Metric Spaces: An Introduction

Metric Spaces

Let *X* be a non-empty set and \mathbb{R} denotes the set of real numbers. A function $d: X \times X \to \mathbb{R}$ is said to be metric if it satisfies the following axioms $\forall x, y, z \in X$.

- [M₁] $d(x,y) \ge 0$ i.e. *d* is finite and non-negative real valued function.
- [M₂] d(x,y) = 0 if and only if x = y.
- [M₃] d(x, y) = d(y, x) (Symmetric property)
- $[M_4] \quad d(x,z) \le d(x,y) + d(y,z)$ (Triangular inequality)

The pair (*X*, *d*) is then called *metric space*, *d* is called *distance function* and d(x, y) is the distance from *x* to *y*.

Note: If (X, d) be a metric space then X is called *underlying set*.

***** Examples:

i) Let *X* be a non-empty set. Then $d: X \times X \to \mathbb{R}$ defined by

$$d(x, y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

is a metric on X and is called *trivial metric* or *discrete metric*.

ii) Let \mathbb{R} be the set of real number. Then $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by

d(x, y) = |x - y| is a metric on \mathbb{R} .

The space (\mathbb{R}, d) is called *real line* and *d* is called *usual metric on* \mathbb{R} .

- iii) Let *X* be a non-empty set and $d: X \times X \to \mathbb{R}$ be a metric on *X*. Then $d': X \times X \to \mathbb{R}$ defined by $d'(x, y) = \min(1, d(x, y))$ is also a metric on *X*.
- iv) Let $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined by

$$d(x,y) = \sqrt{|x-y|}.$$

Then *d* is a metric space on \mathbb{R} .

v) Let
$$x = (x_1, y_1)$$
, $y = (x_2, y_2)$. We define
 $d(x, y) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ is a metric on \mathbb{R}
and called *Euclidean metric on* \mathbb{R}^2 or *usual metric on* \mathbb{R}^2

vi) A $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is not a metric, where \mathbb{R} is the set of real number and *d* defined by

$$d(x, y) = (x - y)^2$$

vii) Let $x = (x_1, x_2)$, $y = (y_1, y_2) \in \mathbb{R}^2$. We define $d(x, y) = |x_1 - y_1| + |x_2 - y_2|$ is a metric on \mathbb{R}^2 , called *Taxi-Cab metric* on \mathbb{R}^2 .

viii) Let \mathbb{R}^n be the set of all real *n*-tuples. For

$$x = (x_1, x_2, ..., x_n) \text{ and } y = (y_1, y_2, ..., y_n) \text{ in } \mathbb{R}^n.$$

we define $d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + ... + (x_n - y_n)^2}$

then *d* is metric on \mathbb{R}^n , called *Euclidean metric on* \mathbb{R}^n or *usual metric on* \mathbb{R}^n .

ix) The space l^{∞} . As points we take bounded sequence $x = (x_1, x_2,...)$, also written as $x = (x_i)$, of complex numbers such that $\left| x_{i} \right| \leq C_{x} \quad \forall \ i = 1, 2, 3, \dots$

where C_x is fixed real number. The metric is defined as

$$d(x, y) = \sup_{i \in \mathbb{N}} |x_i - y_i| \quad \text{where } y = (y_i)$$

x) The space l^p , $p \ge 1$ is a real number, we take as member of l^p , all sequence

$$x = \left(\xi_{j}\right) \text{ of complex number such that } \sum_{j=1}^{\infty} \left|\xi_{j}\right|^{p} < \infty.$$

The metric is defined by $d(x, y) = \left(\sum_{j=1}^{\infty} \left|\xi_{j} - \eta_{j}\right|^{p}\right)^{\frac{1}{p}},$
where $y = \left(\eta_{j}\right)$ such that $\sum_{j=1}^{\infty} \left|\eta_{j}\right|^{p} < \infty$

Open Ball

Let (X,d) be a metric space. An open ball in (X,d) is denoted by $B(x_0;r) = \{x \in X \mid d(x_0,x) < r\}$

 x_0 is called centre of the ball and r is called radius of ball and $r \ge 0$.

Closed Ball

The set $\overline{B}(x_0;r) = \{x \in X \mid d(x_0,x) \le r\}$ is called closed ball in (X,d).

***** Sphere

The set $S(x_0;r) = \{x \in X \mid d(x_0,x) = r\}$ is called sphere in (X,d).

Examples

Consider the set of real numbers with usual metric $d = |x - y| \quad \forall x, y \in \mathbb{R}$ then $B(x_{\circ}; r) = \{x \in \mathbb{R} \mid d(x_{\circ}, x) < r\}$ i.e. $B(x_{\circ}; r) = \{x \in \mathbb{R} : |x - x_{\circ}| < r\}$ i.e. $x_0 - r < x < x + r = (x_0 - r, x_0 + r)$

i.e. open ball is the real line with usual metric is an open interval.

