The pair (X, d) is then called metric space, d is called distance function and $d(x, y)$ is the distance from x to y.
Note: If (X, d) be a metric space then X is called underlying set.

* Examples:

i) Let X be a non-empty set. Then $d: X \times X \rightarrow \mathbb{R}$ defined by

$$
d(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

is a metric on X and is called trivial metric or discrete metric.
ii) Let \mathbb{R} be the set of real number. Then $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
d(x, y)=|x-y| \text { is a metric on } \mathbb{R} .
$$

The space (\mathbb{R}, d) is called real line and d is called usual metric on \mathbb{R}.
iii) Let X be a non-empty set and $d: X \times X \rightarrow \mathbb{R}$ be a metric on X. Then $d^{\prime}: X \times X \rightarrow \mathbb{R}$ defined by $d^{\prime}(x, y)=\min (1, d(x, y))$ is also a metric on X.
iv) Let $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
d(x, y)=\sqrt{|x-y|} .
$$

Then d is a metric space on \mathbb{R}.
v) Let $x=\left(x_{1}, y_{1}\right), y=\left(x_{2}, y_{2}\right)$. We define

$$
\begin{aligned}
d(x, y)= & \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \text { is a metric on } \mathbb{R} \\
& \text { and called Euclidean metric on } \mathbb{R}^{2} \text { or usual metric on } \mathbb{R}^{2} .
\end{aligned}
$$

vi) A $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is not a metric, where \mathbb{R} is the set of real number and d defined by

$$
d(x, y)=(x-y)^{2}
$$

vii) Let $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$. We define

$$
d(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|
$$

is a metric on \mathbb{R}^{2}, called Taxi-Cab metric on \mathbb{R}^{2}.
viii) Let \mathbb{R}^{n} be the set of all real n-tuples. For

$$
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { and } y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \text { in } \mathbb{R}^{n}
$$

we define $d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}}$
then d is metric on \mathbb{R}^{n}, called Euclidean metric on \mathbb{R}^{n} or usual metric on \mathbb{R}^{n}.
$\mathbf{i x)}$ The space l^{∞}. As points we take bounded sequence
$x=\left(x_{1}, x_{2}, \ldots\right)$, also written as $x=\left(x_{i}\right)$, of complex numbers such that

$$
\left|x_{i}\right| \leq C_{x} \quad \forall i=1,2,3, \ldots
$$

where C_{x} is fixed real number. The metric is defined as

$$
d(x, y)=\sup _{i \in \mathbb{N}}\left|x_{i}-y_{i}\right| \quad \text { where } y=\left(y_{i}\right)
$$

$\mathbf{x)}$ The space $l^{p}, p \geq 1$ is a real number, we take as member of l^{p}, all sequence $x=\left(\xi_{j}\right)$ of complex number such that $\sum_{j=1}^{\infty}\left|\xi_{j}\right|^{p}<\infty$.
The metric is defined by $d(x, y)=\left(\sum_{j=1}^{\infty}\left|\xi_{j}-\eta_{j}\right|^{p}\right)^{\frac{1}{p}}$,

$$
\text { where } y=\left(\eta_{j}\right) \text { such that } \sum_{j=1}^{\infty}\left|\eta_{j}\right|^{p}<\infty
$$

* Open Ball

Let (X, d) be a metric space. An open ball in (X, d) is denoted by

$$
B\left(x_{0} ; r\right)=\left\{x \in X \mid d\left(x_{0}, x\right)<r\right\}
$$

x_{0} is called centre of the ball and r is called radius of ball and $r \geq 0$.

* Closed Ball

The set $\bar{B}\left(x_{0} ; r\right)=\left\{x \in X \mid d\left(x_{0}, x\right) \leq r\right\}$ is called closed ball in (X, d).

* Sphere

The set $S\left(x_{0} ; r\right)=\left\{x \in X \mid d\left(x_{0}, x\right)=r\right\}$ is called sphere in (X, d).

* Examples

Consider the set of real numbers with usual metric $d=|x-y| \forall x, y \in \mathbb{R}$ then $B\left(x_{0} ; r\right)=\left\{x \in \mathbb{R} \mid d\left(x_{0}, x\right)<r\right\}$
i.e. $B\left(x_{0} ; r\right)=\left\{x \in \mathbb{R}:\left|x-x_{0}\right|<r\right\}$
i.e. $x_{0}-r<x<x+r=\left(x_{0}-r, x_{0}+r\right)$
i.e. open ball is the real line with usual metric is an open interval.

And $\bar{B}\left(x_{0} ; r\right)=\left\{x \in \mathbb{R}:\left|x-x_{0}\right| \leq r\right\}$
i.e. $x_{0}-r \leq x \leq x_{0}+r=\left[x_{0}-r, x_{0}+r\right]$
i.e. closed ball in a real line is a closed interval.

And $S\left(x_{\circ} ; r\right)=\left\{x \in \mathbb{R}:\left|x-x_{0}\right|=r\right\}=\left\{x_{0}-r, x_{0}+r\right\}$
i.e. two point $x_{0}-r$ and $x_{0}+r$ only.

