# Ch 01: Improper Integrals of 1<sup>st</sup> and 2<sup>nd</sup> Kinds

Course Title: Real Analysis II Course instructor: Dr. Atiq ur Rehman Course URL: *www.mathcity.org/atiq/sp16-mth322* 

Course Code: MTH322 Class: MSc-III & IV



We discussed (in MTH321: Real Analysis I) Riemann-Stieltjes's integrals of the form  $\int_{a}^{b} f \, d\alpha$  under the restrictions that both f and  $\alpha$  are defined and bounded on a finite interval [a,b]. The integral of the form  $\int_{a}^{b} f \, d\alpha$  are called definite integrals. To extend the concept, we shall relax some condition on definite integral like f on finite interval or boundedness of f on finite interval.

# > Definition

The integral  $\int_{a}^{b} f d\alpha$  is called an improper integral of first kind if  $a = -\infty$  or  $b = +\infty$  or *both* i.e. one or both integration limits is infinite.

# > Definition

The integral  $\int_{a}^{b} f d\alpha$  is called an improper integral of second kind if f(x) is unbounded at one or more points of  $a \le x \le b$ . Such points are called singularities of f(x).

# > Examples

•  $\int_{0}^{\infty} \frac{1}{1+x^2} dx$ ,  $\int_{-\infty}^{1} \frac{1}{x-2} dx$  and  $\int_{-\infty}^{\infty} (x^2+1) dx$  are

examples of improper integrals of first kind.

•  $\int_{-1}^{1} \frac{1}{x} dx$  and  $\int_{0}^{1} \frac{1}{2x-1} dx$  are examples of improper integrals of second kind.

# > Notations

We shall denote the set of all functions f such that  $f \in R(\alpha)$  on [a,b] by  $R(\alpha;a,b)$ . When  $\alpha(x) = x$ , we shall simply write R(a,b) for this set. The notation  $\alpha \uparrow$  on  $[a,\infty)$  will mean that  $\alpha$  is monotonically increasing on  $[a,\infty)$ .



### **IMPROPER INTEGRAL OF THE FIRST KIND**

### > Definition

Assume that  $f \in R(\alpha; a, b)$  for every  $b \ge a$ . Keep  $a, \alpha$  and f fixed and define a function I on  $[a, \infty)$  as follows:

$$I(b) = \int_{a}^{b} f(x) d\alpha(x) \quad \text{if} \quad b \ge a \quad \dots \quad (i)$$

The function *I* so defined is called an infinite (or an improper) integral of first kind and is denoted by the symbol  $\int_{a}^{\infty} f(x) d\alpha(x)$  or by  $\int_{a}^{\infty} f d\alpha$ .

The integral  $\int_{a}^{\infty} f d\alpha$  is said to converge if the limit

$$\lim_{b\to\infty} I(b) \quad \dots \quad (ii)$$

exists (finite). Otherwise,  $\int_{a}^{\infty} f d\alpha$  is said to diverge.

If the limit in (*ii*) exists and equals A, the number A is called the value of the integral and we write  $\int_{a}^{\infty} f d\alpha = A$ 

# > Example

Consider and integral  $\int_{1}^{\infty} x^{-p} dx$ , where *p* is any real number. Discuss its convergence and divergence.

### Solution

Let 
$$I(b) = \int_{1}^{b} x^{-p} dx$$
 where  $b \ge 1$ .  
Then  $I(b) = \int_{1}^{b} x^{-p} dx = \frac{x^{1-p}}{1-p} \Big|_{1}^{b} = \frac{1-b^{1-p}}{p-1}$  if  $p \ne 1$ .  
If  $b \to \infty$ , then  $b^{1-p} \to 0$  for  $p > 1$  and  $b^{1-p} \to \infty$  for  $p < 1$ . Therefore we have  
 $\lim_{b \to \infty} I(b) = \lim_{b \to \infty} \frac{1-b^{1-p}}{p-1} = \begin{cases} \infty & \text{if } p < 1, \\ \frac{1}{p-1} & \text{if } p > 1. \end{cases}$   
Now if  $p = 1$ , we get  $\int_{1}^{b} x^{-1} dx = \log b \to \infty$  as  $b \to \infty$ .  
Hence we concluded:  $\int_{1}^{\infty} x^{-p} dx = \begin{cases} diverges & \text{if } p \le 1, \\ 1 & 1 & 1 \end{cases}$ 

Hence we concluded:  $\int_{1}^{\infty} x^{-p} dx = \begin{cases} \frac{1}{p-1} & \text{if } p > 1. \end{cases}$ 

# > Example

Is the integral  $\int_{0}^{\infty} \sin 2\pi x \, dx$  converges or diverges?

# Solution:

Consider  $I(b) = \int_{0}^{b} \sin 2\pi x \, dx$ , where  $b \ge 0$ .

