Ch 01: Improper Integrals of $1^{\text {st }}$ and $2^{\text {nd }}$ Kinds
 Course Title: Real Analysis II
 Course instructor: Dr. Atiq ur Rehman
 Course Code: MTH322
 Class: MSc-III \& IV
 Course URL: www.mathcity.org/atiq/sp16-mth322

We discussed (in MTH321: Real Analysis I) Riemann-Stieltjes's integrals of the form $\int_{a}^{b} f d \alpha$ under the restrictions that both f and α are defined and bounded on a finite interval $[a, b]$. The integral of the form $\int_{a}^{b} f d \alpha$ are called definite integrals. To extend the concept, we shall relax some condition on definite integral like f on finite interval or boundedness of f on finite interval.

Definition

The integral $\int_{a}^{b} f d \alpha$ is called an improper integral of first kind if $a=-\infty$ or $b=+\infty$ or both i.e. one or both integration limits is infinite.

$>$ Definition

The integral $\int_{a}^{b} f d \alpha$ is called an improper integral of second kind if $f(x)$ is unbounded at one or more points of $a \leq x \leq b$. Such points are called singularities of $f(x)$.

Examples

- $\int_{0}^{\infty} \frac{1}{1+x^{2}} d x, \int_{-\infty}^{1} \frac{1}{x-2} d x$ and $\int_{-\infty}^{\infty}\left(x^{2}+1\right) d x$ are examples of improper integrals of first kind.

- $\int_{-1}^{1} \frac{1}{x} d x$ and $\int_{0}^{1} \frac{1}{2 x-1} d x$ are examples of improper integrals of second kind.

Notations

We shall denote the set of all functions f such that $f \in R(\alpha)$ on $[a, b]$ by $R(\alpha ; a, b)$. When $\alpha(x)=x$, we shall simply write $R(a, b)$ for this set. The notation $\alpha \uparrow$ on $[a, \infty)$ will mean that α is monotonically increasing on $[a, \infty)$.

IMPROPER INTEGRAL OF THE FIRST KIND

>Definition

Assume that $f \in R(\alpha ; a, b)$ for every $b \geq a$. Keep a, α and f fixed and define a function I on $[a, \infty)$ as follows:

$$
\begin{equation*}
I(b)=\int_{a}^{b} f(x) d \alpha(x) \quad \text { if } \quad b \geq a \tag{i}
\end{equation*}
$$

The function I so defined is called an infinite (or an improper) integral of first kind and is denoted by the symbol $\int_{a}^{\infty} f(x) d \alpha(x)$ or by $\int_{a}^{\infty} f d \alpha$.

The integral $\int_{a}^{\infty} f d \alpha$ is said to converge if the limit

$$
\begin{equation*}
\lim _{b \rightarrow \infty} I(b) \tag{ii}
\end{equation*}
$$

exists (finite). Otherwise, $\int_{a}^{\infty} f d \alpha$ is said to diverge.
If the limit in (ii) exists and equals A, the number A is called the value of the integral and we write $\int_{a}^{\infty} f d \alpha=A$

Example

Consider and integral $\int_{1}^{\infty} x^{-p} d x$, where p is any real number. Discuss its convergence and divergence.

Solution

Let $I(b)=\int_{1}^{b} x^{-p} d x$ where $b \geq 1$.
Then $I(b)=\int_{1}^{b} x^{-p} d x=\left.\frac{x^{1-p}}{1-p}\right|_{1} ^{b}=\frac{1-b^{1-p}}{p-1}$ if $p \neq 1$.
If $b \rightarrow \infty$, then $b^{1-p} \rightarrow 0$ for $p>1$ and $b^{1-p} \rightarrow \infty$ for $p<1$. Therefore we have

$$
\lim _{b \rightarrow \infty} I(b)=\lim _{b \rightarrow \infty} \frac{1-b^{1-p}}{p-1}=\left\{\begin{array}{cll}
\infty & \text { if } & p<1 \\
\frac{1}{p-1} & \text { if } & p>1
\end{array}\right.
$$

Now if $p=1$, we get $\int_{1}^{b} x^{-1} d x=\log b \rightarrow \infty$ as $b \rightarrow \infty$.
Hence we concluded: $\int_{1}^{\infty} x^{-p} d x=\left\{\begin{array}{cl}\text { diverges } & \text { if } p \leq 1, \\ \frac{1}{p-1} & \text { if } p>1 .\end{array}\right.$

Example

Is the integral $\int_{0}^{\infty} \sin 2 \pi x d x$ converges or diverges?

Solution:

Consider $I(b)=\int_{0}^{b} \sin 2 \pi x d x$, where $b \geq 0$.
We have $\int_{0}^{b} \sin 2 \pi x d x=\left.\frac{-\cos 2 \pi x}{2 \pi}\right|_{0} ^{b}=\frac{1-\cos 2 \pi b}{2 \pi}$.
Also $\cos 2 \pi b \rightarrow l$ as $b \rightarrow \infty$, where l has values between -1 and 1 , that is, limit is not unique.
Therefore the integral $\int_{0}^{\infty} \sin 2 \pi x d x$ diverges.

