Chapter 3 - Series

Course Title: Real Analysis 1
Course Code: MTH321
Course instructor: Dr. Atiq ur Rehman
Course URL: www.mathcity.org/atiq/sp15-mth321

Infinite Series

Given a sequence $\left\{a_{n}\right\}$, we use the notation $\sum_{i=1}^{\infty} a_{n}$ or simply $\sum a_{n}$ to denotes the sum $a_{1}+a_{2}+a_{3}+\ldots$ and called a infinite series or just series.

The numbers $s_{n}=\sum_{k=1}^{n} a_{k}$ are called the partial sum of the series.
If the sequence $\left\{s_{n}\right\}$ converges to s, we say that the series converges and write $\sum_{n=1}^{\infty} a_{n}=s$, the number s is called the sum of the series but it should be clearly understood that the ' s ' is the limit of the sequence of sums and is not obtained simply by addition.

If the sequence $\left\{s_{n}\right\}$ diverges then the series is said to be diverge.

Note:

The behaviors of the series remain unchanged by addition or deletion of the certain terms

Theorem

If $\sum_{n=1}^{\infty} a_{n}$ converges then $\lim _{n \rightarrow \infty} a_{n}=0$.

Proof

$$
\text { Let } s_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}
$$

Take

$$
\lim _{n \rightarrow \infty} s_{n}=s=\sum a_{n}
$$

Since

$$
a_{n}=s_{n}-s_{n-1}
$$

Therefore $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(s_{n}-s_{n-1}\right)$

$$
=\lim _{n \rightarrow \infty} s_{n}-\lim _{n \rightarrow \infty} s_{n-1}
$$

$$
=s-s=0
$$

Note:

The converse of the above theorem is false. For example consider the series $\sum_{n=1}^{\infty} \frac{1}{n}$. We know that the sequence $\left\{s_{n}\right\}$ where $s_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$ is divergent therefore $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent series, although $\lim _{n \rightarrow \infty} a_{n}=0$.
This implies that if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum a_{n}$ is divergent (It is known as basic divergent test).

Theorem (General Principle of Convergence)

A series $\sum a_{n}$ is convergent if and only if for any real number $\varepsilon>0$, there exists a positive integer n_{0} such that

$$
\left|\sum_{i=m+1}^{n} a_{i}\right|<\mathcal{E} \quad \forall n>m>n_{0}
$$

Proof

Let $s_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$
then $\left\{s_{n}\right\}$ is convergent if and only if for $\varepsilon>0 \exists$ a positive integer n_{0} such that

$$
\begin{aligned}
& \left|s_{n}-s_{m}\right|<\varepsilon \quad \forall n>m>n_{0} \\
\Rightarrow & \left|\sum_{i=m+1}^{n} a_{i}\right|=\left|s_{n}-s_{m}\right|<\varepsilon
\end{aligned}
$$

Theorem

Let $\sum a_{n}$ be an infinite series of non-negative terms and let $\left\{s_{n}\right\}$ be a sequence of its partial sums then $\sum a_{n}$ is convergent if $\left\{s_{n}\right\}$ is bounded and it diverges if $\left\{s_{n}\right\}$ is unbounded.

Proof

Since $a_{n} \geq 0 \quad \forall n \geq 0$ and $s_{n}=s_{n-1}+a_{n}>s_{n-1} \quad \forall n \geq 0$,
therefore the sequence $\left\{s_{n}\right\}$ is monotonic increasing and hence it is converges if $\left\{s_{n}\right\}$ is bounded and it will diverge if it is unbounded.

Hence we conclude that $\sum a_{n}$ is convergent if $\left\{s_{n}\right\}$ is bounded and it divergent if $\left\{s_{n}\right\}$ is unbounded.

Theorem (Comparison Test)

Suppose $\sum a_{n}$ and $\sum b_{n}$ are infinite series such that $a_{n}>0, b_{n}>0 \quad \forall n$. Also suppose that for a fixed positive number λ and positive integer $k, a_{n}<\lambda b_{n} \quad \forall n \geq k$ Then $\sum a_{n}$ converges if $\sum b_{n}$ is converges and $\sum b_{n}$ is diverges if $\sum a_{n}$ is diverges.