We have  $\int_{0}^{b} \sin 2\pi x \, dx = \frac{-\cos 2\pi x}{2\pi} \Big|_{0}^{b} = \frac{1 - \cos 2\pi b}{2\pi}.$ 

Also  $\cos 2\pi b \rightarrow l$  as  $b \rightarrow \infty$ , where *l* has values between -1 and 1, that is, limit is not unique.

Therefore the integral  $\int_{0}^{\infty} \sin 2\pi x \, dx$  diverges.

## > Note

If  $\int_{-\infty}^{a} f d\alpha$  and  $\int_{a}^{\infty} f d\alpha$  are both convergent for some value of *a*, we say that the

integral  $\int_{-\infty}^{\infty} f \, d\alpha$  is convergent and its value is defined to be the sum

$$\int_{-\infty}^{\infty} f \, d\alpha = \int_{-\infty}^{a} f \, d\alpha + \int_{a}^{\infty} f \, d\alpha$$

The choice of the point a is clearly immaterial.

If the integral  $\int_{-\infty}^{\infty} f \, d\alpha$  converges, its value is equal to the limit:  $\lim_{b \to +\infty} \int_{-b}^{b} f \, d\alpha$ .

## > Review:

- A function f is said to be increasing, if for all  $x_1, x_2 \in D_f$  (domain of f) and  $x_1 \le x_2$  implies  $f(x_1) \le f(x_2)$ .
- A function *f* is said to be bounded if there exist some positive number μ such that |*f*(*t*)|≤ μ for all *t* ∈ *D<sub>f</sub>*.
- If  $\lim_{x\to\infty} f(x)$  exists then f is bounded.
- If  $f \in R(\alpha; a, b)$  and  $c \in [a, b]$ , then  $\int_a^b f d\alpha = \int_a^c f d\alpha + \int_c^b f d\alpha$ .
- If  $f \in R(\alpha; a, b)$  and  $f(x) \ge 0$  for all  $x \in [a, b]$ , then  $\int_a^b f d\alpha \ge 0$ .
- If f is monotonically increasing and bounded on  $[a, +\infty)$ , then  $\lim_{x \to \infty} f(x) = \sup_{x \in [a,\infty)} f(x).$

#### > Theorem

Assume that  $\alpha$  is monotonically increasing on  $[a, +\infty)$  and suppose that  $f \in R(\alpha; a, b)$  for every  $b \ge a$ . Assume that  $f(x) \ge 0$  for each  $x \ge a$ . Then  $\int_a^{\infty} f d\alpha$  converges if, and only if, there exists a constant M > 0 such that

$$\int_{a} f \, d\alpha \, \leq \, M \quad \text{for every} \ b \geq a \, .$$

#### Proof

Let 
$$I(b) = \int_{a}^{b} f d\alpha$$
 for  $b \ge a$ .

First suppose that  $\int_{a}^{\infty} f d\alpha$  is convergent, then  $\lim_{b \to +\infty} I(b)$  exists, that is, I(b) is bounded.

So there exists a constant M > 0 such that

$$|I(b)| < M$$
 for every  $b \ge a$ .  
As  $f(x) \ge 0$  for each  $x \ge a$ , therefore  $\int_{a}^{b} f d\alpha \ge 0$ .

This gives  $I(b) = \int_{a}^{b} f d\alpha \leq M$  for every  $b \geq a$ .

Conversely, suppose that there exists a constant M > 0 such that  $\int_{a}^{a} f d\alpha \leq M$  for

every  $b \ge a$ . This give  $|I(b)| \le M$  for every  $b \ge a$ . That is, *I* is bounded on  $[a, +\infty)$ .

Now for  $b_2 \ge b_1 > a$ , we have

$$I(b_2) = \int_a^{b_2} f \, d\alpha = \int_a^{b_1} f \, d\alpha + \int_{b_1}^{b_2} f \, d\alpha$$
$$\geq \int_a^{b_1} f \, d\alpha = I(b_1) \qquad \because \int_{b_1}^{b_2} f \, d\alpha \ge 0 \text{ as } f(x) \ge 0 \text{ for all } x \ge a.$$

This gives *I* is monotonically increasing on  $[a, +\infty)$ . As *I* is monotonically increasing and bounded on  $[a, +\infty)$ , therefore it is convergent, that is  $\int_{a}^{\infty} f d\alpha$  converges.

