Chapter 4 - Limit \& Continuity

Course Title: Real Analysis 1
Course instructor: Dr. Atiq ur Rehman
Course Code: MTH321
Class: MSc-II
Course URL: www.mathcity.org/atiq/sp15-mth321

Limit of the function

Suppose $E \subseteq \mathbb{R}$ and $f: E \rightarrow \mathbb{R}$ be a function. A number l is called the limit of f when x approaches to p if for all $\varepsilon>0$, there exists $\delta>0$ (depending upon ε) such that

$$
|f(x)-l|<\varepsilon \text { whenever } 0<|x-p|<\delta
$$

It is written as $\lim _{x \rightarrow p} f(x)=l$.
Note: i) It is to be noted that $p \in \mathbb{R}$ but that p need not a point of E in the above definition (p is a limit point of E which may or may not belong to E.)
ii) Even if $p \in E$, we may have $f(p) \neq \lim _{x \rightarrow p} f(x)$.

Example:

In the following diagram we have illustrated $\lim _{x \rightarrow a} f(x)=L$.

- Example

$$
\lim _{x \rightarrow \infty} \frac{2 x}{1+x}=2
$$

We have $\left|\frac{2 x}{x-1}-2\right|=\left|\frac{2 x-2-2 x}{1+x}\right|=\left|\frac{-2}{1+x}\right|<\frac{2}{x}$
Now if $\varepsilon>0$ is given we can find $\delta=\frac{2}{\varepsilon}$ so that

$$
\left|\frac{2 x}{1+x}-2\right|<\varepsilon \quad \text { whenever } \quad x>\delta
$$

Example

Consider the function $f(x)=\frac{x^{2}-1}{x-1}$.
It is to be noted that f is not defined at $x=1$ but if $x \neq 1$ and is very close to 1 or less then $f(x)$ equals to 2 .

Definitions

i) Let X and Y be subsets of \mathbb{R}, a function $f: X \rightarrow Y$ is said to tend to limit l as $x \rightarrow \infty$, if for a real number $\varepsilon>0$ however small, \exists a positive number δ which depends upon ε such that distance

$$
|f(x)-l|<\varepsilon \text { when } x>\delta \text { and we write } \lim _{x \rightarrow \infty} f(x)=l
$$

ii) f is said to tend to a right limit l as $x \rightarrow c$ if for $\varepsilon>0, \exists \delta>0$ such that $|f(x)-l|<\varepsilon$ whenever $c<x<c+\delta$.
And we write $\lim _{x \rightarrow c+} f(x)=l$
iii) f is said to tend to a left limit l as $x \rightarrow c$ if for $\varepsilon>0, \exists$ a $\delta>0$ such that $|f(x)-l|<\varepsilon$ whenever $c-\delta<x<c$.
And we write $\lim _{x \rightarrow c-} f(x)=l$.

Example

$$
\lim _{x \rightarrow \infty} \sin \frac{1}{x} \text { does not exist. }
$$

Suppose that $\lim _{x \rightarrow \infty} \sin \frac{1}{x}$ exists and take it to be l, then there exist a positive real number δ such that

$$
\left|\sin \frac{1}{x}-l\right|<1 \quad \text { when } \quad 0<|x-0|<\delta \quad(\text { we take } \varepsilon=1>0 \text { here })
$$

We can find a positive integer n such that

$$
\frac{2}{n \pi}<\delta \text { then } \frac{2}{(4 n+1) \pi}<\delta \text { and } \frac{2}{(4 n+3) \pi}<\delta
$$

It thus follows

$$
\begin{aligned}
& \quad \left\lvert\, \begin{array}{ll}
\left.\sin \frac{(4 n+1) \pi}{2}-l \right\rvert\,<1 & \Rightarrow|1-l|<1 \\
\text { and } \quad\left|\sin \frac{(4 n+3) \pi}{2}-l\right|<1 & \Rightarrow|-1-l|<1 \quad \text { or } \quad|1+l|<1
\end{array}\right. \text { } l
\end{aligned}
$$

So that

$$
2=|1+l+1-l| \leq|1+l|+|1-l|<1+1 \quad \Rightarrow 2<2
$$

This is impossible; hence limit of the function does not exist.

- Example

Consider the function $f:[0,1] \rightarrow \mathbb{R}$ defined as

$$
f(x)= \begin{cases}0 & \text { if } x \text { is rational } \\ 1 & \text { if } x \text { is irratioanl }\end{cases}
$$

Show that $\lim _{x \rightarrow p} f(x)$ where $p \in[0,1]$ does not exist.

