Chapter 4 – Limit & Continuity

Course Title: Real Analysis 1 Course Code: MTH321

Course instructor: Dr. Atiq ur Rehman Class: MSc-II

Course URL: www.mathcity.org/atiq/sp15-mth321

* Limit of the function

Suppose $E \subseteq \mathbb{R}$ and $f: E \to \mathbb{R}$ be a function. A number l is called the limit of f when x approaches to p if for all $\varepsilon > 0$, there exists $\delta > 0$ (depending upon ε) such that

$$|f(x)-l| < \varepsilon$$
 whenever $0 < |x-p| < \delta$.

It is written as $\lim_{x \to p} f(x) = l$.

Note: i) It is to be noted that $p \in \mathbb{R}$ but that p need not a point of E in the above definition (p is a limit point of E which may or may not belong to E.)

ii) Even if $p \in E$, we may have $f(p) \neq \lim f(x)$.

Example:

In the following diagram we have illustrated $\lim f(x) = L$.

* Example

$$\lim_{x \to \infty} \frac{2x}{1+x} = 2$$

We have
$$\left| \frac{2x}{x-1} - 2 \right| = \left| \frac{2x - 2 - 2x}{1+x} \right| = \left| \frac{-2}{1+x} \right| < \frac{2}{x}$$

Now if $\varepsilon > 0$ is given we can find $\delta = \frac{2}{\varepsilon}$ so that

$$\left| \frac{2x}{1+x} - 2 \right| < \varepsilon$$
 whenever $x > \delta$.

* Example

Consider the function
$$f(x) = \frac{x^2 - 1}{x - 1}$$
.

It is to be noted that f is not defined at x=1 but if $x \ne 1$ and is very close to 1 or less then f(x) equals to 2.

* Definitions

i) Let X and Y be subsets of \mathbb{R} , a function $f: X \to Y$ is said to tend to limit l as $x \to \infty$, if for a real number $\varepsilon > 0$ however small, \exists a positive number δ which depends upon ε such that distance

$$|f(x)-l| < \varepsilon$$
 when $x > \delta$ and we write $\lim_{x \to \infty} f(x) = l$.

ii) f is said to tend to a right limit l as $x \to c$ if for $\varepsilon > 0$, $\exists \delta > 0$ such that $|f(x)-l| < \varepsilon$ whenever $c < x < c + \delta$.

And we write $\lim_{x \to c^+} f(x) = l$

iii) f is said to tend to a left limit l as $x \to c$ if for $\varepsilon > 0$, \exists a $\delta > 0$ such that $|f(x)-l| < \varepsilon$ whenever $c-\delta < x < c$.

And we write
$$\lim_{x\to c^-} f(x) = l$$
.

* Example

$$\lim_{x\to\infty} \sin\frac{1}{x}$$
 does not exist.

Suppose that $\lim_{x\to\infty} \sin\frac{1}{x}$ exists and take it to be l, then there exist a positive real number δ such that

$$\left| \sin \frac{1}{x} - l \right| < 1$$
 when $0 < |x - 0| < \delta$ (we take $\varepsilon = 1 > 0$ here)

We can find a positive integer n such that

$$\frac{2}{n\pi} < \delta$$
 then $\frac{2}{(4n+1)\pi} < \delta$ and $\frac{2}{(4n+3)\pi} < \delta$

It thus follows

$$\left| \sin \frac{(4n+1)\pi}{2} - l \right| < 1 \quad \Rightarrow |1-l| < 1$$
and
$$\left| \sin \frac{(4n+3)\pi}{2} - l \right| < 1 \quad \Rightarrow |-1-l| < 1 \quad \text{or} \quad |1+l| < 1$$

So that

$$2 = \left| 1 + l + 1 - l \right| \le \left| 1 + l \right| + \left| 1 - l \right| < 1 + 1 \quad \Rightarrow \quad 2 < 2$$

This is impossible; hence limit of the function does not exist.

* Example

Consider the function $f:[0,1] \to \mathbb{R}$ defined as

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irratioanl} \end{cases}$$

Show that $\lim_{x\to p} f(x)$ where $p \in [0,1]$ does not exist.