> Theorem: (Comparison Test)  
Assume that 
$$\alpha$$
 is monotonically increasing on  $[a, +\infty)$  and  $f \in R(\alpha; a, b)$  for  
every  $b \ge a$ . If  $0 \le f(x) \le g(x)$  for every  $x \ge a$  and  $\int_{a}^{\infty} g \, d\alpha$  converges, then  $\int_{a}^{\infty} f \, d\alpha$   
converges and we have  
 $\int_{a}^{\infty} f \, d\alpha \le \int_{a}^{\infty} g \, d\alpha$ 
Proof
Let  $I_1(b) = \int_{a}^{b} f \, d\alpha$  and  $I_2(b) = \int_{a}^{b} g \, d\alpha$ ,  $b \ge a$ .  
 $\therefore 0 \le f(x) \le g(x)$  for every  $x \ge a$   
 $\therefore I_1(b) \le I_2(b)$  ......(i)
 $\therefore \int_{a}^{\infty} g \, d\alpha$  converges  $\therefore \exists$  a constant  $M > 0$  such that  
 $\int_{a}^{b} g \, d\alpha \le M$ ,  $b \ge a$ .....(ii)
From (i) and (ii) we have  $I_1(b) \le M$  for every  $b \ge a$ .
 $\Rightarrow \lim_{b \to \infty} I_1(b)$  exists and is finite.
 $\Rightarrow \int_{a}^{\infty} f \, d\alpha$  converges.
Also  $\lim_{b \to \infty} I_1(b) \le \lim_{b \to \infty} I_2(b) \le M$ 
 $\Rightarrow \int_{a}^{\infty} f \, d\alpha \le \int_{a}^{\infty} g \, d\alpha$ .

# > Example

Is the improper integral  $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$  convergent or divergent?

### Solution:

Since  $\sin^2 x \le 1$  for all  $x \in [1, +\infty)$ , therefore  $\frac{\sin^2 x}{x^2} \le \frac{1}{x^2}$  for all  $x \in [1, +\infty)$ . This gives  $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx \le \int_{1}^{\infty} \frac{1}{x^2} dx$ . Now  $\int_{1}^{\infty} \frac{1}{x^2} dx$  is convergent, therefore  $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$  is convergent.

#### > Theorem (Limit Comparison Test)

Assume that  $\alpha$  is monotonically increasing on  $[a, +\infty)$ . Suppose that  $f \in R(\alpha; a, b)$  and that  $g \in R(\alpha; a, b)$  for every  $b \ge a$ , where  $f(x) \ge 0$  and  $g(x) \ge 0$  for  $x \ge a$ . If

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=1,$$

then  $\int_{a}^{\infty} f d\alpha$  and  $\int_{a}^{\infty} g d\alpha$  both converge or both diverge.

#### Proof

For all  $b \ge a$ , we can find some N > 0 such that

$$\left| \frac{f(x)}{g(x)} - 1 \right| < \varepsilon \qquad \forall x \ge N \text{ for every } \varepsilon > 0.$$
  
$$\Rightarrow 1 - \varepsilon < \frac{f(x)}{g(x)} < 1 + \varepsilon$$

Let 
$$\varepsilon = \frac{1}{2}$$
. Then we have

$$\frac{1}{2} < \frac{f(x)}{g(x)} < \frac{3}{2}.$$

$$\Rightarrow g(x) < 2f(x) \dots (i) \quad \text{and} \quad 2f(x) < 3g(x) \dots (ii)$$
From (i)  $\int_{a}^{\infty} g \, d\alpha < 2\int_{a}^{\infty} f \, d\alpha$ ,
$$\Rightarrow \int_{a}^{\infty} g \, d\alpha \quad \text{converges if} \quad \int_{a}^{\infty} f \, d\alpha \text{ converges and} \quad \int_{a}^{\infty} g \, d\alpha \text{ diverges if} \quad \int_{a}^{\infty} f \, d\alpha$$

From (ii) 
$$2\int_{a}^{\infty} f \, d\alpha < 3\int_{a}^{\infty} g \, d\alpha$$
,  
 $\Rightarrow \int_{a}^{\infty} f \, d\alpha$  converges if  $\int_{a}^{\infty} g \, d\alpha$  converges and  $\int_{a}^{\infty} g \, d\alpha$  diverges if  $\int_{a}^{\infty} f \, d\alpha$ 

diverges.

 $\Rightarrow$  The integrals  $\int_{a}^{\infty} f d\alpha$  and  $\int_{a}^{\infty} g d\alpha$  converge or diverge together.

#### > Note

The above theorem also holds if  $\lim_{x\to\infty} \frac{f(x)}{g(x)} = c$ , provided that  $c \neq 0$ . If c = 0, we can only conclude that convergence of  $\int_{a}^{\infty} g \, d\alpha$  implies convergence of  $\int_{a}^{\infty} f \, d\alpha$ .

# > Example

For every real p, the integral  $\int_{1}^{\infty} e^{-x} x^p dx$  converges.

This can be seen by comparison of this integral with  $\int_{1}^{\infty} \frac{1}{x^2} dx$ .

Let  $f(x) = e^{-x}x^p$  and  $g(x) = \frac{1}{x^2}$ . Now  $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{e^{-x}x^p}{\frac{1}{x^2}}$   $\Rightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} e^{-x}x^{p+2} = \lim_{x \to \infty} \frac{x^{p+2}}{e^x} = 0$ . (find this limit yourself) Since  $\int_{1}^{\infty} \frac{1}{x^2} dx$  is convergent, therefore the given integral  $\int_{1}^{\infty} e^{-x}x^p dx$  is also

convergent.