* Open Set

Let (X, d) be a metric space. A set G is called open in X if for every $x \in G$, there exists an open ball $B(x ; r) \subset G$.

Theorem

An open ball in metric space X is open.

Proof.

Let $B\left(x_{0} ; r\right)$ be an open ball in (X, d).
Let $y \in B\left(x_{0} ; r\right)$. Then $d\left(x_{0}, y\right)=r_{1}<r$
Let $r_{2}<r-r_{1}$. Then $B\left(y ; r_{2}\right) \subset B\left(x_{0} ; r\right)$
Hence $B\left(x_{0} ; r\right)$ is an open set.
Note: Let (X, d) be a metric space. Then
i) X and φ are open sets.
ii) union of any number of open sets is open.
iii) intersection of a finite number of open sets is open.

* Limit point of a set

Let (X, d) be a metric space and $A \subset X$. Then $x \in X$ is called a limit point or accumulation point of A if for every open ball $B(x ; r)$ with centre x,

$$
B(x ; r) \cap\{A-\{x\}\} \neq \varphi,
$$

i.e. every open ball contains a point of A other than x.

* Closed Set

A subset A of metric space X is closed if it contains every limit point of itself. The set of all limit points of A is called the derived set of A and denoted by A^{\prime}.

* Theorem

A subset A of a metric space is closed if and only if its complement A^{c} is open.

* Theorem

A closed ball is a closed set.

* Theorem

Let (X, d) be a metric space and $A \subset X$. If $x \in X$ is a limit point of A, then every open ball $B(x ; r)$ with centre x contain an infinite numbers of point of A.

* Closure of a Set

Let (X, d) be a metric space and $M \subset X$. Then closure of M is denoted by $\bar{M}=M \cup M^{\prime}$, where M^{\prime} is the set of all limit points of M. It is the smallest closed superset of M.

Dense Set

Let (X, d) be a metric space. Then a set $M \subset X$ is called dense in X if $\bar{M}=X$.

* Countable Set

A set A is countable if it is finite or there exists a function $f: A \rightarrow \mathbb{N}$ which is one-one and onto, where \mathbb{N} is the set of natural numbers.
e.g. \mathbb{N}, \mathbb{Q} and \mathbb{Z} are countable sets. The set of real numbers, the set of irrational numbers and any interval are not countable sets.

- Separable Space

A space X is said to be separable if it contains a countable dense subsets. e.g. the real line \mathbb{R} is separable since it contain the set \mathbb{Q} of rational numbers, which is dense is \mathbb{R}.

* Theorem

Let (X, d) be a metric space. A set $A \subset X$ is dense if and only if A has nonempty intersection with any open subset of X.

* Neighbourhood of a Point

Let (X, d) be a metric space and $x_{0} \in X$. A set $N \subset X$ is called a neighbourhood of x_{0} if there exists an open ball $B\left(x_{0} ; \varepsilon\right)$ with centre x_{0} such that $B\left(x_{0} ; \varepsilon\right) \subset N$.

Shortly "neighbourhood" is written as "nhood".

Interior Point

Let (X, d) be a metric space and $A \subset X$. A point $x_{0} \in X$ is called an interior point of A if there is an open ball $B\left(x_{0} ; r\right)$ with centre x_{0} such that $B\left(x_{0} ; r\right) \subset A$. The set of all interior points of A is called interior of A and is denoted by $\operatorname{int}(A)$ or A°.
It is the largest open set contain in A. i.e. $A^{\circ} \subset A$.

* Continuity

A function $f:(X, d) \rightarrow\left(Y, d^{\prime}\right)$ is called continuous at a point $x_{0} \in X$ if for any $\varepsilon>0$ there is a $\delta>0$ such that $d^{\prime}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon$ for all x satisfying $d\left(x, x_{0}\right)<\delta$.

Alternative:

A function $f: X \rightarrow Y$ is continuous at $x_{0} \in X$ if for any $\varepsilon>0$, there is a $\delta>0$ such that

$$
x \in B\left(x_{0} ; \delta\right) \quad \Rightarrow f(x) \in B\left(f\left(x_{0}\right) ; \varepsilon\right)
$$

* Theorem

A function $f:(X, d) \rightarrow\left(Y, d^{\prime}\right)$ is continuous at $x_{0} \in X$ if and only if $f^{-1}(G)$ is open is X wherever G is open in Y.

* Convergence of Sequence:

Let $\left(x_{n}\right)=\left(x_{1}, x_{2}, \ldots\right)$ be a sequence in a metric space (X, d). We say $\left(x_{n}\right)$
converges to $x \in X$ if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$.
We write $\lim _{n \rightarrow \infty} x_{n}=x$ or simply $x_{n} \rightarrow x$ as $n \rightarrow \infty$.
Alternatively, we say $x_{n} \rightarrow x$ if for every $\varepsilon>0$ there is an $n_{0} \in \mathbb{N}$, such that

$$
\forall n>n_{0}, \quad d\left(x_{n}, x\right)<\varepsilon .
$$

* Theorem

i) A convergent sequence is bounded.
ii) If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$.