Proof

Suppose $\sum b_{n}$ is convergent and

$$
\begin{equation*}
a_{n}<\lambda b_{n} \quad \forall n \geq k \tag{i}
\end{equation*}
$$

then for any positive number $\varepsilon>0$ there exists n_{0} such that

$$
\sum_{i=m+1}^{n} b_{i}<\frac{\varepsilon}{\lambda} \quad n>m>n_{0}
$$

from (i)

$$
\begin{aligned}
& \Rightarrow \sum_{i=m+1}^{n} a_{i}<\lambda \sum_{i=m+1}^{n} b_{i}<\varepsilon \quad, \quad n>m>n_{0} \\
& \Rightarrow \sum a_{n} \text { is convergent. }
\end{aligned}
$$

Now suppose $\sum a_{n}$ is divergent then $\left\{S_{n}\right\}$ is unbounded.
$\Rightarrow \exists$ a real number $\beta>0$ such that

$$
\sum_{i=m+1}^{n} b_{i}>\lambda \beta \quad, \quad n>m
$$

from (i)
$\Rightarrow \sum_{i=m+1}^{n} b_{i}>\frac{1}{\lambda} \sum_{i=m+1}^{n} a_{i}>\beta \quad, \quad n>m$
$\Rightarrow \sum b_{n}$ is convergent.

Example

Prove that $\sum \frac{1}{\sqrt{n}}$ is divergent.

$$
\begin{aligned}
& \text { We know that } \sum \frac{1}{n} \text { is divergent and } \\
& n \geq \sqrt{n} \quad \forall n \geq 1 \\
& \Rightarrow \frac{1}{n} \leq \frac{1}{\sqrt{n}} \\
& \Rightarrow \sum \frac{1}{\sqrt{n}} \text { is divergent as } \sum \frac{1}{n} \text { is divergent. }
\end{aligned}
$$

Example

The series $\sum \frac{1}{n^{\alpha}}$ is convergent if $\alpha>1$ and diverges if $\alpha \leq 1$.
Let $s_{n}=1+\frac{1}{2^{\alpha}}+\frac{1}{3^{\alpha}}+\ldots \ldots \ldots+\frac{1}{n^{\alpha}}$.
If $\alpha>1$ then

$$
s_{n}<s_{2 n} \quad \text { and } \quad \frac{1}{n^{\alpha}}<\frac{1}{(n-1)^{\alpha}} .
$$

Now $S_{2 n}=\left[1+\frac{1}{2^{\alpha}}+\frac{1}{3^{\alpha}}+\frac{1}{4^{\alpha}}+\ldots+\frac{1}{(2 n)^{\alpha}}\right]$

$$
\begin{aligned}
& =\left[1+\frac{1}{3^{\alpha}}+\frac{1}{5^{\alpha}}+\ldots+\frac{1}{(2 n-1)^{\alpha}}\right]+\left[\frac{1}{2^{\alpha}}+\frac{1}{4^{\alpha}}+\frac{1}{6^{\alpha}}+\ldots+\frac{1}{(2 n)^{\alpha}}\right] \\
& =\left[1+\frac{1}{3^{\alpha}}+\frac{1}{5^{\alpha}}+\ldots+\frac{1}{(2 n-1)^{\alpha}}\right]+\frac{1}{2^{\alpha}}\left[1+\frac{1}{2^{\alpha}}+\frac{1}{3^{\alpha}}+\ldots+\frac{1}{(n)^{\alpha}}\right] \\
& <\left[1+\frac{1}{2^{\alpha}}+\frac{1}{4^{\alpha}}+\ldots+\frac{1}{(2 n-2)^{\alpha}}\right]+\frac{1}{2^{\alpha}} s_{n} \quad \text { (replacing } 3 \text { by } 2,5 \text { by } 4 \text { and so on.) } \\
& =1+\frac{1}{2^{\alpha}}\left[1+\frac{1}{2^{\alpha}}+\ldots+\frac{1}{(n-1)^{\alpha}}\right]+\frac{1}{2^{\alpha}} s_{n}
\end{aligned}
$$