$>$ Note

If $\int_{-\infty}^{a} f d \alpha$ and $\int_{a}^{\infty} f d \alpha$ are both convergent for some value of a, we say that the integral $\int_{-\infty}^{\infty} f d \alpha$ is convergent and its value is defined to be the sum

$$
\int_{-\infty}^{\infty} f d \alpha=\int_{-\infty}^{a} f d \alpha+\int_{a}^{\infty} f d \alpha
$$

The choice of the point a is clearly immaterial.
If the integral $\int_{-\infty}^{\infty} f d \alpha$ converges, its value is equal to the $\operatorname{limit}: \lim _{b \rightarrow+\infty} \int_{-b}^{b} f d \alpha$.

Review:

- A function f is said to be increasing, if for all $x_{1}, x_{2} \in D_{f}$ (domain of f) and $x_{1} \leq x_{2}$ implies $f\left(x_{1}\right) \leq f\left(x_{2}\right)$.
- A function f is said to be bounded if there exist some positive number μ such that $|f(t)| \leq \mu$ for all $t \in D_{f}$.
- If $\lim _{x \rightarrow \infty} f(x)$ exists then f is bounded.
- If $f \in R(\alpha ; a, b)$ and $c \in[a, b]$, then $\int_{a}^{b} f d \alpha=\int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha$.
- If $f \in R(\alpha ; a, b)$ and $f(x) \geq 0$ for all $x \in[a, b]$, then $\int_{a}^{b} f d \alpha \geq 0$.
- If f is monotonically increasing and bounded on $[a,+\infty)$, then $\lim _{x \rightarrow \infty} f(x)=\sup _{x \in[a, \infty)} f(x)$.

Theorem

Assume that α is monotonically increasing on $[a,+\infty)$ and suppose that $f \in R(\alpha ; a, b)$ for every $b \geq a$. Assume that $f(x) \geq 0$ for each $x \geq a$. Then $\int_{a}^{\infty} f d \alpha$ converges if, and only if, there exists a constant $M>0$ such that

$$
\int_{a}^{b} f d \alpha \leq M \text { for every } b \geq a
$$

Proof

Let $I(b)=\int_{a}^{b} f d \alpha$ for $b \geq a$.
First suppose that $\int_{a}^{\infty} f d \alpha$ is convergent, then $\lim _{b \rightarrow+\infty} I(b)$ exists, that is, $I(b)$ is bounded.
So there exists a constant $M>0$ such that

$$
|I(b)|<M \text { for every } b \geq a
$$

As $f(x) \geq 0$ for each $x \geq a$, therefore $\int_{a}^{b} f d \alpha \geq 0$.
This gives $I(b)=\int_{a}^{b} f d \alpha \leq M$ for every $b \geq a$.
Conversely, suppose that there exists a constant $M>0$ such that $\int_{a}^{b} f d \alpha \leq M$ for every $b \geq a$. This give $|I(b)| \leq M$ for every $b \geq a$.
That is, I is bounded on $[a,+\infty)$.
Now for $b_{2} \geq b_{1}>a$, we have

$$
\begin{aligned}
I\left(b_{2}\right) & =\int_{a}^{b_{2}} f d \alpha=\int_{a}^{b_{1}} f d \alpha+\int_{b_{1}}^{b_{2}} f d \alpha \\
& \geq \int_{a}^{b_{1}} f d \alpha=I\left(b_{1}\right) \quad \because \int_{b_{1}}^{b_{2}} f d \alpha \geq 0 \text { as } f(x) \geq 0 \text { for all } x \geq a
\end{aligned}
$$

This gives I is monotonically increasing on $[a,+\infty)$.
As I is monotonically increasing and bounded on $[a,+\infty)$, therefore it is convergent, that is $\int_{a}^{\infty} f d \alpha$ converges.

Theorem: (Comparison Test)

Assume that α is monotonically increasing on $[a,+\infty)$ and $f \in R(\alpha ; a, b)$ for every $b \geq a$. If $0 \leq f(x) \leq g(x)$ for every $x \geq a$ and $\int_{a}^{\infty} g d \alpha$ converges, then $\int_{a}^{\infty} f d \alpha$ converges and we have

$$
\int_{a}^{\infty} f d \alpha \leq \int_{a}^{\infty} g d \alpha
$$

Proof

Let $\quad I_{1}(b)=\int_{a}^{b} f d \alpha \quad$ and $\quad I_{2}(b)=\int_{a}^{b} g d \alpha \quad, \quad b \geq a$.

