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We have seen that a function f that is the sum of two or more functions will share certain desir-
able properties with those functions. For example, our study of continuity, differentiation, and
integration allows us to state if

f = f1 + f2 + ... + fn

on an interval I = [a, b], then

• If f1, f2, ..., fn are continuous on I, so is f .

• If f1, f2, ..., fn are differentiable on I, so is f , and

f ′ = f ′1 + f ′2 + .... + f ′n.

• If f1, f2, ..., fn are integrable on I, so is f , and∫ b

a
f (x)dx =

∫ b

a
f1dx +

∫ b

a
f2(x)dx + .... +

∫ b

a
fn(x)dx.

It is natural to ask whether the corresponding results hold when f is the sum of an infinite series
of functions,

f = f1 + f2 + f3 + ... =
∞

∑
k=1

fk.

Such type of questions lead us to the theory of sequence of functions and series of functions. If
f1, f2, f3, ... are real valued function defined on an interval I of the reals numbers. We say that
{ fn} is an infinite sequence of functions on I and ∑∞

k=1 fk or ∑ fk represents the infinite series of
functions on I.

Definition 1: Pointwise convergence of sequences of functions

Suppose that { fn} is a sequence of functions on an interval I and the sequence of values
{ fn(x)} converges for each x ∈ I. Then we say that { fn} converges pointwise on I to the
limit function f , defined by

f (x) = lim
n→∞

fn(x), x ∈ I.

Thus if f is the pointwise limit of a sequence of function { fn} define on [a, b], then to each ε > 0
and to each x ∈ [a, b], there correspond an integer m such that

| fn(x)− f (x)| < ε, ∀ n ≥ m. (1)



Definition 2: Pointwise convergence of series of functions

Suppose that ∑∞
k=1 fk is a series of functions on I. If the series ∑∞

k=1 fk converges for every
point x ∈ I, and we define

f (x) =
∞

∑
k=1

fk, x ∈ I,

the function f is called the sum or the point-wise sum of the series ∑ fn on I.

Examples:

(1) Consider a sequence { fn(x)} define by fn(x) = xn on [0, 1]. One can note that lim
n→∞

fn(x) = 0,

when x ∈ [0, 1) and lim
n→∞

fn(1) = 1. Thus we have

f (x) := lim
n→∞

fn(x) =

{
0 if 0 ≤ x < 1,
1 if x = 1.

So the pointwise limit f of the sequence of continuous functions { fn} is discontinuous at
x = 1.

(2) Consider a sequence { fn}, where fn(x) =
sin nx√

n
for real x. Since −1 ≤ sin nx ≤ 1 and

√
n > 0, therefore we have

− 1√
n
≤ sin nx√

n
≤ 1√

n
.

This give f (x) := lim
n→∞

fn(x) = 0.

One can note that f ′n(x) =
√

n cos nx, so that f ′n(0) =
√

n→ ∞ as n→ ∞ but f ′(0) = 0.
Thus at x = 0, the sequence { f ′n(x)} diverges whereas the limit function f ′(x) = 0, i.e., the
limit of differentials is not equal to the differential of the limit.

(3) The geometric series
1 + x + x2 + x3 + ...

converges to (1 − x)−1 in the interval −1 < x < 1. Note that all the terms are bounded
without the sum being so.

Definition 3: Uniform convergence of sequence of functions

A sequence of functions { fn} is said to converge uniformly on an interval [a, b] to a function f
if for any ε > 0 and for all x ∈ [a, b] there exist an integer N (independent of x but dependent
of ε) such that

| fn(x)− f (x)| < ε, ∀ n ≥ N and x ∈ [a, b]. (2)

It is clear that every uniformly convergent sequence is pointwise convergent, and the uniform
limit function is same as the pointwise limit function.

The difference between the two concepts is this: In case of pointwise convergence, for ε > 0
and for each x ∈ [a, b] there exist an integer N (depending on ε and x both) such that (1) holds
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for n ≥ m; whereas in uniform convergence for each ε > 0, it is possible to find one integer N
(depend on ε alone) which will do for all x ∈ [a, b].

Note: Uniform convergence⇒ pointwise convergence but not vice-versa.
Also a sequence which is not pointwise convergent cannot be uniformly convergent.