$$
\begin{aligned}
& =1+\frac{1}{2^{\alpha}} s_{n-1}+\frac{1}{2^{\alpha}} s_{n} \quad=1+\frac{1}{2^{\alpha}} s_{2 n}+\frac{1}{2^{\alpha}} s_{2 n} \quad \because s_{n-1}<s_{n}<s_{2 n} \\
& =1+\frac{2}{2^{\alpha}} s_{2 n} \\
\Rightarrow s_{2 n} & <1+\frac{1}{2^{\alpha-1}} s_{2 n} . \\
\Rightarrow(1- & \left.\frac{1}{2^{\alpha-1}}\right) s_{2 n}<1 \Rightarrow\left(\frac{2^{\alpha-1}-1}{2^{\alpha-1}}\right) s_{2 n}<1 \Rightarrow s_{2 n}<\frac{2^{\alpha-1}}{2^{\alpha-1}-1}, \\
\text { i.e. } s_{n}< & <s_{2 n}<\frac{2^{\alpha-1}}{2^{\alpha-1}-1}
\end{aligned}
$$

$\Rightarrow\left\{s_{n}\right\}$ is bounded and also monotonic. Hence we conclude that $\sum \frac{1}{n^{\alpha}}$ is convergent when $\alpha>1$.
If $\alpha \leq 1$ then

$$
\begin{aligned}
& n^{\alpha} \leq n \\
\Rightarrow & \frac{1}{n^{\alpha}} \geq \frac{1}{n} \quad \forall n \geq 1
\end{aligned}
$$

$\because \sum \frac{1}{n}$ is divergent therefore $\sum \frac{1}{n^{\alpha}}$ is divergent when $\alpha \leq 1$.

Theorem

Let $a_{n}>0, b_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lambda \neq 0$ then the series $\sum a_{n}$ and $\sum b_{n}$ behave alike.

Proof

Since $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lambda$, therefore for $\varepsilon>0$, there exists integer n_{0} such that

$$
\left|\frac{a_{n}}{b_{n}}-\lambda\right|<\varepsilon \quad \forall n \geq n_{0} .
$$

Use $\varepsilon=\frac{\lambda}{2}$

$$
\begin{aligned}
& \Rightarrow\left|\frac{a_{n}}{b_{n}}-\lambda\right|<\frac{\lambda}{2} \quad \forall n \geq n_{0} . \Rightarrow \lambda-\frac{\lambda}{2}<\frac{a_{n}}{b_{n}}<\lambda+\frac{\lambda}{2} \\
& \Rightarrow \frac{\lambda}{2}<\frac{a_{n}}{b_{n}}<\frac{3 \lambda}{2} .
\end{aligned}
$$

Then we got

$$
a_{n}<\frac{3 \lambda}{2} b_{n} \quad \text { and } \quad b_{n}<\frac{2}{\lambda} a_{n} .
$$

Hence by comparison test we conclude that $\sum a_{n}$ and $\sum b_{n}$ converge or diverge together.

Example

Is the series $\sum \frac{1}{n} \sin ^{2} \frac{x}{n}$ is convergent or divergent.
Consider $a_{n}=\frac{1}{n} \sin ^{2} \frac{x}{n}$ and take $b_{n}=\frac{1}{n^{3}}$.

Then

$$
\frac{a_{n}}{b_{n}}=n^{2} \sin ^{2} \frac{x}{n}=\frac{\sin ^{2} \frac{x}{n}}{\frac{1}{n^{2}}}=x^{2}\left(\frac{\sin \frac{x}{n}}{\frac{x}{n}}\right)^{2}
$$

Applying limit as $n \rightarrow \infty$

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} x^{2}\left(\frac{\sin \frac{x}{n}}{\frac{x}{n}}\right)^{2}=x^{2}\left(\lim _{n \rightarrow \infty} \frac{\sin \frac{x}{n}}{\frac{x}{n}}\right)^{2}=x^{2}(1)=x^{2}
$$

$\Rightarrow \sum a_{n}$ and $\sum b_{n}$ have the similar behavior \forall finite values of x except $x=0$.
Since $\sum \frac{1}{n^{3}}$ is convergent series therefore the given series is also convergent for finite values of x except $x=0$.