$$
\begin{align*}
& \because \quad 0 \leq f(x) \leq g(x) \quad \text { for every } \quad x \geq a \\
& \therefore \quad I_{1}(b) \leq I_{2}(b) \ldots \ldots \ldots \ldots \ldots \ldots \ldots(i) \tag{i}
\end{align*}
$$

$$
\begin{align*}
\because & \int_{a}^{\infty} g d \alpha \text { converges } \quad \therefore \exists \text { a constant } M>0 \text { such that } \\
& \int_{a}^{b} g d \alpha \leq M \quad, \quad b \geq a \ldots \ldots \ldots \ldots \ldots . \text { (ii) } \tag{ii}
\end{align*}
$$

From (i) and (ii) we have $I_{1}(b) \leq M$ for every $b \geq a$.
$\Rightarrow \lim _{b \rightarrow \infty} I_{1}(b) \quad$ exists and is finite.
$\Rightarrow \int_{a}^{\infty} f d \alpha$ converges.
Also $\lim _{b \rightarrow \infty} I_{1}(b) \leq \lim _{b \rightarrow \infty} I_{2}(b) \leq M$
$\Rightarrow \int_{a}^{\infty} f d \alpha \leq \int_{a}^{\infty} g d \alpha$.

Example

Is the improper integral $\int_{1}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$ convergent or divergent?

Solution:

Since $\sin ^{2} x \leq 1$ for all $x \in[1,+\infty)$, therefore $\frac{\sin ^{2} x}{x^{2}} \leq \frac{1}{x^{2}}$ for all $x \in[1,+\infty)$.
This gives $\int_{1}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x \leq \int_{1}^{\infty} \frac{1}{x^{2}} d x$.
Now $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is convergent, therefore $\int_{1}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$ is convergent.

Theorem (Limit Comparison Test)

Assume that α is monotonically increasing on $[a,+\infty)$. Suppose that $f \in R(\alpha ; a, b)$ and that $g \in R(\alpha ; a, b)$ for every $b \geq a$, where $f(x) \geq 0$ and $g(x) \geq 0$ for $x \geq a$. If

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1,
$$

then $\int_{a}^{\infty} f d \alpha$ and $\int_{a}^{\infty} g d \alpha$ both converge or both diverge.

Proof

For all $b \geq a$, we can find some $N>0$ such that

$$
\begin{aligned}
& \left|\frac{f(x)}{g(x)}-1\right|<\varepsilon \quad \forall x \geq N \text { for every } \varepsilon>0 . \\
\Rightarrow & 1-\varepsilon<\frac{f(x)}{g(x)}<1+\varepsilon
\end{aligned}
$$

Let $\varepsilon=\frac{1}{2}$. Then we have

$$
\frac{1}{2}<\frac{f(x)}{g(x)}<\frac{3}{2} .
$$

$$
\begin{equation*}
\Rightarrow g(x)<2 f(x) \ldots \ldots \ldots . .(i) \quad \text { and } \quad 2 f(x)<3 g(x) \tag{ii}
\end{equation*}
$$

From (i) $\quad \int_{a}^{\infty} g d \alpha<2 \int_{a}^{\infty} f d \alpha$,
$\Rightarrow \int_{a}^{\infty} g d \alpha$ converges if $\int_{a}^{\infty} f d \alpha$ converges and $\int_{a}^{\infty} g d \alpha$ diverges if $\int_{a}^{\infty} f d \alpha$ diverges.
From (ii) $2 \int_{a}^{\infty} f d \alpha<3 \int_{a}^{\infty} g d \alpha$,
$\Rightarrow \int_{a}^{\infty} f d \alpha$ converges if $\int_{a}^{\infty} g d \alpha$ converges and $\int_{a}^{\infty} g d \alpha$ diverges if $\int_{a}^{\infty} f d \alpha$ diverges.
\Rightarrow The integrals $\int_{a}^{\infty} f d \alpha$ and $\int_{a}^{\infty} g d \alpha$ converge or diverge together.

$>$ Note

The above theorem also holds if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=c$, provided that $c \neq 0$. If $c=0$, we can only conclude that convergence of $\int_{a}^{\infty} g d \alpha$ implies convergence of $\int_{a}^{\infty} f d \alpha$.

Example

For every real p, the integral $\int_{1}^{\infty} e^{-x} x^{p} d x$ converges.
This can be seen by comparison of this integral with $\int_{1}^{\infty} \frac{1}{x^{2}} d x$.
Let $f(x)=e^{-x} x^{p}$ and $g(x)=\frac{1}{x^{2}}$.
Now $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{e^{-x} x^{p}}{1 / x^{2}}$

$$
\Rightarrow \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} e^{-x} x^{p+2}=\lim _{x \rightarrow \infty} \frac{x^{p+2}}{e^{x}}=0 . \quad \text { (find this limit yourself) }
$$

Since $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is convergent, therefore the given integral $\int_{1}^{\infty} e^{-x} x^{p} d x$ is also convergent.