Definition 4: Uniform convergence of series of functions

A series of functions ∑ fn is said to converges uniformly on [a, b] if the sequence {sn} of partial
sums, defined by

sn(x) =
n

∑
i=1

fi(x)

converges uniformly on [a, b].

Thus, a series of functions ∑ fn converge uniformly to f on [a, b] if for ε > 0 and all x ∈ [a, b]
there exists an integer N (independent of x and dependent of ε) such that for all x in [a, b]

| f1(x) + f2(x) + ... + fn(x)− f (x)| < ε for n ≥ N.

Review: (Cauchy’s general principle of convergence)
A necessary and sufficient condition for the convergence of a sequence of numbers {sn} is that,
for each ε > 0 there exists a positive integer m such that∣∣sn+p − sn

∣∣ < ε, ∀ n ≥ m ∧ p ≥ 1.

Note: The proof of above result can be seen in [1, p.73]. It is equivalent to the statement; “A
sequence of real numbers is convergent if and only if it is Cauchy sequence”.

Theorem 5: Cauchy’s criterion for uniform convergence of sequence

A sequence of functions { fn} defined on [a, b] converges uniformly on [a, b] if and only if
for every ε > 0 and for all x ∈ [a, b], there exist an integer N such that∣∣ fn+p(x)− fn(x)

∣∣ < ε, n ≥ N, p ≥ 1. (3)

Proof. Let the sequence { fn} uniformly converge on [a, b] to the limit function f , so that for a
given ε > 0 and for all x ∈ [a, b], there exist integers m1, m2 such that

| fn(x)− f (x)| < ε

2
∀ n ≥ m1

and ∣∣ fn+p(x)− f (x)
∣∣ < ε

2
∀ n ≥ m2, p ≥ 1.

Let N = max(m1, m2). Then∣∣ fn+p(x)− fn(x)
∣∣ = ∣∣ fn+p(x)− f (x) + f (x)− fn(x)

∣∣
≤
∣∣ fn+p(x)− f (x)

∣∣+ | fn(x)− f (x)|

<
ε

2
+

ε

2
= ε, ∀ n ≥ N, p ≥ 1.
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Conversely, suppose that the given condition (3) holds.

By Cauchy’s general principle of convergence, { fn} converges for each x ∈ [a, b] to a limit, say f .
Thus the sequence converges pointwise to f . Let us now prove that the convergence is uniform.

For a given ε > 0, let us choose an integer N such that (3) holds. Fix n, and consider p → ∞ in
(3). This gives us fn+p → f as p→ ∞, so we get

| f (x)− fn(x)| < ε n ≥ N, all x ∈ [a, b],

which proves that fn(x)→ f (x) uniformly on [a, b].

Theorem 6: Cauchy’s criterion for uniform convergence of series

A series of functions ∑ fn defined on [a, b] converges uniformly on [a, b] if and only if for
every ε > 0 and for all x ∈ [a, b], there exist an integer N such that∣∣ fn+1(x) + fn+2(x) + ... + fn+p(x)

∣∣ < ε, n ≥ N, p ≥ 1. (4)

The proof of the above theorem is left for the reader.

Note: Relation (4) in the statement may be replaced by

| fm+1(x) + fm+2(x) + ... + fn(x)| < ε, n, m ≥ N.

Example: Consider a sequence of function { fn}, where

fn(x) =
nx

1 + n2x2 , for all x ∈ R.

Prove that { fn} is pointwise convergent but not uniformly convergent on an interval containing
0.

Solution.

f (x) := lim
n→∞

fn(x) = lim
n→∞

nx
1 + n2x2 = lim

n→∞

x
1/n + nx2

= 0 ∀ x ∈ R.

Hence sequence { fn} converges pointwise to f (x) = 0 for all real x.

Let { fn} converges uniformly in any interval [a, b], so that the pointwise limit is also the uniform
limit. Therefore for given ε > 0, there exists an integer N such that for all x ∈ [a, b]∣∣∣∣ nx

1 + n2x2 − 0
∣∣∣∣ < ε ∀ n ≥ N.

In particular, we take ε = 1
3 , then we have∣∣∣∣ nx

1 + n2x2

∣∣∣∣ < 1
3
∀ n ≥ N.