Theorem (Cauchy Condensation Test)

Let $a_{n} \geq 0, a_{n}>a_{n+1} \forall n \geq 1$, then the series $\sum a_{n}$ and $\sum 2^{n-1} a_{2^{n-1}}$ converges or diverges together.

Proof

The condensation test follows from noting that if we collect the terms of the series into groups of lengths 2^{n}, each of these groups will be less than $2^{n} a_{2^{n}}$ by monotonicity. Observe,

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{n} & =a_{1}+\underbrace{a_{2}+a_{3}}_{\leq a_{2}+a_{2}}+\underbrace{a_{4}+a_{5}+a_{6}+a_{7}}_{\leq a_{4}+a_{4}+a_{4}+a_{4}}+\cdots+\underbrace{a_{2^{n}}+a_{2^{n}+1}+\cdots+a_{2^{n+1}-1}}_{\leq a_{2^{n}}+a_{2^{n}}+\cdots+a_{2^{n}}}+\cdots \\
& \leq a_{1}+2 a_{2}+4 a_{4}+\cdots+2^{n} a_{2^{n}}+\cdots=\sum_{n=0}^{\infty} 2^{n} a_{2^{n}}
\end{aligned}
$$

We have use the fact that a_{n} is decreasing sequence. The convergence of the original series now follows from direct comparison to this "condensed" series. To see that convergence of the original series implies the convergence of this last series, we similarly put,

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2^{n} a_{2^{n}} & =\underbrace{a_{1}+a_{2}}_{\leq a_{1}+a_{1}}+\underbrace{a_{2}+a_{4}+a_{4}+a_{4}}_{\leq a_{2}+a_{2}+a_{3}+a_{3}}+\cdots+\underbrace{a_{2^{n}}+a_{2^{n}}+\cdots+a_{n+1}}_{\leq a_{2^{n}}+a_{2^{n}+}+a_{\left(2^{n+1+1}\right.}+a_{\left(n^{n+1+1}\right.}+\cdots+a_{(2 n+1)}}+\cdots \\
& \leq a_{1}+a_{1}+a_{2}+a_{2}+a_{3}+a_{3}+\cdots+a_{n}+a_{n}+\cdots=2 \sum_{n=1}^{\infty} a_{n} .
\end{aligned}
$$

And we have convergence, again by direct comparison. And we are done. Note that we have obtained the estimate

$$
\sum_{n=1}^{\infty} a_{n} \leq \sum_{n=0}^{\infty} 2^{n} a_{2^{n}} \leq 2 \sum_{n=1}^{\infty} a_{n}
$$

Example

Find value of p for which $\sum \frac{1}{n^{p}}$ is convergent or divergent.
If $p \leq 0$ then $\lim _{n \rightarrow \infty} \frac{1}{n^{p}} \neq 0$, therefore the series diverges when $p \leq 0$.
If $p>0$ then the condensation test is applicable and we are lead to the series

$$
\begin{aligned}
\sum_{k=0}^{\infty} 2^{k} \frac{1}{\left(2^{k}\right)^{p}} & =\sum_{k=0}^{\infty} \frac{1}{2^{k p-k}} \\
& =\sum_{k=0}^{\infty} \frac{1}{2^{(p-1) k}}=\sum_{k=0}^{\infty}\left(\frac{1}{2^{(p-1)}}\right)^{k}=\sum_{k=0}^{\infty} 2^{(1-p) k} .
\end{aligned}
$$

Now $2^{1-p}<1$ iff $1-p<0$ i.e. when $p>1$.
And the result follows by comparing this series with the geometric series having common ratio less than one.
The series diverges when $2^{1-p}=1$ (i.e. when $p=1$).
The series is also divergent if $0<p<1$.