Solution

Let $\lim f(x) = q$, if given $\varepsilon > 0$ we can find $\delta > 0$ such that

$$|f(x)-q| < \varepsilon$$
 whenever $|x-p| < \delta$.

Consider the irrational $(r-s,r+s) \subset [0,1]$ such that r is rational and s is irrational.

Then
$$f(r) = 0$$
 & $f(s) = 1$
Suppose $\lim_{x \to p} f(x) = q$ then
$$\begin{aligned} |f(s)| &= 1 \\ \Rightarrow 1 &= |f(s) - q + q| = |(f(s) - q + q - 0)| \\ &= |f(s) - q + q - f(r)| \quad \because \quad 0 = f(r) \\ &\leq |f(s) - q| + |f(r) - q| < \varepsilon + \varepsilon \end{aligned}$$
i.e. $1 < \varepsilon + \varepsilon$

$$\Rightarrow 1 < \frac{1}{4} + \frac{1}{4}$$
 if $\varepsilon = \frac{1}{4}$

Which is absurd.

Hence the limit of the function does not exist.

* Theorem

If $\lim f(x)$ exists then it is unique.

Proof

Suppose $\lim f(x)$ is not unique.

Take $\lim_{x \to c} f(x) = l_1$ and $\lim_{x \to c} f(x) = l_2$ where $l_1 \neq l_2$.

 $\Rightarrow \exists$ real numbers δ_1 and δ_2 such that

$$\begin{aligned} & \left| f(x) - l_1 \right| < \varepsilon \quad \text{whenever} \quad \left| x - c \right| < \delta_1 \\ \& \quad \left| f(x) - l_2 \right| < \varepsilon \quad \text{whenever} \quad \left| x - c \right| < \delta_2 \\ \text{Now} \quad \left| l_1 - l_2 \right| = \left| \left(f(x) - l_1 \right) - \left(f(x) - l_2 \right) \right| \\ & \leq \left| f(x) - l_1 \right| + \left| f(x) - l_2 \right| \\ & < \varepsilon + \varepsilon \quad \text{whenever} \quad \left| x - c \right| < \min(\delta_1, \delta_2) \\ \Rightarrow l_1 = l_2 \end{aligned}$$

* Theorem

Let $f: E \to \mathbb{R}$ and $g: E \to \mathbb{R}$ be real valued functions. If $\lim_{x \to p} f(x) = A$ and

$$\lim_{x \to p} g(x) = B \quad \text{then}$$

i-
$$\lim_{x\to p} (f(x) \pm g(x)) = A \pm B$$
,

ii-
$$\lim_{x\to p} (fg)(x) = AB$$
,

iii-
$$\lim_{x\to p} \left(\frac{f(x)}{g(x)} \right) = \frac{A}{B}$$
 provided $B \neq 0$.

* Continuity

Suppose $E \subseteq \mathbb{R}$ and $f: E \to \mathbb{R}$ be a function. Then f is said to be continuous at p if for every $\varepsilon > 0 \exists$ a $\delta > 0$ such that

$$|f(x)-f(p)| < \varepsilon$$
 for all points $x \in E$ for which $0 < |x-p| < \delta$.

Note:

- (i) If f is continuous at every point of E. Then f is said to be continuous on E.
- (ii) It is to be noted that f has to be defined at p iff $\lim_{x\to p} f(x) = f(p)$.

* Examples

$$f(x) = x^2$$
 is continuous $\forall x \in \mathbb{R}$.

Here $f(x) = x^2$, Take $p \in \mathbb{R}$

Then
$$|f(x) - f(p)| < \varepsilon$$

 $\Rightarrow |x^2 - p^2| < \varepsilon$
 $\Rightarrow |(x - p)(x + p)| < \varepsilon$
 $\Rightarrow |x - p| < \varepsilon = \delta$

Since p is arbitrary real number,

therefore the function f(x) is continuous \forall real numbers.

* Example

$$f(x) = \sqrt{x}$$
 is continuous on $[0, \infty)$.