Remark

It is easy to show that if $\int_{a}^{\infty} f d \alpha$ and $\int_{a}^{\infty} g d \alpha$ are convergent, then

- $\int_{a}^{\infty}(f \pm g) d \alpha$ is convergent.
- $\int_{a}^{\infty} c f d \alpha$, where c is some constant, is convergent.

Note

An improper integral $\int_{a}^{\infty} f d \alpha$ is said to converge absolutely if $\int_{a}^{\infty}|f| d \alpha$ converges. It is said to be convergent conditionally if $\int_{a}^{\infty} f d \alpha$ converges but $\int_{a}^{\infty}|f| d \alpha$ diverges.

Theorem

Assume $\alpha \uparrow$ on $[a,+\infty)$. If $f \in R(\alpha ; a, b)$ for every $b \geq a$ and if $\int_{a}^{\infty}|f| d \alpha$ converges, then $\int_{a}^{\infty} f d \alpha$ also converges.

Or: An absolutely convergent integral is convergent.

Proof

$$
\begin{aligned}
& \text { If } x \geq a, \quad \pm f(x) \leq|f(x)| \\
& \Rightarrow|f(x)|-f(x) \geq 0 \quad \Rightarrow 0 \leq|f(x)|-f(x) \leq 2|f(x)| \\
& \Rightarrow \int_{a}^{\infty}(|f|-f) d \alpha \text { converges. }
\end{aligned}
$$

Now difference of $\int_{a}^{\infty}|f| d \alpha$ and $\int_{a}^{\infty}(|f|-f) d \alpha$ is convergent, that is, $\int_{a}^{\infty} f d \alpha$ is convergent.

Remark

Every absolutely convergent integral is convergent.

Theorem (Cauchy condition for infinite integrals)

Assume that $f \in R(\alpha ; a, b)$ for every $b \geq a$. Then the integral $\int_{a}^{\infty} f d \alpha$ converges if, and only if, for every $\varepsilon>0$ there exists a $B>0$ such that $c>b>B$ implies

$$
\left|\int_{b}^{c} f d \alpha\right|<\varepsilon
$$

Proof

Let $\int_{a}^{\infty} f d \alpha$ be convergent, that is $\lim _{b \rightarrow \infty} \int_{a}^{b} f d \alpha=\int_{a}^{\infty} f d \alpha$.

B	\dot{b}	

Then $\exists B>0$ such that

$$
\begin{equation*}
\left|\int_{a}^{b} f d \alpha-\int_{a}^{\infty} f d \alpha\right|<\frac{\varepsilon}{2} \text { for every } b \geq B \tag{i}
\end{equation*}
$$

Also for $c>b>B$,

$$
\begin{equation*}
\left|\int_{a}^{c} f d \alpha-\int_{a}^{\infty} f d \alpha\right|<\frac{\varepsilon}{2} \tag{ii}
\end{equation*}
$$

As we know $\int_{a}^{c} f d \alpha=\int_{a}^{b} f d \alpha+\int_{b}^{c} f d \alpha$, this gives

$$
\begin{aligned}
\left|\int_{b}^{c} f d \alpha\right| & =\left|\int_{a}^{c} f d \alpha-\int_{a}^{b} f d \alpha\right| \\
& =\left|\int_{a}^{c} f d \alpha-\int_{a}^{\infty} f d \alpha+\int_{a}^{\infty} f d \alpha-\int_{a}^{b} f d \alpha\right|
\end{aligned}
$$

$$
\leq\left|\int_{a}^{c} f d \alpha-\int_{a}^{\infty} f d \alpha\right|+\left|\int_{a}^{\infty} f d \alpha-\int_{a}^{b} f d \alpha\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

$\Rightarrow\left|\int_{b}^{c} f d \alpha\right|<\varepsilon \quad$ when $\quad c>b>B$.
Conversely, assume that the Cauchy condition holds.
Define $a_{n}=\int_{a}^{a+n} f d \alpha$ if $n=1,2, \ldots \ldots$
Consider n, m such that $a+n, a+m>b>B$, then

$$
\begin{aligned}
\left|a_{n}-a_{m}\right| & =\left|\int_{a}^{a+n} f d \alpha-\int_{a}^{a+m} f d \alpha\right|=\left|\int_{a}^{b} f d \alpha+\int_{b}^{a+n} f d \alpha-\int_{a}^{b} f d \alpha-\int_{b}^{a+m} f d \alpha\right| \\
& =\left|\int_{b}^{a+n} f d \alpha-\int_{b}^{a+m} f d \alpha\right| \leq\left|\int_{b}^{a+n} f d \alpha\right|+\left|\int_{b}^{a+m} f d \alpha\right|<\varepsilon+\varepsilon=2 \varepsilon
\end{aligned}
$$

This gives, the sequence $\left\{a_{n}\right\}$ is a Cauchy sequence \Rightarrow it is convergent.
Let $\lim _{n \rightarrow \infty} a_{n}=A$
Given $\varepsilon>0$, choose B so that $\left|\int_{b}^{c} f d \alpha\right|<\frac{\varepsilon}{2} \quad$ if $\quad c>b>B$.
and also that $\left|a_{n}-A\right|<\frac{\varepsilon}{2}$ whenever $a+n \geq B$.