Example

Prove that if $p>1, \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}$ converges and if $p \leq 1$ the series is divergent.
$\because\{\ln n\}$ is increasing $\quad \therefore\left\{\frac{1}{n \ln n}\right\}$ decreases
and we can use the condensation test to the above series.
We have $a_{n}=\frac{1}{n(\ln n)^{p}}$

$$
\Rightarrow a_{2^{n}}=\frac{1}{2^{n}\left(\ln 2^{n}\right)^{p}} \quad \Rightarrow 2^{n} a_{2^{n}}=\frac{1}{(n \ln 2)^{p}}
$$

Now $\sum 2^{n} a_{2^{n}}=\sum \frac{1}{(n \ln 2)^{p}}=\frac{1}{(\ln 2)^{p}} \sum \frac{1}{n^{p}}$.
This converges when $p>1$ and diverges when $p \leq 1$.

Example

Prove that $\sum \frac{1}{\ln n}$ is divergent.
Since $\{\ln n\}$ is increasing there $\left\{\frac{1}{\ln n}\right\}$ decreases.

And we can apply the condensation test to check the behavior of the series

$$
\begin{gathered}
\because a_{n}=\frac{1}{\ln n} \quad \therefore a_{2^{n}}=\frac{1}{\ln 2^{n}} \\
\text { so } \quad 2^{n} a_{2^{n}}=\frac{2^{n}}{\ln 2^{n}} \quad \Rightarrow \quad 2^{n} a_{2^{n}}=\frac{2^{n}}{n \ln 2}
\end{gathered}
$$

since $\quad \frac{2^{n}}{n}>\frac{1}{n} \quad \forall n \geq 1$
and $\sum \frac{1}{n}$ is diverges therefore the given series is also diverges.

Alternating Series

A series in which successive terms have opposite signs is called an alternating series. e.g. $\quad \sum \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$ is an alternating series.

Theorem (Alternating Series Test or Leibniz Test)

Let $\left\{a_{n}\right\}$ be a decreasing sequence of positive numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$ then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\ldots$ converges.

Proof

Looking at the odd numbered partial sums of this series we find that

$$
s_{2 n+1}=\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\left(a_{5}-a_{6}\right)+\ldots+\left(a_{2 n-1}-a_{2 n}\right)+a_{2 n+1}
$$

Since $\left\{a_{n}\right\}$ is decreasing therefore all the terms in the parenthesis are non-negative

$$
\Rightarrow s_{2 n+1}>0 \quad \forall n
$$

Moreover

$$
\begin{aligned}
s_{2 n+3} & =s_{2 n+1}-a_{2 n+2}+a_{2 n+3} \\
& =s_{2 n+1}-\left(a_{2 n+2}-a_{2 n+3}\right)
\end{aligned}
$$

Since $a_{2 n+2}-a_{2 n+3} \geq 0$ therefore $s_{2 n+3} \leq s_{2 n+1}$
Hence the sequence of odd numbered partial sum is decreasing and is bounded below by zero. (as it has +ive terms)
It is therefore convergent.
Thus $s_{2 n+1}$ converges to some limit l (say).
Now consider the even numbered partial sum. We find that

$$
s_{2 n+2}=s_{2 n+1}-a_{2 n+2}
$$

and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} s_{2 n+2} & =\lim _{n \rightarrow \infty}\left(s_{2 n+1}-a_{2 n+2}\right) \\
& =\lim _{n \rightarrow \infty} s_{2 n+1}-\lim _{n \rightarrow \infty} a_{2 n+2}=l-0=l \quad \because \lim _{n \rightarrow \infty} a_{n}=0 .
\end{aligned}
$$

so that the even partial sum is also convergent to l.
\Rightarrow both sequences of odd and even partial sums converge to the same limit.
Hence we conclude that the corresponding series is convergent.

Absolute Convergence

$\sum a_{n}$ is said to converge absolutely if $\sum\left|a_{n}\right|$ converges.

Theorem

An absolutely convergent series is convergent.

Proof:

If $\sum\left|a_{n}\right|$ is convergent then for a real number $\varepsilon>0, \exists$ a positive integer n_{0} such that

$$
\left|\sum_{i=m+1}^{n} a_{i}\right|<\sum_{i=m+1}^{n}\left|a_{i}\right|<\varepsilon \quad \forall n, m>n_{0}
$$

\Rightarrow the series $\sum a_{n}$ is convergent. (Cauchy Criterion has been used)

Note

The converse of the above theorem does not hold.
e.g. $\quad \sum \frac{(-1)^{n+1}}{n}$ is convergent but $\sum \frac{1}{n}$ is divergent.