# > Remark

It is easy to show that if  $\int_{\alpha}^{\infty} f d\alpha$  and  $\int_{\alpha}^{\infty} g d\alpha$  are convergent, then

∫<sub>a</sub><sup>∞</sup> (f ± g)dα is convergent.
 ∫<sub>a</sub><sup>∞</sup> cf dα, where c is some constant, is convergent.

### > Note

An improper integral  $\int_{a}^{\infty} f \, d\alpha$  is said to converge absolutely if  $\int_{a}^{\infty} |f| \, d\alpha$  converges. It is said to be convergent conditionally if  $\int_{a}^{\infty} f \, d\alpha$  converges but  $\int_{a}^{\infty} |f| \, d\alpha$  diverges.

### > Theorem

Assume  $\alpha \uparrow$  on  $[a, +\infty)$ . If  $f \in R(\alpha; a, b)$  for every  $b \ge a$  and if  $\int |f| d\alpha$ 

converges, then  $\int f d\alpha$  also converges.

Or: An absolutely convergent integral is convergent.

# Proof

If 
$$x \ge a$$
,  $\pm f(x) \le |f(x)|$   
 $\Rightarrow |f(x)| - f(x) \ge 0 \Rightarrow 0 \le |f(x)| - f(x) \le 2|f(x)|$   
 $\Rightarrow \int_{a}^{\infty} (|f| - f) d\alpha$  converges.  
Now difference of  $\int_{a}^{\infty} |f| d\alpha$  and  $\int_{a}^{\infty} (|f| - f) d\alpha$  is convergent,  
that is,  $\int_{a}^{\infty} f d\alpha$  is convergent.

## > Remark

Every absolutely convergent integral is convergent.

# > Theorem (Cauchy condition for infinite integrals)

Assume that  $f \in R(\alpha; a, b)$  for every  $b \ge a$ . Then the integral  $\int_{a}^{\infty} f \, d\alpha$  converges if, and only if, for every  $\varepsilon > 0$  there exists a B > 0 such that c > b > B implies  $\left| \int_{a}^{c} f \, d\alpha \right| < \varepsilon$ 

# Proof

Let 
$$\int_{a}^{\infty} f \, d\alpha$$
 be convergent, that is  $\lim_{b \to \infty} \int_{a}^{b} f \, d\alpha = \int_{a}^{\infty} f \, d\alpha$ .  
Then  $\exists B > 0$  such that  
 $\left| \int_{a}^{b} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| < \frac{\varepsilon}{2}$  for every  $b \ge B$  .....(i)  
Also for  $c > b > B$ ,  
 $\left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| < \frac{\varepsilon}{2}$  .....(ii)  
As we know  $\int_{a}^{c} f \, d\alpha = \int_{a}^{b} f \, d\alpha + \int_{b}^{c} f \, d\alpha$ , this gives  
 $\left| \int_{b}^{c} f \, d\alpha \right| = \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right|$   
 $= \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha + \int_{a}^{\infty} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right|$ 

$$\leq \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| + \left| \int_{a}^{\infty} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
$$\Rightarrow \left| \int_{b}^{c} f \, d\alpha \right| < \varepsilon \quad \text{when } c > b > B.$$

Conversely, assume that the Cauchy condition holds.

Define  $a_n = \int_a^{a+n} f \, d\alpha$  if  $n = 1, 2, \dots$ 

Consider n,m such that a+n,a+m>b>B, then

$$\begin{vmatrix} a_n - a_m \end{vmatrix} = \begin{vmatrix} \int_a^{a+n} f \, d\alpha - \int_a^{a+m} f \, d\alpha \end{vmatrix} = \left| \int_a^b f \, d\alpha + \int_b^{a+n} f \, d\alpha - \int_a^b f \, d\alpha - \int_b^{a+m} f \, d\alpha \end{vmatrix}$$
$$= \left| \int_b^{a+n} f \, d\alpha - \int_b^{a+m} f \, d\alpha \end{vmatrix} \le \left| \int_b^{a+n} f \, d\alpha \end{vmatrix} + \left| \int_b^{a+m} f \, d\alpha \end{vmatrix} < \varepsilon + \varepsilon = 2\varepsilon$$

This gives, the sequence  $\{a_n\}$  is a Cauchy sequence  $\Rightarrow$  it is convergent. Let  $\lim_{n\to\infty} a_n = A$ 

Given 
$$\varepsilon > 0$$
, choose *B* so that  $\left| \int_{b}^{c} f d\alpha \right| < \frac{\varepsilon}{2}$  if  $c > b > B$ .

and also that  $|a_n - A| < \frac{\varepsilon}{2}$  whenever  $a + n \ge B$ . Choose an integer N such that a + N > B. Then, if b > a + N, we have

$$\left| \int_{a}^{b} f \, d\alpha - A \right| = \left| \int_{a}^{a+N} f \, d\alpha - A + \int_{a+N}^{b} f \, d\alpha \right|$$
$$\leq \left| a_{N} - A \right| + \left| \int_{a+N}^{b} f \, d\alpha \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
$$\int_{a}^{\infty} f \, d\alpha = A$$

This completes the proof.