Solution

Let $\lim _{x \rightarrow p} f(x)=q$, if given $\varepsilon>0$ we can find $\delta>0$ such that

$$
|f(x)-q|<\varepsilon \text { whenever }|x-p|<\delta
$$

Consider the irrational $(r-s, r+s) \subset[0,1]$ such that r is rational and s is irrational.

Then $f(r)=0$ \& $f(s)=1$
Suppose $\lim _{x \rightarrow p} f(x)=q$ then

$$
\begin{aligned}
& |f(s)|=1 \\
\Rightarrow 1 & =|f(s)-q+q|=\mid(f(s)-q+q-0 \mid \\
& =|f(s)-q+q-f(r)| \quad \because 0=f(r) \\
& \leq|f(s)-q|+|f(r)-q|<\varepsilon+\varepsilon
\end{aligned}
$$

i.e. $1<\varepsilon+\varepsilon$

$$
\Rightarrow 1<\frac{1}{4}+\frac{1}{4} \quad \text { if } \varepsilon=\frac{1}{4}
$$

Which is absurd.
Hence the limit of the function does not exist.

Theorem

If $\lim _{x \rightarrow c} f(x)$ exists then it is unique.

Proof

Suppose $\lim _{x \rightarrow c} f(x)$ is not unique.
Take $\lim _{x \rightarrow c} f(x)=l_{1}$ and $\lim _{x \rightarrow c} f(x)=l_{2} \quad$ where $\quad l_{1} \neq l_{2}$.
$\Rightarrow \exists$ real numbers δ_{1} and δ_{2} such that

$$
\& \quad \left\lvert\, \begin{array}{ll}
\left|f(x)-l_{1}\right|<\varepsilon \quad \text { whenever } \quad|x-c|<\delta_{1} \\
\& & \left|f(x)-l_{2}\right|<\varepsilon \quad \text { whenever } \quad|x-c|<\delta_{2}
\end{array}\right.
$$

Now $\quad\left|l_{1}-l_{2}\right|=\left|\left(f(x)-l_{1}\right)-\left(f(x)-l_{2}\right)\right|$
$\leq\left|f(x)-l_{1}\right|+\left|f(x)-l_{2}\right|$
$<\varepsilon+\varepsilon \quad$ whenever $\quad|x-c|<\min \left(\delta_{1}, \delta_{2}\right)$
$\Rightarrow l_{1}=l_{2}$

* Theorem

Let $f: E \rightarrow \mathbb{R}$ and $g: E \rightarrow \mathbb{R}$ be real valued functions. If $\lim _{x \rightarrow p} f(x)=A$ and $\lim _{x \rightarrow p} g(x)=B$ then

$$
\begin{array}{ll}
\text { i- } & \lim _{x \rightarrow p}(f(x) \pm g(x))=A \pm B \\
\text { ii- } & \lim _{x \rightarrow p}(f g)(x)=A B
\end{array}
$$

iii- $\lim _{x \rightarrow p}\left(\frac{f(x)}{g(x)}\right)=\frac{A}{B}$ provided $B \neq 0$.

Continuity

Suppose $E \subseteq \mathbb{R}$ and $f: E \rightarrow \mathbb{R}$ be a function. Then f is said to be continuous at p if for every $\varepsilon>0 \exists$ a $\delta>0$ such that

$$
|f(x)-f(p)|<\varepsilon \text { for all points } x \in E \text { for which } 0<|x-p|<\delta
$$

Note:

(i) If f is continuous at every point of E. Then f is said to be continuous on E.
(ii) It is to be noted that f has to be defined at p iff $\lim _{x \rightarrow p} f(x)=f(p)$.

* Examples

$$
f(x)=x^{2} \text { is continuous } \forall x \in \mathbb{R} .
$$

Here $f(x)=x^{2}$, Take $p \in \mathbb{R}$
Then $|f(x)-f(p)|<\varepsilon$

$$
\begin{aligned}
& \Rightarrow\left|x^{2}-p^{2}\right|<\varepsilon \\
& \Rightarrow|(x-p)(x+p)|<\varepsilon \\
& \Rightarrow|x-p|<\varepsilon=\delta
\end{aligned}
$$

Since p is arbitrary real number,
therefore the function $f(x)$ is continuous \forall real numbers.