Theorem (The Root Test)

Let $\lim _{n \rightarrow \infty} \sup \left|a_{n}\right|^{1 / n}=p$
Then $\sum a_{n}$ converges absolutely if $p<1$ and it diverges if $p>1$.

Proof

Let $p<1$ then we can find the positive number $\varepsilon>0$ such that $p+\varepsilon<1$

$$
\begin{aligned}
& \Rightarrow\left|a_{n}\right|^{1 / n}<p+\varepsilon<1 \quad \forall n>n_{0} \\
& \Rightarrow\left|a_{n}\right|<(p+\varepsilon)^{n}<1
\end{aligned}
$$

$\because \sum(p+\varepsilon)^{n}$ is convergent because it is a geometric series with $|r|<1$.
$\therefore \sum\left|a_{n}\right|$ is convergent
$\Rightarrow \sum a_{n}$ converges absolutely.
Now let $p>1$ then we can find a number $\varepsilon_{1}>0$ such that $p-\varepsilon_{1}>1$.

$$
\begin{aligned}
& \Rightarrow\left|a_{n}\right|^{1 / n}>p+\varepsilon>1 \\
& \Rightarrow\left|a_{n}\right|>1 \text { for infinitely many values of } n . \\
& \Rightarrow \lim _{n \rightarrow \infty} a_{n} \neq 0 \\
& \Rightarrow \sum_{n} a_{n} \text { is divergent. }
\end{aligned}
$$

Note:

The above test give no information when $p=1$.
e.g. Consider the series $\sum \frac{1}{n}$ and $\sum \frac{1}{n^{2}}$.

For each of these series $p=1$, but $\sum \frac{1}{n}$ is divergent and $\sum \frac{1}{n^{2}}$ is convergent.

Theorem (Ratio Test)

The series $\sum a_{n}$
(i) Converges if $\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$
(ii) Diverges if $\left|\frac{a_{n+1}}{a_{n}}\right|>1$ for $n \geq n_{0}$, where n_{0} is some fixed integer.

Proof

If (i) holds we can find $\beta<1$ and integer N such that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|<\beta \text { for } n \geq N
$$

In particular

$$
\begin{aligned}
& \left|\frac{a_{N+1}}{a_{N}}\right|<\beta \\
\Rightarrow & \left|a_{N+1}\right|<\beta\left|a_{N}\right| \\
\Rightarrow & \left|a_{N+2}\right|<\beta\left|a_{N+1}\right|<\beta^{2}\left|a_{N}\right| \\
\Rightarrow & \left|a_{N+3}\right|<\beta^{3}\left|a_{N}\right| \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\Rightarrow & \left|a_{N+p}\right|<\beta^{p}\left|a_{N}\right| \\
\Rightarrow & \left|a_{n}\right|<\beta^{n-N}\left|a_{N}\right| \quad \text { we put } N+p=n .
\end{aligned}
$$

$$
\text { i.e. }\left|a_{n}\right|<\left|a_{N}\right| \beta^{-N} \beta^{n} \text { for } n \geq N
$$

$\because \sum \beta^{n}$ is convergent because it is geometric series with common ration <1.
Therefore $\sum a_{n}$ is convergent (by comparison test)
Now if

$$
\begin{aligned}
& \qquad \quad\left|a_{n+1}\right| \geq\left|a_{n}\right| \quad \text { for } n \geq n_{0} \\
& \text { then } \lim _{n \rightarrow \infty} a_{n} \neq 0 \\
& \Rightarrow \sum_{n} a_{n} \text { is divergent. }
\end{aligned}
$$

Note

The knowledge $\left|\frac{a_{n+1}}{a_{n}}\right|=1$ implies nothing about the convergent or divergent of series.