# > Remarks

 $\Rightarrow$ 

It follows from the above theorem that convergence of  $\int_{a}^{\infty} f \, d\alpha$  implies  $\lim_{b \to \infty} \int_{b}^{b+\varepsilon} f \, d\alpha = 0$  for every fixed  $\varepsilon > 0$ .

However, this does not imply that  $f(x) \rightarrow 0$  as  $x \rightarrow \infty$ .

# IMPROPER INTEGRAL OF THE SECOND KIND

# > Definition

Let *f* be defined on the half open interval (a,b] and assume that  $f \in R(\alpha; x, b)$  for every  $x \in (a,b]$ . Define a function I on (a,b] as follows:

$$I(x) = \int_{x}^{b} f \, d\alpha \quad \text{if} \quad x \in (a, b] \dots \dots \dots (i)$$

The function I so defined is called an improper integral of the second kind and is denoted by the symbol  $\int_{a+}^{b} f(t) d\alpha(t)$  or  $\int_{a+}^{b} f d\alpha$ .

The integral  $\int_{a+}^{b} f d\alpha$  is said to converge if the limit

 $\lim_{x \to a^+} I(x) \dots (ii) \text{ exists (finite).}$ Otherwise,  $\int_{a^+}^b f \, d\alpha$  is said to diverge. If the limit in (*ii*) exists and equals A, the

number A is called the value of the integral and we write  $\int_{0}^{b} f d\alpha = A$ .

Similarly, if f is defined on [a,b) and  $f \in R(\alpha;a,x) \quad \forall x \in [a,b)$  then

$$I(x) = \int_{a}^{x} f \, d\alpha \quad \text{if} \quad x \in [a,b) \text{ is also an improper integral of the second kind and is}$$
  
denoted as  $\int_{a}^{b^{-}} f \, d\alpha$  and is convergent if  $\lim_{x \to b^{-}} I(x)$  exists (finite).

# > Note

The tests developed to check the behaviour of the improper integrals of Ist kind are applicable to improper integrals of IInd kind after making necessary modifications.

# > Example

 $f(x) = x^{-p}$  is defined on (0,b] and  $f \in R(x,b)$  for every  $x \in (0,b]$ .  $I(x) = \int_{x}^{b} x^{-p} dx \quad \text{if} \quad x \in (0,b]$  $= \int_{0+}^{b} x^{-p} dx = \lim_{\varepsilon \to 0} \int_{0+\varepsilon}^{b} x^{-p} dx$  $= \lim_{\varepsilon \to 0} \left| \frac{x^{1-p}}{1-p} \right|_{0}^{b} = \lim_{\varepsilon \to 0} \frac{b^{1-p} - \varepsilon^{1-p}}{1-p} \quad , \quad (p \neq 1)$ 

$$= \begin{bmatrix} finite , p < 1\\ infinite , p > 1 \end{bmatrix}$$
  
When  $p = 1$ , we get  $\int_{\varepsilon}^{b} \frac{1}{x} dx = \log b - \log \varepsilon \to \infty$  as  $\varepsilon \to 0$ .  
 $\Rightarrow \int_{0+}^{b} x^{-1} dx$  also diverges.

Hence the integral converges when p < 1 and diverges when  $p \ge 1$ .

#### > Note

If the two integrals 
$$\int_{a+}^{c} f d\alpha$$
 and  $\int_{c}^{b-} f d\alpha$  both converge, we write  
 $\int_{a+}^{b-} f d\alpha = \int_{a+}^{c} f d\alpha + \int_{c}^{b-} f d\alpha$ 

The definition can be extended to cover the case of any finite number of sums. We can also consider mixed combinations such as

$$\int_{a+}^{b} f \, d\alpha + \int_{b}^{\infty} f \, d\alpha \quad \text{which can be written as} \quad \int_{a+}^{\infty} f \, d\alpha \, .$$

### > Assignment

Consider  $\Gamma(p) = \int_{0}^{\infty} e^{-x} x^{p-1} dx$ , (p > 0). Evaluate the convergence of this improper

integral.

# > A Useful Comparison Integral

$$\int_{a}^{b} \frac{dx}{\left(x-a\right)^{n}}$$

We have, if  $n \neq 1$ ,

$$\int_{a+\varepsilon}^{b} \frac{dx}{(x-a)^n} = \left| \frac{1}{(1-n)(x-a)^{n-1}} \right|_{a+\varepsilon}^{b}$$
$$= \frac{1}{(1-n)} \left( \frac{1}{(b-a)^{n-1}} - \frac{1}{\varepsilon^{n-1}} \right)$$

Which tends to  $\frac{1}{(1-n)(b-a)^{n-1}}$  or  $+\infty$  according as n < 1 or n > 1, as  $\varepsilon \to 0$ .

