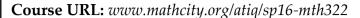
Summary: Riemann-Stieltjes Integral

Course Title: Real Analysis II Course Code: MTH322 Course instructor: Dr. Atiq ur Rehman Class: MSc-III & IV



> Partition

Let [a,b] be a given interval. A finite set $P = \{a = x_0, x_1, x_2, ..., x_k, ..., x_n = b\}$ is said to be a partition of [a,b] which divides it into n such intervals

$$[x_0, x_1], [x_1, x_2], [x_2, x_3], ..., [x_{n-1}, x_n].$$

Each sub-interval is called a *component* of the partition.

Obviously, corresponding to different choices of the points x_i we shall have different partition.

The maximum of the length of the components is defined as the *norm* of the partition and it is denoted by ||P||.

> Refinement of a Partition

Let P and P^* be two partitions of an interval [a,b] such that $P \subset P^*$ i.e. P^* contains all the points of P and possibly some other points as well. Then P^* is said to be a *refinement* of P.

> Common Refinement

Let P_1 and P_2 be two partitions of [a,b]. Then a partition P^* is said to be their common refinement if $P^* = P_1 \cup P_2$.

> Examples

Consider an interval [1,10] and following partitions of this interval.

$$P_1 = \{1, 2, 3, 10\},\,$$

$$P_2 = \{1, 2, 3, 6, 9, 10\},\$$

$$P_3 = \left\{1, 1 + \frac{9}{100}, 1 + 2\left(\frac{9}{100}\right), 1 + 3\left(\frac{9}{100}\right), \dots, 1 + 99\left(\frac{9}{100}\right), 10\right\}$$

and more generally for any positive integer n, we can write

$$P_4 = \left\{ 1, 1 + \frac{9}{n}, 1 + 2\left(\frac{9}{n}\right), 1 + 3\left(\frac{9}{n}\right), \dots, 1 + (n-1)\left(\frac{9}{n}\right), 1 + n\left(\frac{9}{n}\right) = 10 \right\}.$$

One can note that P_2 is refinement of P_1 .

Also note that
$$||P_1|| = 7$$
, $||P_2|| = 3$, $||P_3|| = \frac{9}{100}$, $||P_4|| = \frac{9}{n}$.

> Remark

Note that if $P \subseteq P'$ implies $||P'|| \le ||P||$. That is, refinement of a partition decreases its norm but the convers does not necessarily hold.

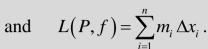
> Riemann Integral

Let f be a real-valued function defined and bounded on [a,b]. Corresponding to each partition P of [a,b], we put

$$M_i = \sup f(x)$$
 $(x_{i-1} \le x \le x_i)$
 $m_i = \inf f(x)$ $(x_{i-1} \le x \le x_i)$

We define upper and lower sums as

$$U(P, f) = \sum_{i=1}^{n} M_i \Delta x_i$$



where $\Delta x_i = x_i - x_{i-1}$ (i = 1, 2, ..., n)

and finally
$$\int_{a}^{\overline{b}} f dx = \inf U(P, f) \dots (i)$$
$$\int_{a}^{b} f dx = \sup L(P, f) \dots (ii)$$

Where the infimum and the supremum are taken over all partitions P of [a,b]. Then $\int f dx$ and $\int f dx$ are called the upper and lower Riemann Integrals of f over [a,b]respectively.

In case the upper and lower integrals are equal, we say that f is Riemann-Integrable on [a,b] and we write $f \in R$, where R denotes the set of Riemann integrable functions.

The common value of (i) and (ii) is denoted by $\int_{-\infty}^{\infty} f \, dx$ or by $\int_{-\infty}^{\infty} f(x) \, dx$.

Which is known as the Riemann integral of f over [a,b].

> Theorem

The upper and lower integrals are defined for every bounded function f.