* Cauchy Sequence

A sequence $\left(x_{n}\right)$ in a metric space (X, d) is called Cauchy if for any $\varepsilon>0$ there is $n_{0} \in \mathbb{N}$ such that $\forall m, n>n_{0}, \quad d\left(x_{m}, x_{n}\right)<\varepsilon$.

* Theorem

A convergent sequence in a metric space (X, d) is Cauchy.
Proof.
Let $x_{n} \rightarrow x \in X$, therefore any $\varepsilon>0$ there is $n_{0} \in \mathbb{N}$ such that

$$
\forall m, n>n_{0}, \quad d\left(x_{n}, x\right)<\frac{\varepsilon}{2} \quad \text { and } \quad d\left(x_{m}, x\right)<\frac{\varepsilon}{2}
$$

Then by using triangular inequality

$$
\begin{aligned}
d\left(x_{m}, x_{n}\right) & \leq d\left(x_{m}, x\right)+d\left(x, x_{n}\right) \\
& \leq d\left(x_{m}, x\right)+d\left(x_{n}, x\right) \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

Thus every convergent sequence in a metric space is Cauchy.

* Example

Let $\left(x_{n}\right)$ be a sequence in the discrete space (X, d). If $\left(x_{n}\right)$ be a Cauchy sequence, then for $\varepsilon=1 / 2$, there is a natural number n_{0} depending on ε such that

$$
d\left(x_{m}, x_{n}\right)<1 / 2 \quad \forall m, n \geq n_{0}
$$

Since in discrete space d is either 0 or 1 therefore $d\left(x_{m}, x_{n}\right)=0 \Rightarrow x_{m}=x_{n}=x$ (say) Thus a Cauchy sequence in (X, d) become constant after a finite number of terms,

$$
\text { i.e. }\left(x_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{n_{0}}, x, x, x, \ldots\right)
$$

Subsequence

Let ($a_{1}, a_{2}, a_{3}, \ldots$) be a sequence in (X, d) and let ($i_{1}, i_{2}, i_{3}, \ldots$) be a sequence of positive integers such that $i_{1}<i_{2}<i_{3}<\ldots$ then $\left(a_{i,}, a_{i 2}, a_{i 3}, \ldots\right)$ is called subsequence of $\left(a_{n}: n \in \mathbb{N}\right)$.

* Complete Space

A metric space (X, d) is called complete if every Cauchy sequence in X converges to a point of X.

* Example

Let $X=(0,1)$ then $\left(x_{n}\right)=\left(x_{1}, x_{2}, x_{3}, \ldots\right)=(1 / 2,1 / 3,1 / 4, \ldots)$ is a sequence in X. Then $x_{n} \rightarrow 0$ but 0 is not a point of X.

* Subspace

Let (X, d) be a metric space and $Y \subset X$ then Y is called subspace if Y is itself a metric space under the metric d.

* Theorem

A subspace of a complete metric space (X, d) is complete if and only if Y is closed in X.

* Nested Sequence:

A sequence sets $A_{1}, A_{2}, A_{3}, \ldots$ is called nested if $A_{1} \supset A_{2} \supset A_{3} \supset \ldots$

* Theorem (Cantor's Intersection Theorem)

A metric space (X, d) is complete if and only if every nested sequence of nonempty closed subset of X, whose diameter tends to zero, has a non-empty intersection.

* Complete Space (Examples)

(i) The discrete space is complete.

Since in discrete space a Cauchy sequence becomes constant after finite terms i.e. $\left(x_{n}\right)$ is Cauchy in discrete space if it is of the form

$$
\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}=b, b, b, \ldots\right)
$$

(ii) The set $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$ of integers with usual metric is complete.
(iii) The set of rational numbers with usual metric is not complete.

Since ($1.1,1.41,1.412, \ldots$) is a Cauchy sequence of rational numbers but its limit is $\sqrt{2}$, which is not rational.
(iv) The space of irrational number with usual metric is not complete.

We take $(-1,1),(-1 / 2,1 / 2),(-1 / 3,1 / 3), \ldots,(-1 / n, 1 / n)$
We choose one irrational number from each interval and these irrational tends to zero as we goes toward infinity, as zero is a rational so space of irrational is not complete.

* Theorem

The real line is complete.
The Euclidean space \mathbb{R}^{n} is complete.
The space l^{∞} is complete.
The space \mathbf{C} of all convergent sequence of complex number is complete.
The space $l^{p}, p \geq 1$ is a real number, is complete.
The space $\mathbf{C}[a, b]$ is complete.

* Theorem

If $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ are complete then $X \times Y$ is complete.
Note: The metric d (say) on $X \times Y$ is defined as
$d(x, y)=\max \left(d_{1}\left(\xi_{1}, \xi_{2}\right), d_{2}\left(\eta_{1}, \eta_{2}\right)\right)$
where $x=\left(\xi_{1}, \eta_{1}\right), y=\left(\xi_{2}, \eta_{2}\right)$ and $\xi_{1}, \xi_{2} \in X, \eta_{1}, \eta_{2} \in Y$.