Let c be an arbitrary point such that $0 < c < \infty$

For $\varepsilon > 0$, we have

$$|f(x) - f(c)| = |\sqrt{x} - \sqrt{c}| = \frac{|x - c|}{\sqrt{x} + \sqrt{c}} < \frac{|x - c|}{\sqrt{c}}$$

$$\Rightarrow |f(x) - f(c)| < \varepsilon \quad \text{whenever} \quad \frac{|x - c|}{\sqrt{c}} < \varepsilon$$
i.e. $|x - c| < \sqrt{c} \ \varepsilon = \delta$

- \Rightarrow f is continuous for x = c.
- \therefore c is an arbitrary point lying in $[0, \infty]$

$$\therefore f(x) = \sqrt{x} \text{ is continuous on } [0, \infty[$$

* Right continuous and left continuous

Let f be a real valued function. It is said to be right continuous at point a if $\lim_{x\to a^+} f(x) = f(a)$ and it is said to be left continuous at point a if $\lim_{x\to a^-} f(x) = f(a)$.

* Example

Consider a function given in above graph. We see f is not continuous at point x_0 . It is right continuous at point x_0 but not left continuous at point x_0 .

* Continuity at closed interval

A function $f:[a,b] \to \mathbb{R}$ is said to be continuous on closed interval [a,b] if

- (i) f is continuous on (a,b)
- (ii) f is right continuous at a.
- (iii) f is left continuous at b.

* Theorem (The intermediate value theorem)

Suppose f is continuous on [a,b] and $f(a) \neq f(b)$, then given a number λ that lies between f(a) and f(b), \exists a point c, a < c < b with $f(c) = \lambda$.

Proof

Let f(a) < f(b) and $f(a) < \lambda < f(b)$.

Suppose $g(x) = f(x) - \lambda$

Then $g(a) = f(a) - \lambda < 0$ and $g(b) = f(b) - \lambda > 0$

 $\Rightarrow \exists$ a point c between a and b such that g(c) = 0

$$\Rightarrow f(c) - \lambda = 0 \Rightarrow f(c) = \lambda$$

If f(a) > f(b) then take $g(x) = \lambda - f(x)$ to obtain the required result.

* Uniform continuity

Suppose $f: E \to \mathbb{R}$ is a real valued function. We say that f is uniformly continuous on E if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$|f(p)-f(q)| < \varepsilon \quad \forall \quad p,q \in E \text{ for which } |p-q| < \delta.$$

The uniform continuity is a property of a function on a set i.e. it is a global property but continuity can be defined at a single point i.e. it is a local property.

Uniform continuity of a function at a point has no meaning.

It is evident that every uniformly continuous function is continuous.

To emphasize a difference between continuity and uniform continuity on set S, we consider the following examples.

* Example

Let S be a half open interval $0 < x \le 1$ and let f be defined for each x in S by the formula $f(x) = x^2$. It is uniformly continuous on S. To prove this observe that we have

$$|f(x) - f(y)| = |x^2 - y^2|$$

$$= |x - y||x + y|$$

$$< 2|x - y|$$

If
$$|x-y| < \delta$$
 then $|f(x)-f(y)| < 2\delta = \varepsilon$

Hence if ε is given we need only to take $\delta = \frac{\varepsilon}{2}$ to guarantee that

$$|f(x)-f(y)| < \varepsilon$$
 for every pair x, y with $|x-y| < \delta$

Thus f is uniformly continuous on the set S.

* Example

Let *S* be the half open interval $0 < x \le 1$ and let a function *f* be defined for each *x* in *S* by the formula $f(x) = \frac{1}{x}$. This function is continuous on the set *S*, however we shall prove that this function is not uniformly continuous on *S*.

Solution

Let suppose $\varepsilon = 10$ and suppose we can find a δ , $0 < \delta < 1$, to satisfy the condition of the definition.

Taking
$$x = \delta$$
, $y = \frac{\delta}{11}$, we obtain

$$\left| x - y \right| = \frac{10\delta}{11} < \delta$$

and

$$|f(x)-f(y)| = \left|\frac{1}{\delta} - \frac{11}{\delta}\right| = \frac{10}{\delta} > 10$$

Hence for these two points we have |f(x) - f(y)| > 10.

Which contradict the definition of uniform continuity.

Hence the given function being continuous on a set S is not uniformly continuous on S.