Again, if n=1,

$$\int_{a+\varepsilon}^{b} \frac{dx}{x-a} = \log(b-a) - \log \varepsilon \to +\infty \quad \text{as} \quad \varepsilon \to 0.$$

Hence the improper integral  $\int_{a}^{b} \frac{dx}{(x-a)^{n}}$  converges iff n < 1.

### > Question

Examine the convergence of

(i) 
$$\int_{0}^{1} \frac{dx}{x^{\frac{1}{3}}(1+x^2)}$$
 (ii)  $\int_{0}^{1} \frac{dx}{x^2(1+x)^2}$  (iii)  $\int_{0}^{1} \frac{dx}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}}$ 

### Solution

(i)  $\int_{0}^{1} \frac{dx}{x^{\frac{1}{3}}(1+x^2)}$ 

Here '0' is the only point of infinite discontinuity of the integrand. We have

$$f(x) = \frac{1}{x^{\frac{1}{3}} \left(1 + x^2\right)}$$

Take  $g(x) = \frac{1}{\frac{1}{x^{1/3}}}$ Then  $\lim_{x \to 0} \frac{f(x)}{\sigma(x)} = \lim_{x \to 0} \frac{1}{1 + x^2} = 1$  $\Rightarrow \int_0^1 f(x) dx$  and  $\int_0^1 g(x) dx$  have identical behaviours.  $\therefore \int_{0}^{1} \frac{dx}{x^{\frac{1}{3}}} \text{ converges } \therefore \int_{0}^{1} \frac{dx}{x^{\frac{1}{3}}(1+x^2)} \text{ also converges.}$ 

(*ii*)  $\int_{-\infty}^{1} \frac{dx}{x^2(1+x)^2}$ 

Here '0' is the only point of infinite discontinuity of the given integrand. We have

$$f(x) = \frac{1}{x^2(1+x)^2}$$
  
Take  $g(x) = \frac{1}{x^2}$   
Then  $\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{(1+x)^2} = 1$   
 $\Rightarrow \int_0^1 f(x) dx$  and  $\int_0^1 g(x) dx$  behave alike.

1

But n = 2 being greater than 1, the integral  $\int_0^1 g(x) dx$  does not converge. Hence the given integral also does not converge.

(iii) 
$$\int_{0}^{1} \frac{dx}{x^{1/2}(1-x)^{1/3}}$$

Here '0' and '1' are the two points of infinite discontinuity of the integrand. We have

$$f(x) = \frac{1}{x^{\frac{1}{2}} (1-x)^{\frac{1}{3}}}$$

We take any number between 0 and 1, say  $\frac{1}{2}$ , and examine the convergence of

the improper integrals 
$$\int_{0}^{\frac{1}{2}} f(x) dx$$
 and  $\int_{\frac{1}{2}}^{1} f(x) dx$ .  
To examine the convergence of  $\int_{0}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx$ , we take  $g(x) = \frac{1}{x^{\frac{1}{2}}}$ 

Then

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{(1-x)^{\frac{1}{3}}} = 1$$
  

$$\therefore \int_{0}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}} dx \text{ converges } \therefore \int_{0}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx \text{ is convergent.}$$
  
To examine the convergence of  $\int_{\frac{1}{2}}^{1} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx$ , we take  $g(x) = \frac{1}{(1-x)^{\frac{1}{3}}}$ 

Then

$$\lim_{x \to 1} \frac{f(x)}{g(x)} = \lim_{x \to 1} \frac{1}{x^{\frac{1}{2}}} = 1$$
  

$$\therefore \int_{\frac{1}{2}}^{1} \frac{1}{(1-x)^{\frac{1}{3}}} dx \text{ converges} \quad \because \int_{\frac{1}{2}}^{1} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx \text{ is convergent.}$$

Hence  $\int_0^1 f(x) dx$  converges.

# > Question

Show that  $\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$  exists iff m, n are both positive.

### Solution

The integral is proper if  $m \ge 1$  and  $n \ge 1$ .

The number '0' is a point of infinite discontinuity if m < 1 and the number '1' is a point of infinite discontinuity if n < 1.

Let m < 1 and n < 1.

We take any number, say  $\frac{1}{2}$ , between 0 & 1 and examine the convergence of the improper integrals  $\int_{0}^{\frac{1}{2}} x^{m-1} (1-x)^{n-1} dx$  and  $\int_{\frac{1}{2}}^{1} x^{m-1} (1-x)^{n-1} dx$  at '0' and '1' respectively. **Convergence at 0:** We write  $f(x) = x^{m-1} (1-x)^{n-1} = \frac{(1-x)^{n-1}}{x^{1-m}} \text{ and take } g(x) = \frac{1}{x^{1-m}}$ 

Then 
$$\frac{f(x)}{g(x)} \rightarrow 1$$
 as  $x \rightarrow 0$   
As  $\int_{0}^{\frac{1}{2}} \frac{1}{x^{1-m}} dx$  is convergent at 0 iff  $1-m < 1$  i.e.  $m > 0$ 

We deduce that the integral  $\int_{0}^{\frac{1}{2}} x^{m-1} (1-x)^{n-1} dx$  is convergent at 0, iff *m* is +ive.