And $\overline{B}(x_{\circ};r) = \left\{x \in \mathbb{R} : |x - x_0| \le r\right\}$ i.e. $x_0 - r \le x \le x_0 + r = [x_0 - r, x_0 + r]$ i.e. closed ball in a real line is a closed interval. And $S(x_{\circ};r) = \left\{x \in \mathbb{R} : |x - x_0| = r\right\} = \left\{x_0 - r, x_0 + r\right\}$ i.e. two point $x_0 - r$ and $x_0 + r$ only.

Open Set

Let (X,d) be a metric space. A set *G* is called open in *X* if for every $x \in G$, there exists an open ball $B(x; r) \subset G$.

Theorem

An open ball in metric space *X* is open.

Proof.

Let $B(x_0; r)$ be an open ball in (X, d). Let $y \in B(x_0; r)$. Then $d(x_0, y) = r_1 < r$ Let $r_2 < r - r_1$. Then $B(y; r_2) \subset B(x_0; r)$ Hence $B(x_0; r)$ is an open set.

Note: Let (X,d) be a metric space. Then

- i) X and φ are open sets.
- ii) union of any number of open sets is open.
- iii) intersection of a finite number of open sets is open.

Limit point of a set

Let (X,d) be a metric space and $A \subset X$. Then $x \in X$ is called a *limit point* or *accumulation point* of *A* if for every open ball B(x;r) with centre *x*,

 $B(x;r) \cap \{A - \{x\}\} \neq \varphi,$

i.e. every open ball contains a point of *A* other than *x*.

Closed Set

A subset A of metric space X is *closed* if it contains every limit point of itself. The set of all limit points of A is called the *derived set of* A and denoted by A'.

Theorem

A subset A of a metric space is closed if and only if its complement A^c is open.

***** Theorem

A closed ball is a closed set.

Theorem

Let (X,d) be a metric space and $A \subset X$. If $x \in X$ is a limit point of A, then every open ball B(x;r) with centre x contain an infinite numbers of point of A.

Closure of a Set

Let (X,d) be a metric space and $M \subset X$. Then *closure of* M is denoted by $\overline{M} = M \cup M'$, where M' is the set of all limit points of M. It is the smallest closed superset of M.

Dense Set

Let (X, d) be a metric space. Then a set $M \subset X$ is called dense in X if $\overline{M} = X$.

Countable Set

A set *A* is *countable* if it is finite or there exists a function $f : A \to \mathbb{N}$ which is one-one and onto, where \mathbb{N} is the set of natural numbers.

e.g. \mathbb{N}, \mathbb{Q} and \mathbb{Z} are countable sets. The set of real numbers, the set of irrational numbers and any interval are not countable sets.

✤ Separable Space

A space *X* is said to be *separable* if it contains a countable dense subsets. e.g. the real line \mathbb{R} is separable since it contain the set \mathbb{Q} of rational numbers, which is dense is \mathbb{R} .

Theorem

Let (X, d) be a metric space. A set $A \subset X$ is dense if and only if A has nonempty intersection with any open subset of X.

* Neighbourhood of a Point

Let (X, d) be a metric space and $x_0 \in X$. A set $N \subset X$ is called a *neighbourhood of* x_0 if there exists an open ball $B(x_0;\varepsilon)$ with centre x_0 such that $B(x_0;\varepsilon) \subset N$.

Shortly "neighbourhood" is written as "nhood".

Interior Point

Let (X, d) be a metric space and $A \subset X$. A point $x_0 \in X$ is called an *interior point* of *A* if there is an open ball $B(x_0; r)$ with centre x_0 such that $B(x_0; r) \subset A$. The set of all interior points of *A* is called *interior of A* and is denoted by *int*(*A*) or A° .

It is the largest open set contain in A. i.e. $A^{\circ} \subset A$.

Continuity

A function $f:(X,d) \to (Y,d')$ is called continuous at a point $x_0 \in X$ if for any $\varepsilon > 0$ there is a $\delta > 0$ such that $d'(f(x), f(x_0)) < \varepsilon$ for all *x* satisfying $d(x, x_0) < \delta$.

Alternative:

A function $f: X \to Y$ is continuous at $x_0 \in X$ if for any $\varepsilon > 0$, there is a $\delta > 0$ such that

$$x \in B(x_0; \delta) \implies f(x) \in B(f(x_0); \varepsilon).$$

Theorem

A function $f:(X,d) \to (Y,d')$ is continuous at $x_0 \in X$ if and only if $f^{-1}(G)$ is open is X wherever G is open in Y.

***** Convergence of Sequence:

Let $(x_n) = (x_1, x_2, ...)$ be a sequence in a metric space (X, d). We say (x_n) converges to $x \in X$ if $\lim_{n \to \infty} d(x_n, x) = 0$.

We write $\lim x_n = x$ or simply $x_n \to x$ as $n \to \infty$.