Example

Prove that series $\sum a_{n}$ with $a_{n}=\left[\frac{n}{n+1}-\left(\frac{n}{n+1}\right)^{n+1}\right]^{-n}$, is divergent.
Since $\frac{n}{n+1}<1$, therefore $a_{n}>0 \quad \forall n$.
Also $\left(a_{n}\right)^{\frac{1}{n}}=\left[\frac{n}{n+1}-\left(\frac{n}{n+1}\right)^{n+1}\right]^{-1}$

$$
\begin{aligned}
& =\left(\frac{n+1}{n}\right)\left[1-\left(\frac{n}{n+1}\right)^{n}\right]^{-1}=\left(\frac{n+1}{n}\right)\left[1-\left(\frac{n+1}{n}\right)^{-n}\right]^{-1} \\
& =\left(1+\frac{1}{n}\right)\left[1-\left(1+\frac{1}{n}\right)^{-n}\right]^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)\left[1-\left(1+\frac{1}{n}\right)^{-n}\right]^{-1} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right) \lim _{n \rightarrow \infty}\left[1-\left(1+\frac{1}{n}\right)^{-n}\right]^{-1} \\
& =1 \cdot\left[1-e^{-1}\right]^{-1}=\left[1-\frac{1}{e}\right]^{-1}=\left[\frac{e-1}{e}\right]^{-1}=\left[\frac{e}{e-1}\right]>1
\end{aligned}
$$

\Rightarrow the series is divergent.

Theorem (Dirichlet)

Suppose that $\left\{s_{n}\right\}, s_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$ is bounded. Let $\left\{b_{n}\right\}$ be positive term decreasing sequence such that $\lim _{n \rightarrow \infty} b_{n}=0$, then $\sum a_{n} b_{n}$ is convergent.

Proof

Since $\left\{s_{n}\right\}$ is bounded,
therefore there exists a positive number λ such that

$$
\left|s_{n}\right|<\lambda \quad \forall n \geq 1 .
$$

Then

$$
a_{i} b_{i}=\left(s_{i}-s_{i-1}\right) b_{i} \quad \text { for } i \geq 2
$$

$$
=s_{i} b_{i}-s_{i-1} b_{i}
$$

$$
=s_{i} b_{i}-s_{i-1} b_{i}+s_{i} b_{i+1}-s_{i} b_{i+1}
$$

$$
=s_{i}\left(b_{i}-b_{i+1}\right)-s_{i-1} b_{i}+s_{i} b_{i+1}
$$

$$
\Rightarrow \sum_{i=m+1}^{n} a_{i} b_{i}=\sum_{i=m+1}^{n} s_{i}\left(b_{i}-b_{i+1}\right)-\left(s_{m} b_{m+1}-s_{n} b_{n+1}\right)
$$

$\because\left\{b_{n}\right\}$ is decreasing

$$
\begin{aligned}
& \therefore\left|\sum_{i=m+1}^{n} a_{i} b_{i}\right|=\left|\sum_{i=m+1}^{n} s_{i}\left(b_{i}-b_{i+1}\right)-s_{m} b_{m+1}+s_{n} b_{n+1}\right| \\
& <\sum_{i=m+1}^{n}\left\{\left|s_{i}\right|\left(b_{i}-b_{i+1}\right)\right\}+\left|s_{m}\right| b_{m+1}+\left|s_{n}\right| b_{n+1} \\
& <\sum_{i=m+1}^{n}\left\{\lambda\left(b_{i}-b_{i+1}\right)\right\}+\lambda b_{m+1}+\lambda b_{n+1} \quad \because\left|s_{i}\right|<\lambda \\
& =\lambda\left(\sum_{i=m+1}^{n}\left(b_{i}-b_{i+1}\right)+b_{m+1}+b_{n+1}\right) \\
& =\lambda\left(\left(b_{m+1}-b_{n+1}\right)+b_{m+1}+b_{n+1}\right)=2 \lambda\left(b_{m+1}\right) \\
& \Rightarrow\left|\sum_{i=m+1}^{n} a_{i} b_{i}\right|<\varepsilon \quad \text { where } \varepsilon=2 \lambda\left(b_{m+1}\right) \text { a certain number } \\
& \Rightarrow \text { The } \sum a_{n} b_{n} \text { is convergent. (We have use Cauchy Criterion here.) }
\end{aligned}
$$

Theorem

Suppose that $\sum a_{n}$ is convergent and that $\left\{b_{n}\right\}$ is monotonic convergent sequence then $\sum a_{n} b_{n}$ is also convergent.