#### **Convergence at 1:**

We write 
$$f(x) = x^{m-1}(1-x)^{n-1} = \frac{x^{m-1}}{(1-x)^{1-n}}$$
 and take  $g(x) = \frac{1}{(1-x)^{1-n}}$   
Then  $\frac{f(x)}{g(x)} \to 1$  as  $x \to 1$   
As  $\int_{\frac{1}{2}}^{1} \frac{1}{(1-x)^{1-n}} dx$  is convergent, iff  $1-n < 1$  i.e.  $n > 0$ .

We deduce that the integral  $\int_{\frac{1}{2}}^{1} x^{m-1} (1-x)^{n-1} dx$  converges iff n > 0.

Thus 
$$\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$$
 exists for positive values of  $m, n$  only.

It is a function which depends upon m & n and is defined for all positive values of m & n. It is called Beta function.

## > Question

Show that the following improper integrals are convergent.

(i) 
$$\int_{1}^{\infty} \sin^2 \frac{1}{x} dx$$
 (ii)  $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$  (iii)  $\int_{0}^{1} \frac{x \log x}{(1+x)^2} dx$  (iv)  $\int_{0}^{1} \log x \cdot \log(1+x) dx$ 

## Solution

(*i*) Let 
$$f(x) = \sin^2 \frac{1}{x}$$
 and  $g(x) = \frac{1}{x^2}$ 

then 
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{\sin^2 \frac{1}{x}}{\frac{1}{x^2}} = \lim_{y \to 0} \left(\frac{\sin y}{y}\right)^2 = 1$$
  

$$\Rightarrow \int_1^{\infty} f(x) \, dx \quad \text{and} \quad \int_1^{\infty} \frac{1}{x^2} \, dx \quad \text{behave alike.}$$
  

$$\therefore \int_1^{\infty} \frac{\sin^2 x}{x^2} \, dx \quad \text{is convergent} \quad \therefore \quad \int_1^{\infty} \sin^2 \frac{1}{x} \, dx \text{ is also convergent.}$$
  
(ii) 
$$\int_1^{\infty} \frac{\sin^2 x}{x^2} \, dx$$
  
Take  $f(x) = \frac{\sin^2 x}{x^2} \quad \text{and} \quad g(x) = \frac{1}{x^2}$   

$$\sin^2 x \le 1 \quad \Rightarrow \quad \frac{\sin^2 x}{x^2} \le \frac{1}{x^2} \quad \forall \quad x \in (1,\infty)$$
  
and 
$$\int_1^{\infty} \frac{1}{x^2} \, dx \quad \text{converges} \quad \therefore \quad \int_1^{\infty} \frac{\sin^2 x}{x^2} \, dx \quad \text{converges.}$$

# > Note

 $\int_{0}^{1} \frac{\sin^2 x}{x^2} dx$  is a proper integral because  $\lim_{x \to 0} \frac{\sin^2 x}{x^2} = 1$  so that '0' is not a point of

infinite discontinuity. Therefore  $\int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx$  is convergent.

(iii) 
$$\int_{0}^{1} \frac{x \log x}{(1+x)^{2}} dx$$
  

$$\because \log x < x , \quad x \in (0,1)$$
  

$$\therefore x \log x < x^{2}$$
  

$$\Rightarrow \frac{x \log x}{(1+x)^{2}} < \frac{x^{2}}{(1+x)^{2}}$$
  
Now 
$$\int_{0}^{1} \frac{x^{2}}{(1+x)^{2}} dx \text{ is a proper integral}$$
  

$$\therefore \int_{0}^{1} \frac{x \log x}{(1+x)^{2}} dx \text{ is convergent.}$$
  
(iv) 
$$\int_{0}^{1} \log x \cdot \log(1+x) dx$$

$$: \log x < x \quad \therefore \ \log(x+1) < x+1 \Rightarrow \ \log x \cdot \log(1+x) < x(x+1) : \int_{0}^{1} x(x+1) dx$$
 is a proper integral  $\therefore \ \int_{0}^{1} \log x \cdot \log(1+x) dx$  is convergent.

# > Note

(i) 
$$\int_{0}^{a} \frac{1}{x^{p}} dx$$
 diverges when  $p \ge 1$  and converges when  $p < 1$ .  
(ii)  $\int_{a}^{\infty} \frac{1}{x^{p}} dx$  converges iff  $p > 1$ .