- Example

$$
f(x)=\sqrt{x} \text { is continuous on }[0, \infty[
$$

Let c be an arbitrary point such that $0<c<\infty$
For $\varepsilon>0$, we have

$$
\begin{aligned}
& |f(x)-f(c)|=|\sqrt{x}-\sqrt{c}|=\frac{|x-c|}{\sqrt{x}+\sqrt{c}}<\frac{|x-c|}{\sqrt{c}} \\
\Rightarrow & |f(x)-f(c)|<\varepsilon \quad \text { whenever } \quad \frac{|x-c|}{\sqrt{c}}<\varepsilon
\end{aligned}
$$

i.e. $|x-c|<\sqrt{c} \varepsilon=\delta$
$\Rightarrow f$ is continuous for $x=c$.
$\because c$ is an arbitrary point lying in $[0, \infty[$
$\therefore f(x)=\sqrt{x}$ is continuous on $[0, \infty[$

Right continuous and left continuous

Let f be a real valued function. It is said to be right continuous at point a if $\lim _{x \rightarrow a+} f(x)=f(a)$ and it is said to be left continuous at point a if $\lim _{x \rightarrow a-} f(x)=f(a)$.

Example

Consider a function given in above graph. We see f is not continuous at point x_{0}. It is right continuous at point x_{0} but not left continuous at point x_{0}.

* Continuity at closed interval

A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be continuous on closed interval $[a, b]$ if
(i) f is continuous on (a, b)
(ii) f is right continuous at a.
(iii) f is left continuous at b.

* Theorem (The intermediate value theorem)

Suppose f is continuous on $[a, b]$ and $f(a) \neq f(b)$, then given a number λ that lies between $f(a)$ and $f(b), \exists$ a point $c, a<c<b$ with $f(c)=\lambda$.

Proof

Let $f(a)<f(b)$ and $f(a)<\lambda<f(b)$.
Suppose $g(x)=f(x)-\lambda$
Then $g(a)=f(a)-\lambda<0$ and $g(b)=f(b)-\lambda>0$
$\Rightarrow \exists$ a point c between a and b such that $g(c)=0$

$$
\Rightarrow f(c)-\lambda=0 \Rightarrow f(c)=\lambda
$$

If $f(a)>f(b)$ then take $g(x)=\lambda-f(x)$ to obtain the required result.

Uniform continuity

Suppose $f: E \rightarrow \mathbb{R}$ is a real valued function. We say that f is uniformly continuous on E if for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
|f(p)-f(q)|<\varepsilon \quad \forall p, q \in E \text { for which }|p-q|<\delta
$$

The uniform continuity is a property of a function on a set i.e. it is a global property but continuity can be defined at a single point i.e. it is a local property.
Uniform continuity of a function at a point has no meaning.
It is evident that every uniformly continuous function is continuous.

To emphasize a difference between continuity and uniform continuity on set S, we consider the following examples.

- Example

Let S be a half open interval $0<x \leq 1$ and let f be defined for each x in S by the formula $f(x)=x^{2}$. It is uniformly continuous on S. To prove this observe that we have

$$
\begin{aligned}
|f(x)-f(y)| & =\left|x^{2}-y^{2}\right| \\
& =|x-y||x+y| \\
& <2|x-y|
\end{aligned}
$$

If $|x-y|<\delta$ then $|f(x)-f(y)|<2 \delta=\varepsilon$
Hence if ε is given we need only to take $\delta=\frac{\varepsilon}{2}$ to guarantee that

$$
|f(x)-f(y)|<\varepsilon \text { for every pair } x, y \text { with }|x-y|<\delta
$$

Thus f is uniformly continuous on the set S.

* Example

Let S be the half open interval $0<x \leq 1$ and let a function f be defined for each x in S by the formula $f(x)=\frac{1}{x}$. This function is continuous on the set S, however we shall prove that this function is not uniformly continuous on S.

Solution

Let suppose $\varepsilon=10$ and suppose we can find a $\delta, 0<\delta<1$, to satisfy the condition of the definition.

Taking $x=\delta, y=\frac{\delta}{11}$, we obtain

$$
|x-y|=\frac{10 \delta}{11}<\delta
$$

and

$$
|f(x)-f(y)|=\left|\frac{1}{\delta}-\frac{11}{\delta}\right|=\frac{10}{\delta}>10
$$

Hence for these two points we have $|f(x)-f(y)|>10$.
Which contradict the definition of uniform continuity.
Hence the given function being continuous on a set S is not uniformly continuous on S.