Proof

Take M and m to be the upper and lower bounds of f(x) in [a,b].

$$\Rightarrow m \le f(x) \le M \qquad (a \le x \le b)$$

$$\Rightarrow m \le f(x) \le M \qquad (a \le x \le b)$$

Then $M_i \le M$ and $m_i \ge m$ $(i = 1, 2,, n)$

Where M_i and m_i denote the supremum and infimum of f(x) in (x_{i-1}, x_i) for certain partition P of [a,b].

$$\Rightarrow L(P,f) = \sum_{i=1}^{n} m_i \Delta x_i \ge \sum_{i=1}^{n} m \Delta x_i \qquad (\Delta x_i = x_{i-1} - x_i)$$

$$\Rightarrow L(P,f) \ge m \sum_{i=1}^{n} \Delta x_i$$

But
$$\sum_{i=1}^{n} \Delta x_i = (x_1 - x_0) + (x_2 - x_1) + (x_3 - x_2) + \dots + (x_n - x_{n-1})$$

 $= x_n - x_0 = b - a$
 $\Rightarrow L(P, f) \ge m(b - a)$
Similarity $U(P, f) \le M(b - a)$
 $\Rightarrow m(b - a) \le L(P, f) \le U(P, f) \le M(b - a)$

Which shows that the numbers L(P, f) and U(P, f) form a bounded set.

 \Rightarrow The upper and lower integrals are defined for every bounded function f. \odot

> Riemann-Stieltjes Integral

It is a generalization of the Riemann Integral. Let $\alpha(x)$ be a monotonically increasing function on [a,b]. $\alpha(a)$ and $\alpha(b)$ being finite, it follows that $\alpha(x)$ is bounded on [a,b]. Corresponding to each partition P of [a,b], we write

$$\Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1})$$
(Difference of values of α at $x_i \& x_{i-1}$)

 $\therefore \alpha(x)$ is monotonically increasing.

 $\Delta \alpha_i \ge 0$

Let f be a real function which is bounded on [a,b].

Put $U(P, f, \alpha) = \sum_{i=1}^{n} M_i \Delta \alpha_i$ $L(P, f, \alpha) = \sum_{i=1}^{n} m_i \Delta \alpha_i,$

where M_i and m_i have their usual meanings.

Define

$$\int_{a}^{\overline{b}} f \, d\alpha = \inf U(P, f, \alpha) \dots (i)$$

$$\int_{\underline{a}}^{b} f \, d\alpha = \sup L(P, f, \alpha) \dots (ii)$$

Where the infimum and supremum are taken over all partitions of [a,b].

If
$$\int_{a}^{\overline{b}} f d\alpha = \int_{a}^{b} f d\alpha$$
, we denote their common value by $\int_{a}^{b} f d\alpha$ or $\int_{a}^{b} f(x) d\alpha(x)$.

This is the Riemann-Stieltjes integral or simply the Stieltjes Integral of f w.r.t. α over [a,b].

If $\int_a^b f \, d\alpha$ exists, we say that f is integrable w.r.t. α , in the Riemann sense, and write $f \in R(\alpha)$.

> Note

The Riemann-integral is a special case of the Riemann-Stieltjes integral when we take $\alpha(x) = x$.

- \therefore The integral depends upon f, α, a and b but not on the variable of integration.
- ... We can omit the variable and prefer to write $\int_a^b f \, d\alpha$ instead of $\int_a^b f(x) \, d\alpha(x)$.

In the following discussion f will be assume to be real and bounded, and α monotonically increasing on [a,b].

> Theorem

If P^* is a refinement of P, then following holds:

(i)
$$L(P, f, \alpha) \leq L(P^*, f, \alpha)$$
,

(ii)
$$U(P,f,\alpha) \ge U(P^*,f,\alpha)$$
.

> Theorem

Let f be a real valued function defined on [a,b] and α be a monotonically increasing function on [a,b]. Then

$$\sup L(P, f, \alpha) \leq \inf U(P, f, \alpha)$$
i.e.
$$\int_a^b f \, d\alpha \leq \int_a^{\bar{b}} f \, d\alpha.$$

> Theorem (Condition of Integrability or Cauchy's Criterion for Integrability.)

A function $f \in R(\alpha)$ on [a,b] if and only if for every $\varepsilon > 0$ there exists a partition P such that $U(P,f,\alpha) - L(P,f,\alpha) < \varepsilon$.

> Theorem

If
$$f \in R(\alpha)$$
 on $[a,b]$, then $|f| \in R(\alpha)$ on $[a,b]$ and $\left| \int_{a}^{b} f \, d\alpha \right| \leq \int_{a}^{b} |f| \, d\alpha$.

> Theorem (Fundamental Theorem of Calculus)

If $f \in R$ on [a,b] and if there is a differentiable function F on [a,b] such that F' = f . then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$