Let m be an integer greater than N such that 1
m ∈ [a, b]. Now if we take n = m and x = 1

m , then
we have ∣∣∣∣ nx

1 + n2x2

∣∣∣∣ = ∣∣∣∣ m · (1/m)

1 + m2 · (1/m2)

∣∣∣∣ = 1
2
6< 1

3
= ε.
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We thus arrive at a contradiction and so the sequence is not uniformly convergent in the interval
[a, b], which contains the point 1/m. Since 1/m can tends to 0, therefore the interval [a, b] contains
0.

Hence the sequence is not uniformly convergent on any interval [a, b] containing 0.

Theorem 7

Let { fn} be a sequence of functions, such that

lim
n→∞

fn(x) = f (x), x ∈ [a, b]

and let
Mn = sup

x∈[a,b]
| fn(x)− f (x)| .

Then fn → f uniformly on [a, b] if and only if Mn → 0 as n→ ∞.

Proof. Let fn → f uniformly on [a, b], so that for a given ε > 0, there exists an integer N such that

| fn(x)− f (x)| < ε, ∀ n ≥ N, ∀ x ∈ [a, b]

⇒ Mn := sup
x∈[a,b]

| fn(x)− f (x)| < ε, ∀ n ≥ N.

⇒ Mn → 0 as n→ ∞.

Conversely, suppose that Mn → 0 as n→ ∞, i.e. lim
n→∞

Mn = 0.

This gives for all ε > 0, there exists an integer N such that

|Mn − 0| < ε, ∀ n ≥ N,

⇒ Mn < ε ∀ n ≥ N,

that is

sup
x∈[a,b]

| fn(x)− f (x)| < ε, ∀ n ≥ N,

⇒ | fn(x)− f (x)| < ε, ∀ n ≥ N, ∀ x ∈ [a, b],

⇒ fn → f unifromly on [a, b].

This complete the proof.

Question: Use the above theorem to prove that a sequence { fn}, where

fn(x) =
nx

1 + n2x2

is not uniformly convergent on any interval containing zero.

Solution of the above question left for the reader.
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Question: Prove that the sequence { fn}, where

fn(x) =
x

1 + nx2

is uniformly convergent on any interval I.

Solution. Here the pointwise limit

f (x) := lim
n→∞

fn(x) = lim
n→∞

x
1 + nx2 = 0 ∀ x ∈ R.

Now let
Mn = sup

x∈I
| fn(x)− f (x)| = sup

x∈I

∣∣∣∣ x
1 + nx2

∣∣∣∣ .

If we take g(x) =
x

1 + nx2 , then

g′(x) =
(1 + nx2) · 1− x · 2nx

(1 + nx2)2 =
1 + nx2 − 2nx2

(1 + nx2)2

=
1− nx2

(1 + nx2)2 .

Put g′(x) = 0, we get

1− nx2 = 0 ⇒ nx2 = 1 ⇒ x2 =
1
n
⇒ x = ± 1√

n
.

This gives g(x) has extreme values at x = ± 1√
n .

Now

g′′(x) =
(1 + nx2)2 · (−2nx)− (1− nx2) · 2(1 + nx2)(2nx)

(1 + nx2)4

=
−2nx(1 + nx2)(1 + nx2 + 2− 2nx2)

(1 + nx2)4 =
−2nx(3− nx2)

(1 + nx2)3 .

Since

g′′
(

1√
n

)
= −
√

n
2

< 0 and g′′
(
− 1√

n

)
=

√
n

2
> 0,

this gives g has extreme value at x = ± 1√
n and g

(
± 1√

n

)
= ± 1

2
√

n .

Hence
Mn = sup

∣∣∣∣g(± 1√
n

)∣∣∣∣ = 1
2
√

n
and Mn → 0 as n→ ∞.

This implies { fn} converges uniformly on I.

Exercises

1. Show that the sequence { fn}, where

fn(x) = nxe−nx2
, x ≥ 0,

is not uniformly convergent on [0, k], k > 0.

2. Show that the sequence {xn} is not uniformly convergent on [0, 1].
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3. Show that the sequence {exp(−nx)} is not uniformly convergent on [0, k], k > 0.