Proof

Suppose $\left\{b_{n}\right\}$ is decreasing and it converges to b.
Put $c_{n}=b_{n}-b$
$\Rightarrow c_{n} \geq 0$ and $\lim _{n \rightarrow \infty} c_{n}=0$.
Since $\sum a_{n}$ is convergent,
therefore $\left\{s_{n}\right\}, s_{n}=a_{1}+a_{2}+\ldots+a_{n}$ is convergent.
$\Rightarrow \mathrm{It}$ is bounded,
$\Rightarrow \sum a_{n} c_{n}$ is bounded.
Since $a_{n} b_{n}=a_{n} c_{n}+a_{n} b$ and $\sum a_{n} c_{n}$ and $\sum a_{n} b$ are convergent, therefore $\sum a_{n} b_{n}$ is convergent.
Now if $\left\{b_{n}\right\}$ is increasing and converges to b then we shall put $c_{n}=b-b_{n}$.

Example

A series $\sum \frac{1}{(n \ln n)^{\alpha}}$ is convergent if $\alpha>1$ and divergent if $\alpha \leq 1$.
To see this we proceed as follows

$$
a_{n}=\frac{1}{(n \ln n)^{\alpha}}
$$

Take $b_{n}=2^{n} a_{2^{n}}=\frac{2^{n}}{\left(2^{n} \ln 2^{n}\right)^{\alpha}}=\frac{2^{n}}{\left(2^{n} n \ln 2\right)^{\alpha}}$

$$
\begin{aligned}
& =\frac{2^{n}}{2^{n \alpha} n^{\alpha}(\ln 2)^{\alpha}}=\frac{1}{2^{n \alpha-n} n^{\alpha}(\ln 2)^{\alpha}} \\
& =\frac{1}{(\ln 2)^{\alpha}} \cdot \frac{\left(\frac{1}{2}\right)^{(\alpha-1) n}}{n^{\alpha}}
\end{aligned}
$$

Since $\sum \frac{1}{n^{\alpha}}$ is convergent when $\alpha>1$ and $\left(\frac{1}{2}\right)^{(\alpha-1) n}$ is decreasing for $\alpha>1$ and it converges to 0 . Therefore $\sum b_{n}$ is convergent
$\Rightarrow \sum a_{n}$ is also convergent.
Now $\sum b_{n}$ is divergent for $\alpha \leq 1$ therefore $\sum a_{n}$ diverges for $\alpha \leq 1$.

Example

To check $\sum \frac{1}{n^{\alpha} \ln n}$ is convergent or divergent.
We have $a_{n}=\frac{1}{n^{\alpha} \ln n}$
Take $\quad b_{n}=2^{n} a_{2^{n}}=\frac{2^{n}}{\left(2^{n}\right)^{\alpha}\left(\ln 2^{n}\right)}=\frac{2^{n}}{2^{n \alpha}(n \ln 2)}$

$$
=\frac{1}{\ln 2} \cdot \frac{2^{(1-\alpha) n}}{n}=\frac{1}{\ln 2} \cdot \frac{\left(\frac{1}{2}\right)^{(\alpha-1) n}}{n}
$$

$\because \sum \frac{1}{n}$ is divergent although $\left\{\left(\frac{1}{2}\right)^{n(\alpha-1)}\right\}$ is decreasing, tending to zero for $\alpha>1$ therefore $\sum b_{n}$ is divergent.

$$
\Rightarrow \sum a_{n} \text { is divergent. }
$$

The series also divergent if $\alpha \leq 1$.
i.e. it is always divergent.

[^0]
[^0]: References: (1) Principles of Mathematical Analysis Walter Rudin (McGraw-Hill, Inc.)
 (2) Introduction to Real Analysis R.G.Bartle, and D.R. Sherbert (John Wiley \& Sons, Inc.)
 (3) Mathematical Analysis, Tom M. Apostol, (Pearson; 2nd edition.)