Choose an integer N such that $a+N>B$.
Then, if $b>a+N$, we have

$$
\begin{aligned}
&\left|\int_{a}^{b} f d \alpha-A\right|=\left|\int_{a}^{a+N} f d \alpha-A+\int_{a+N}^{b} f d \alpha\right| \\
& \leq\left|a_{N}-A\right|+\left|\int_{a+N}^{b} f d \alpha\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \\
& \Rightarrow \int_{a}^{\infty} f d \alpha=A
\end{aligned}
$$

This completes the proof.

Remarks

It follows from the above theorem that convergence of $\int_{a}^{\infty} f d \alpha$ implies $\lim _{b \rightarrow \infty} \int_{b}^{b+\varepsilon} f d \alpha=0$ for every fixed $\varepsilon>0$.

However, this does not imply that $f(x) \rightarrow 0$ as $x \rightarrow \infty$.

IMPROPER INTEGRAL OF THE SECOND KIIND

Definition

Let f be defined on the half open interval $(a, b]$ and assume that $f \in R(\alpha ; x, b)$ for every $x \in(a, b]$. Define a function I on $(a, b]$ as follows:

$$
\begin{equation*}
I(x)=\int_{x}^{b} f d \alpha \quad \text { if } \quad x \in(a, b] \tag{i}
\end{equation*}
$$

The function I so defined is called an improper integral of the second kind and is denoted by the symbol $\int_{a+}^{b} f(t) d \alpha(t)$ or $\int_{a+}^{b} f d \alpha$.

The integral $\int_{a+}^{b} f d \alpha$ is said to converge if the limit

$$
\lim _{x \rightarrow a+} I(x) \ldots \ldots \ldots .(i i) \text { exists (finite). }
$$

Otherwise, $\int_{a+}^{b} f d \alpha$ is said to diverge. If the limit in (ii) exists and equals A, the number A is called the value of the integral and we write $\int_{a+}^{b} f d \alpha=A$.

Similarly, if f is defined on $[a, b)$ and $f \in R(\alpha ; a, x) \quad \forall x \in[a, b)$ then $I(x)=\int_{a}^{x} f d \alpha$ if $x \in[a, b)$ is also an improper integral of the second kind and is denoted as $\int_{a}^{b-} f d \alpha$ and is convergent if $\lim _{x \rightarrow b-} I(x)$ exists (finite).

Note

The tests developed to check the behaviour of the improper integrals of Ist kind are applicable to improper integrals of IInd kind after making necessary modifications.

Example

$f(x)=x^{-p}$ is defined on $(0, b]$ and $f \in R(x, b)$ for every $x \in(0, b]$.

$$
\begin{aligned}
I(x) & =\int_{x}^{b} x^{-p} d x \quad \text { if } \quad x \in(0, b] \\
& =\int_{0+}^{b} x^{-p} d x=\lim _{\varepsilon \rightarrow 0} \int_{0+\varepsilon}^{b} x^{-p} d x \\
& =\lim _{\varepsilon \rightarrow 0}\left|\frac{x^{1-p}}{1-p}\right|_{\varepsilon}^{b}=\lim _{\varepsilon \rightarrow 0} \frac{b^{1-p}-\varepsilon^{1-p}}{1-p} \quad, \quad(p \neq 1)
\end{aligned}
$$

$$
=\left[\begin{array}{ll}
\text { finite }, & p<1 \\
\text { infinite, } & p>1
\end{array}\right.
$$

When $p=1$, we get $\int_{\varepsilon}^{b} \frac{1}{x} d x=\log b-\log \varepsilon \rightarrow \infty \quad$ as $\varepsilon \rightarrow 0$.
$\Rightarrow \int_{0+}^{b} x^{-1} d x$ also diverges.
Hence the integral converges when $p<1$ and diverges when $p \geq 1$.

> Note

If the two integrals $\int_{a+}^{c} f d \alpha$ and $\int_{c}^{b-} f d \alpha$ both converge, we write

$$
\int_{a+}^{b-} f d \alpha=\int_{a+}^{c} f d \alpha+\int_{c}^{b-} f d \alpha
$$

The definition can be extended to cover the case of any finite number of sums. We can also consider mixed combinations such as

$$
\int_{a+}^{b} f d \alpha+\int_{b}^{\infty} f d \alpha \text { which can be written as } \int_{a+}^{\infty} f d \alpha
$$

$>$ Assignment

Consider $\Gamma(p)=\int_{0}^{\infty} e^{-x} x^{p-1} d x,(p>0)$. Evaluate the convergence of this improper integral.