# > Questions

Examine the convergence of

(i) 
$$\int_{1}^{\infty} \frac{x}{(1+x)^3} dx$$
 (ii)  $\int_{1}^{\infty} \frac{1}{(1+x)\sqrt{x}} dx$  (iii)  $\int_{1}^{\infty} \frac{dx}{x^{1/3}(1+x)^{1/2}}$ 

# Solution

(i) Let 
$$f(x) = \frac{x}{(1+x)^3}$$
 and take  $g(x) = \frac{1}{x^2}$ .  
As  $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^3}{(1+x)^3} = 1$   
Therefore the two integrals  $\int_{1}^{\infty} \frac{x}{(1+x)^3} dx$  and  $\int_{1}^{\infty} \frac{1}{x^2} dx$  have identical behaviour for  
convergence at  $\infty$ .  
 $\therefore \int_{1}^{\infty} \frac{1}{x^2} dx$  is convergent  $\therefore \int_{1}^{\infty} \frac{x}{(1+x)^3} dx$  is convergent.

(*ii*) Let 
$$f(x) = \frac{1}{(1+x)\sqrt{x}}$$
 and take  $g(x) = \frac{1}{x\sqrt{x}} = \frac{1}{x^{\frac{3}{2}}}$   
We have  $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x}{1+x} = 1$   
and  $\int_{1}^{\infty} \frac{1}{x^{\frac{3}{2}}} dx$  is convergent. Thus  $\int_{1}^{\infty} \frac{1}{(1+x)\sqrt{x}} dx$  is convergent.  
(*iii*) Let  $f(x) = \frac{1}{x^{\frac{1}{3}}(1+x)^{\frac{1}{2}}}$   
we take  $g(x) = \frac{1}{x^{\frac{1}{3}} \cdot x^{\frac{1}{2}}} = \frac{1}{x^{\frac{5}{6}}}$ 

We have 
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$$
 and  $\int_{1}^{\infty} \frac{1}{x^{\frac{5}{6}}} dx$  is convergent  $\therefore \int_{1}^{\infty} f(x) dx$  is convergent.

### > Question

Show that  $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$  is convergent.

# Solution

We have

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \lim_{a \to \infty} \left[ \int_{-a}^{0} \frac{1}{1+x^2} dx + \int_{0}^{a} \frac{1}{1+x^2} dx \right]$$
$$= \lim_{a \to \infty} \left[ \int_{0}^{a} \frac{1}{1+x^2} dx + \int_{0}^{a} \frac{1}{1+x^2} dx \right] = 2 \lim_{a \to \infty} \left[ \int_{0}^{a} \frac{1}{1+x^2} dx \right]$$
$$= 2 \lim_{a \to \infty} \left| \tan^{-1} x \right|_{0}^{a} = 2 \left( \frac{\pi}{2} \right) = \pi$$

therefore the integral is convergent.

# > Question

Show that  $\int_{0}^{\infty} \frac{\tan^{-1} x}{1+x^2} dx$  is convergent.

#### Solution

$$\therefore (1+x^2) \cdot \frac{\tan^{-1} x}{(1+x^2)} = \tan^{-1} x \to \frac{\pi}{2} \quad \text{as} \quad x \to \infty$$
Here  $f(x) = \frac{\tan^{-1} x}{1+x^2}$ 

$$\int_0^\infty \frac{\tan^{-1} x}{1+x^2} dx \quad \& \quad \int_0^\infty \frac{1}{1+x^2} dx \text{ behave alike.}$$

$$\therefore \int_0^\infty \frac{1}{1+x^2} dx \text{ is convergent} \quad \therefore \text{ A given integral is convergent.}$$

# > Question

Show that  $\int_{0}^{\infty} e^{-x} \cos x \, dx$  is absolutely convergent.

# Solution

$$\therefore \left| e^{-x} \cos x \right| < e^{-x} \quad \text{and} \quad \int_{0}^{\infty} e^{-x} \, dx = 1$$

: the given integral is absolutely convergent. (Comparison test)

# > Question

Show that  $\int_{0}^{1} \frac{e^{-x}}{\sqrt{1-x^4}} dx$  is convergent.

# Solution

$$\therefore e^{-x} < 1 \text{ and } 1 + x^2 > 1 \text{ for all } x \in (0,1).$$
  
$$\therefore \frac{e^{-x}}{\sqrt{1 - x^4}} < \frac{1}{\sqrt{(1 - x^2)(1 + x^2)}} < \frac{1}{\sqrt{1 - x^2}}$$
  
Also 
$$\int_0^1 \frac{1}{\sqrt{1 - x^2}} dx = \lim_{\varepsilon \to 0} \int_0^{1 - \varepsilon} \frac{1}{\sqrt{1 - x^2}} dx$$
  
$$= \lim_{\varepsilon \to 0} \sin^{-1}(1 - \varepsilon) = \frac{\pi}{2}$$

 $\Rightarrow \int_{0}^{1} \frac{e}{\sqrt{1-x^4}} dx \text{ is convergent. (by comparison test)}$ 

# **References:**

(1) Book Mathematical Analysis Tom M. Apostol (John Wiley & Sons, Inc.)