4. Test the following sequences for uniform convergence.

a.
{

sin nx√
n

}
, 0 ≤ x ≤ 2π.

b.
{

x
n + x

}
, 0 ≤ x ≤ k, where k > 0.

c.
{

x
n + x

}
, 0 ≤ x < ∞.

Review: (Cauchy’s criterion for convergence of series)
A necessary and sufficient condition for the convergence of a series of numbers ∑ xn is that, for
each ε > 0 there exists a positive integer m such that∣∣xn+1 + xn+2 + ... + xn+p

∣∣ < ε for n > m and p ≥ 1.

Theorem 8: Weierstrass’s M-test

A series of functions ∑ fn will converge uniformly (and absolutely) on [a, b] if there exists a
convergent series ∑ Mn of positive numbers such that for all x ∈ [a, b]

| fn(x)| ≤ Mn for all n.

Proof. Since ∑ Mn is convergent, therefore by Cauchy criterion for convergence of series, for all
ε > 0, there exists and integer N such that∣∣Mn+1 + Mn+2 + ... + Mn+p

∣∣ < ε ∀ n > N and p ≥ 1,

i.e. Mn+1 + Mn+2 + ... + Mn+p < ε ∀ n > N and p ≥ 1 as Mn > 0 ∀ n.

Hence for all x ∈ [a, b] and for all n > N, p ≥ 1, we have

| fn+1(x) + fn+2(x) + ... + fn+p(x)
∣∣

≤ | fn+1(x)|+ | fn+2(x)|+ ... + | fn+p(x)|
≤ Mn+1 + Mn+2 + ... + Mn+p

< ε

(5)

This gives that ∑ fn is uniformly convergent on [a, b]. Also from (5), one can conclude that ∑ fn

is absolutely convergent on [a, b].

Remark: The converse of above theorem is not true, i.e. non-convergence of ∑ Mn does not
imply anything as for as ∑ fn is concerned.

Example: Consider the series ∑
cos nθ

np for all θ ∈ R. Since we have∣∣∣∣cos nθ

np

∣∣∣∣ ≤ 1
np .
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We know that ∑ 1
np is convergent for p > 1. Hence we conclude that the given series is uniformly

convergent on any interval in R.

Exercise: Prove that the following series are uniformly convergent for all real x.

(i) ∑
sin(x2 + n2x)

n(n + 1)
(ii) ∑

(−1)nx2n

np+1(1 + x2n)
, p > 0.

Theorem 9: Uniform convergence and continuity

Let { fn} be a sequence of functions defined on an interval I, and x0 ∈ I. If the sequence { fn}
converges uniformly to some function f on I and if each of the function fn is continuous at
x0, then the function f is also continuous at x0.

Proof. Since fn → f uniformly on I, for given ε > 0, there exists an integer N such that

| fn(x)− f (x)| < ε

3
, ∀ n ≥ N, ∀ x ∈ I. (6)

As we have given, each fn is continuous at x0, there is a δ > 0 such that

| fn(x)− fn(x0)| <
ε

3
, whenever |x− x0| < δ. (7)

Now for all x ∈ I and all n ≥ N such that |x− x0| < δ, we have

| f (x)− f (x0)| = | f (x)− fn(x) + fn(x)− fn(x0) + fn(x0)− f (x0)|
≤ | f (x)− fn(x)|+ | fn(x)− fn(x0)|+ | fn(x0)− f (x0)|

<
ε

3
+

ε

3
+

ε

3
= ε, by using (6) and (7).

This conclude that f is continuous at x0.

Corollary 9

Let { fn} be a sequence of functions defined on an interval I. If the sequence { fn} converges
uniformly to some function f on I and if each of the function fn is continuous on I, then the
function f is also continuous on I.
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Theorem 10: Uniform convergence and integration

Let { fn} be a sequence of functions defined on [a, b]. If fn → f uniformly on [a, b] and each
function fn is continuous on [a, b], then∫ b

a
f (x)dx = lim

n→∞

∫ b

a
fn(x)dx. (8)

Proof. Since each fn is continuous and fn → f uniformly on [a, b], therefore f is continuous on
[a, b] and hence

∫ b
a f (x)dx exists.