A Useful Comparison Integral

$$
\int_{a}^{b} \frac{d x}{(x-a)^{n}}
$$

We have, if $n \neq 1$,

$$
\begin{aligned}
\int_{a+\varepsilon}^{b} \frac{d x}{(x-a)^{n}} & =\left|\frac{1}{(1-n)(x-a)^{n-1}}\right|_{a+\varepsilon}^{b} \\
& =\frac{1}{(1-n)}\left(\frac{1}{(b-a)^{n-1}}-\frac{1}{\varepsilon^{n-1}}\right)
\end{aligned}
$$

Which tends to $\frac{1}{(1-n)(b-a)^{n-1}}$ or $+\infty$ according as $n<1$ or $n>1$, as $\varepsilon \rightarrow 0$.
Again, if $n=1$,

$$
\int_{a+\varepsilon}^{b} \frac{d x}{x-a}=\log (b-a)-\log \varepsilon \rightarrow+\infty \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Hence the improper integral $\int_{a}^{b} \frac{d x}{(x-a)^{n}}$ converges iff $n<1$.

Question

Examine the convergence of
(i) $\int_{0}^{1} \frac{d x}{x^{1 / 3}\left(1+x^{2}\right)}$
(ii) $\int_{0}^{1} \frac{d x}{x^{2}(1+x)^{2}}$
(iii) $\int_{0}^{1} \frac{d x}{x^{1 / 2}(1-x)^{1 / 3}}$

Solution

(i) $\int_{0}^{1} \frac{d x}{x^{1 / 3}\left(1+x^{2}\right)}$

Here ' 0 ' is the only point of infinite discontinuity of the integrand.
We have

$$
f(x)=\frac{1}{x^{1 / 3}\left(1+x^{2}\right)}
$$

Take $g(x)=\frac{1}{x^{1 / 3}}$
Then $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{1}{1+x^{2}}=1$
$\Rightarrow \int_{0}^{1} f(x) d x$ and $\int_{0}^{1} g(x) d x$ have identical behaviours.
$\because \int_{0}^{1} \frac{d x}{x^{1 / 3}}$ converges $\therefore \int_{0}^{1} \frac{d x}{x^{1 / 3}\left(1+x^{2}\right)}$ also converges.
(ii) $\int_{0}^{1} \frac{d x}{x^{2}(1+x)^{2}}$

Here ' 0 ' is the only point of infinite discontinuity of the given integrand.
We have

$$
f(x)=\frac{1}{x^{2}(1+x)^{2}}
$$

Take $g(x)=\frac{1}{x^{2}}$
Then $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{1}{(1+x)^{2}}=1$
$\Rightarrow \int_{0}^{1} f(x) d x$ and $\int_{0}^{1} g(x) d x$ behave alike.
But $n=2$ being greater than 1, the integral $\int_{0}^{1} g(x) d x$ does not converge. Hence the given integral also does not converge.
(iii) $\int_{0}^{1} \frac{d x}{x^{1 / 2}(1-x)^{1 / 3}}$

Here ' 0 ' and ' 1 ' are the two points of infinite discontinuity of the integrand.
We have

$$
f(x)=\frac{1}{x^{1 / 2}(1-x)^{1 / 3}}
$$

We take any number between 0 and 1 , say $1 / 2$, and examine the convergence of the improper integrals $\int_{0}^{1 / 2} f(x) d x$ and $\int_{1 / 2}^{1} f(x) d x$.

To examine the convergence of $\int_{0}^{1 / 2} \frac{1}{x^{1 / 2}(1-x)^{1 / 3}} d x$, we take $g(x)=\frac{1}{x^{1 / 2}}$
Then

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{1}{(1-x)^{1 / 3}}=1
$$

$\because \int_{0}^{1 / 2} \frac{1}{x^{1 / 2}} d x$ converges $\therefore \int_{0}^{1 / 2} \frac{1}{x^{1 / 2}(1-x)^{1 / 3}} d x$ is convergent.
To examine the convergence of $\int_{1 / 2}^{1} \frac{1}{x^{1 / 2}(1-x)^{1 / 3}} d x$, we take $g(x)=\frac{1}{(1-x)^{1 / 3}}$
Then

$$
\lim _{x \rightarrow 1} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 1} \frac{1}{x^{1 / 2}}=1
$$

$\because \int_{1 / 2}^{1} \frac{1}{(1-x)^{1 / 3}} d x$ converges $\because \int_{1 / 2}^{1} \frac{1}{x^{1 / 2}(1-x)^{1 / 3}} d x$ is convergent.
Hence $\int_{0}^{1} f(x) d x$ converges.

Question

Show that $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$ exists iff m, n are both positive.

Solution

The integral is proper if $m \geq 1$ and $n \geq 1$.
The number ' 0 ' is a point of infinite discontinuity if $m<1$ and the number ' 1 ' is a point of infinite discontinuity if $n<1$.