Alternatively, we say $x_n \to x$ if for every $\varepsilon > 0$ there is an $n_0 \in \mathbb{N}$, such that $\forall n > n_0, \quad d(x_n, x) < \varepsilon$.

Theorem

i) A convergent sequence is bounded.

ii) If $x_n \to x$ and $y_n \to y$ then $d(x_n, y_n) \to d(x, y)$.

Cauchy Sequence

A sequence (x_n) in a metric space (X,d) is called *Cauchy* if for any $\varepsilon > 0$ there is $n_0 \in \mathbb{N}$ such that $\forall m, n > n_0$, $d(x_m, x_n) < \varepsilon$.

Theorem

A convergent sequence in a metric space (X,d) is Cauchy.

Proof.

Let $x_n \to x \in X$, therefore any $\varepsilon > 0$ there is $n_0 \in \mathbb{N}$ such that

$$\forall m, n > n_0, \quad d(x_n, x) < \frac{\varepsilon}{2} \quad \text{and} \quad d(x_m, x) < \frac{\varepsilon}{2}$$

Then by using triangular inequality

$$d(x_m, x_n) \leq d(x_m, x) + d(x, x_n)$$

$$\leq d(x_m, x) + d(x_n, x) \qquad \because d(x, y) = d(y, x)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus every convergent sequence in a metric space is Cauchy.

♦ Example

Let (x_n) be a sequence in the discrete space (X,d). If (x_n) be a Cauchy sequence, then for $\varepsilon = \frac{1}{2}$, there is a natural number n_0 depending on ε such that

$$d(x_m, x_n) < \frac{1}{2} \qquad \forall \ m, n \ge n_0$$

Since in discrete space *d* is either 0 or 1 therefore $d(x_m, x_n) = 0 \implies x_m = x_n = x$ (say) Thus a Cauchy sequence in (X, d) become constant after a finite number of terms,

i.e.
$$(x_n) = (x_1, x_2, ..., x_{n_0}, x, x, x, ...)$$

***** Subsequence

Let $(a_1, a_2, a_3, ...)$ be a sequence in (X, d) and let $(i_1, i_2, i_3, ...)$ be a sequence of positive integers such that $i_1 < i_2 < i_3 < ...$ then $(a_{i_1}, a_{i_2}, a_{i_3}, ...)$ is called *subsequence* of $(a_n : n \in \mathbb{N})$.

***** Complete Space

A metric space (X,d) is called *complete* if every Cauchy sequence in X converges to a point of X.

***** Example

Let X = (0,1) then $(x_n) = (x_1, x_2, x_3, ...) = (\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...)$ is a sequence in X. Then $x_n \to 0$ but 0 is not a point of X.

***** Subspace

Let (X,d) be a metric space and $Y \subset X$ then Y is called *subspace* if Y is itself a metric space under the metric d.

Theorem

A subspace of a complete metric space (X,d) is complete if and only if Y is closed in X.

***** Nested Sequence:

A sequence sets A_1, A_2, A_3, \dots is called *nested* if $A_1 \supset A_2 \supset A_3 \supset \dots$

Theorem (Cantor's Intersection Theorem)

A metric space (X,d) is complete if and only if every nested sequence of nonempty closed subset of *X*, whose diameter tends to zero, has a non-empty intersection.

Complete Space (Examples)

(*i*) The discrete space is complete.

Since in discrete space a Cauchy sequence becomes constant after finite terms i.e. (x_n) is Cauchy in discrete space if it is of the form

 $(x_1, x_2, x_3, \dots, x_n = b, b, b, \dots)$

(*ii*) The set $\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}$ of integers with usual metric is complete.

(*iii*) The set of rational numbers with usual metric is not complete. Since (1.1,1.41,1.412,...) is a Cauchy sequence of rational numbers but its limit is $\sqrt{2}$, which is not rational.

(*iv*) The space of irrational number with usual metric is not complete. We take $(-1,1), (-\frac{1}{2}, \frac{1}{2}), (-\frac{1}{3}, \frac{1}{3}), \dots, (-\frac{1}{n}, \frac{1}{n})$

We choose one irrational number from each interval and these irrational tends to zero as we goes toward infinity, as zero is a rational so space of irrational is not complete.

Theorem

The real line is complete.

The Euclidean space \mathbb{R}^n is complete.

The space l^{∞} is complete.

The space **C** of all convergent sequence of complex number is complete.

The space l^p , $p \ge 1$ is a real number, is complete.

The space C[a, b] is complete.

Theorem

If (X, d_1) and (Y, d_2) are complete then $X \times Y$ is complete.

Note: The metric d (say) on $X \times Y$ is defined as $d(x, y) = \max(d_1(\xi_1, \xi_2), d_2(\eta_1, \eta_2))$ where $x = (\xi_1, \eta_1), y = (\xi_2, \eta_2)$ and $\xi_1, \xi_2 \in X, \eta_1, \eta_2 \in Y$.