Now ∣∣∣∣∫ b

a
fn(x)dx−

∫ b

a
f (x)dx

∣∣∣∣ = ∣∣∣∣∫ b

a
( fn(x)− f (x))dx

∣∣∣∣
≤
∫ b

a
| fn(x)− f (x)| dx

≤
∫ b

a
max
x∈[a,b]

| fn(x)− f (x)| dx

= max
x∈[a,b]

| fn(x)− f (x)|
∫ b

a
dx,

that is, we have ∣∣∣∣∫ b

a
fn(x)dx−

∫ b

a
f (x)dx

∣∣∣∣ ≤ (b− a) max
x∈[a,b]

| fn(x)− f (x)| . (9)

Since fn → f uniformly on [a, b], for all ε > 0, there exists an integer N such that

| fn(x)− f (x)| < ε

b− a
∀ n ≥ N, ∀ x ∈ [a, b],

this gives
max
x∈[a,b]

| fn(x)− f (x)| < ε

b− a
∀ n ≥ N.

Thus for n ≥ N, expression (9) leads us to∣∣∣∣∫ b

a
fn(x)dx−

∫ b

a
f (x)dx

∣∣∣∣ ≤ (b− a) · ε

b− a
= ε,

which is equivalent to the required result.

Review: Mean value theorem (see [5, Page 108])
If f is a real continuous function on [a, b] which is differentiable in (a, b), then there is a point
c ∈ (a, b) at which

f (b)− f (a) = (b− a) f ′(c).

Review: Fundamental theorem of calculus (see [5, Page 134])
If φ is integrable over [a, b] and there exists a differentiable function f on [a, b] such that f ′ = φ

then ∫ b

a
φ(t)dt = f (b)− f (a)
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Theorem 11: Uniform convergence and differentiation

Let { fn} be a sequence of functions defined on [a, b] such that fn(x0) converges for some
point x0 on [a, b]. If each fn is differentiable and { f ′n} converges uniformly on [a, b], then
{ fn} converges uniformly on [a, b], to a function f , and

f ′(x) = lim
n→∞

f ′n(x) (a < x < b).

Proof. Let ε > 0 be given. Choose N such that n, m ≥ N implies

| fn(x0)− fm(x0)| <
ε

2
(10)

and ∣∣ f ′n(t)− f ′m(t)
∣∣ < ε

2(b− a)
(a ≤ t ≤ b). (11)

If we apply the mean value theorem to function fn − fm, we have

fn(x)− fm(x)− fn(t) + fm(t)
x− t

= f ′n(c)− f ′m(c) (12)

for any x and t in [a, b], c ∈ (a, b) and n, m ≥ N.

Using it in (11), we have

| fn(x)− fm(x)− fn(t) + fm(t)| ≤
|x− t|ε
2(b− a)

≤ ε

2
(13)

Now we have

| fn(x)− fm(x)| = | fn(x)− fm(x)− fn(x0) + fm(x0) + fn(x0)− fm(x0)|
≤ | fn(x)− fm(x)− fn(x0) + fm(x0)|+ | fn(x0)− fm(x0)|

Using (10) and (13) in above inequality, we have

| fn(x)− fm(x)| < ε

2
+

ε

2
= ε (a ≤ x ≤ b, n, m ≥ N),

This implies { fn} converges uniformly on [a, b]. Let

f (x) = lim
n→∞

fn(x) (a ≤ x ≤ b). (14)

Since we have given that { f ′n} is uniformly convergent, therefore consider

φ(x) = lim
n→∞

f ′n(x) (a ≤ x ≤ b).

Let us know fix a point x on [a, b]. Then we have∫ x

a
φ(t)dt =

∫ x

a
lim
n→∞

f ′n(t)dt

= lim
n→∞

∫ x

a
f ′n(t)dx (as f ′n is uniformly convergent)

= lim
n→∞

[ fn(x)− fn(a)] (by fundamental theorem of calculus)
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By using (14), we get that ∫ x

a
φ(t)dt = f (x)− f (a)

Now again by using fundamental theorem of calculus, we get that

φ(x) = f ′(x) (a ≤ x ≤ b).

This complete the proof.

Disclaimer: Most of the contents in these notes are taken from [1]. These notes are made for stu-
dents and they are encourage to read the books. Also see some other useful books in references.
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