Let $m<1$ and $n<1$.

We take any number, say $1 / 2$, between $0 \& 1$ and examine the convergence of the improper integrals $\int_{0}^{1 / 2} x^{m-1}(1-x)^{n-1} d x$ and $\int_{1 / 2}^{1} x^{m-1}(1-x)^{n-1} d x$ at ' 0 ' and ' 1 ', respectively.

Convergence at 0:

We write

$$
f(x)=x^{m-1}(1-x)^{n-1}=\frac{(1-x)^{n-1}}{x^{1-m}} \text { and take } g(x)=\frac{1}{x^{1-m}}
$$

Then $\frac{f(x)}{g(x)} \rightarrow 1$ as $x \rightarrow 0$
As $\int_{0}^{1 / 2} \frac{1}{x^{1-m}} d x$ is convergent at 0 iff $1-m<1$ i.e. $m>0$
We deduce that the integral $\int_{0}^{1 / 2} x^{m-1}(1-x)^{n-1} d x$ is convergent at 0 , iff m is +ive.

Convergence at 1:

We write $f(x)=x^{m-1}(1-x)^{n-1}=\frac{x^{m-1}}{(1-x)^{1-n}} \quad$ and take $g(x)=\frac{1}{(1-x)^{1-n}}$
Then $\frac{f(x)}{g(x)} \rightarrow 1$ as $x \rightarrow 1$
As $\int_{1 / 2}^{1} \frac{1}{(1-x)^{1-n}} d x$ is convergent, iff $1-n<1$ i.e. $n>0$.
We deduce that the integral $\int_{1 / 2}^{1} x^{m-1}(1-x)^{n-1} d x$ converges iff $n>0$.
Thus $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$ exists for positive values of m, n only.
It is a function which depends upon $m \& n$ and is defined for all positive values of $m \& n$. It is called Beta function.

Question

Show that the following improper integrals are convergent.
(i) $\int_{1}^{\infty} \sin ^{2} \frac{1}{x} d x$
(ii) $\int_{1}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$
(iii) $\int_{0}^{1} \frac{x \log x}{(1+x)^{2}} d x$
(iv) $\int_{0}^{1} \log x \cdot \log (1+x) d x$

Solution

(i) Let $f(x)=\sin ^{2} \frac{1}{x} \quad$ and $g(x)=\frac{1}{x^{2}}$
then $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{\sin ^{2} \frac{1}{x}}{\frac{1}{x^{2}}}=\lim _{y \rightarrow 0}\left(\frac{\sin y}{y}\right)^{2}=1$
$\Rightarrow \int_{1}^{\infty} f(x) d x$ and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ behave alike.
$\because \int_{1}^{\infty} \frac{1}{x^{2}} d x$ is convergent $\therefore \int_{1}^{\infty} \sin ^{2} \frac{1}{x} d x$ is also convergent.
(ii) $\int_{1}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$

Take $f(x)=\frac{\sin ^{2} x}{x^{2}}$ and $g(x)=\frac{1}{x^{2}}$
$\sin ^{2} x \leq 1 \Rightarrow \frac{\sin ^{2} x}{x^{2}} \leq \frac{1}{x^{2}} \quad \forall x \in(1, \infty)$
and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ converges $\therefore \int_{1}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$ converges.

Note

$\int_{0}^{1} \frac{\sin ^{2} x}{x^{2}} d x$ is a proper integral because $\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x^{2}}=1$ so that ' 0 ' is not a point of infinite discontinuity. Therefore $\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$ is convergent.
(iii) $\int_{0}^{1} \frac{x \log x}{(1+x)^{2}} d x$
$\because \log x<x, \quad x \in(0,1)$
$\therefore x \log x<x^{2}$
$\Rightarrow \frac{x \log x}{(1+x)^{2}}<\frac{x^{2}}{(1+x)^{2}}$
Now $\int_{0}^{1} \frac{x^{2}}{(1+x)^{2}} d x$ is a proper integral.
$\therefore \int_{0}^{1} \frac{x \log x}{(1+x)^{2}} d x$ is convergent.
(iv) $\int_{0}^{1} \log x \cdot \log (1+x) d x$
$\because \log x<x \quad \therefore \log (x+1)<x+1$
$\Rightarrow \log x \cdot \log (1+x)<x(x+1)$
$\because \int_{0}^{1} x(x+1) d x$ is a proper integral $\therefore \int_{0}^{1} \log x \cdot \log (1+x) d x$ is convergent.

Note

(i) $\int_{0}^{a} \frac{1}{x^{p}} d x$ diverges when $p \geq 1$ and converges when $p<1$.
(ii) $\int_{a}^{\infty} \frac{1}{x^{p}} d x$ converges iff $p>1$.

Questions

Examine the convergence of
(i) $\int_{1}^{\infty} \frac{x}{(1+x)^{3}} d x$
(ii) $\int_{1}^{\infty} \frac{1}{(1+x) \sqrt{x}} d x$
(iii) $\int_{1}^{\infty} \frac{d x}{x^{1 / 3}(1+x)^{1 / 2}}$

Solution

(i) Let $f(x)=\frac{x}{(1+x)^{3}}$ and take $g(x)=\frac{1}{x^{2}}$.

As $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{x^{3}}{(1+x)^{3}}=1$
Therefore the two integrals $\int_{1}^{\infty} \frac{x}{(1+x)^{3}} d x$ and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ have identical behaviour for convergence at ∞.
$\because \int_{1}^{\infty} \frac{1}{x^{2}} d x$ is convergent $\quad \therefore \int_{1}^{\infty} \frac{x}{(1+x)^{3}} d x$ is convergent.
(ii) Let $f(x)=\frac{1}{(1+x) \sqrt{x}}$ and take $g(x)=\frac{1}{x \sqrt{x}}=\frac{1}{x^{3 / 2}}$

We have $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{x}{1+x}=1$
and $\int_{1}^{\infty} \frac{1}{x^{3 / 2}} d x$ is convergent. Thus $\int_{1}^{\infty} \frac{1}{(1+x) \sqrt{x}} d x$ is convergent.
(iii) Let $f(x)=\frac{1}{x^{1 / 3}(1+x)^{1 / 2}}$
we take $g(x)=\frac{1}{x^{1 / 3} \cdot x^{1 / 2}}=\frac{1}{x^{5 / 6}}$

We have $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=1$ and $\int_{1}^{\infty} \frac{1}{x^{5 / 6}} d x$ is convergent $\therefore \int_{1}^{\infty} f(x) d x$ is convergent.

Question

Show that $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$ is convergent.

Solution

We have

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x & =\lim _{a \rightarrow \infty}\left[\int_{-a}^{0} \frac{1}{1+x^{2}} d x+\int_{0}^{a} \frac{1}{1+x^{2}} d x\right] \\
& =\lim _{a \rightarrow \infty}\left[\int_{0}^{a} \frac{1}{1+x^{2}} d x+\int_{0}^{a} \frac{1}{1+x^{2}} d x\right]=2 \lim _{a \rightarrow \infty}\left[\int_{0}^{a} \frac{1}{1+x^{2}} d x\right] \\
& =2 \lim _{a \rightarrow \infty}\left|\tan ^{-1} x\right|_{0}^{a}=2\left(\frac{\pi}{2}\right)=\pi
\end{aligned}
$$

therefore the integral is convergent.

Question

Show that $\int_{0}^{\infty} \frac{\tan ^{-1} x}{1+x^{2}} d x$ is convergent.

Solution

$\because\left(1+x^{2}\right) \cdot \frac{\tan ^{-1} x}{\left(1+x^{2}\right)}=\tan ^{-1} x \rightarrow \frac{\pi}{2} \quad$ as $\quad x \rightarrow \infty$
$\int_{0}^{\infty} \frac{\tan ^{-1} x}{1+x^{2}} d x \quad \& \quad \int_{0}^{\infty} \frac{1}{1+x^{2}} d x$ behave alike.
Here $f(x)=\frac{\tan ^{-1} x}{1+x^{2}}$
and $\quad g(x)=\frac{1}{1+x^{2}}$
$\because \int_{0}^{\infty} \frac{1}{1+x^{2}} d x$ is convergent \therefore A given integral is convergent.

Question

Show that $\int_{0}^{\infty} e^{-x} \cos x d x$ is absolutely convergent.

Solution

$\because\left|e^{-x} \cos x\right|<e^{-x}$ and $\int_{0}^{\infty} e^{-x} d x=1$
\therefore the given integral is absolutely convergent. (Comparison test)

Question

Show that $\int_{0}^{1} \frac{e^{-x}}{\sqrt{1-x^{4}}} d x$ is convergent.

Solution

$\because e^{-x}<1$ and $1+x^{2}>1$ for all $x \in(0,1)$.
$\therefore \frac{e^{-x}}{\sqrt{1-x^{4}}}<\frac{1}{\sqrt{\left(1-x^{2}\right)\left(1+x^{2}\right)}}<\frac{1}{\sqrt{1-x^{2}}}$
Also $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x=\lim _{\varepsilon \rightarrow 0} \int_{0}^{1-\varepsilon} \frac{1}{\sqrt{1-x^{2}}} d x$

$$
=\lim _{\varepsilon \rightarrow 0} \sin ^{-1}(1-\varepsilon)=\frac{\pi}{2}
$$

$\Rightarrow \int_{0}^{1} \frac{e^{-x}}{\sqrt{1-x^{4}}} d x$ is convergent. (by comparison test)

References:

(1) Book
Mathematical Analysis
Tom M. Apostol (John Wiley \& Sons, Inc.)

open educational resources

