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In mathematics, a real number is a value that represents a quantity along a 

continuous line. The real numbers include all the rational numbers, such as the 

integer −5 and the fraction 4/3, and all the irrational numbers such as 2   

(1.41421356…, the square root of two, an irrational algebraic number) and π 

(3.14159265…, a transcendental number). Real numbers can be thought of as points 

on an infinitely long line called the number line or real line, where the points 

corresponding to integers are equally spaced. Any real number can be determined by 

a possibly infinite decimal representation such as that of 8.632, where each 

consecutive digit is measured in units one tenth the size of the previous one. 

 
 

The real number system can be describe as a “complete ordered field”. Therefore 

let’s discusses and understand these notions first. 
 

 Order 

Let S be a non-empty set. An order on a set S is a relation denoted by “” 

with the following two properties 

(i) If  ,x y S ,  

     then one and only one of the statement  x y  , x y ,  y x  is true. 

(ii) If , ,x y z S  and if  x y ,  y z  then  x z . 

 Ordered Set 

A set is said to be ordered set if an order is defined on S. 

 Bound 

       Upper Bound 

Let S be an ordered set and E S . If there exists a S   such that 

x x E   , then we say that E is bounded above. And   is known as upper 

bound of E. 
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        Lower Bound 

Let S be an ordered set and E S . If there exists a S   such that 

x x E   , then we say that E is bounded below. And   is known as lower 

bound of E. 

 Example 

     Consider  1,2,3,...,50S   and  5,10,15,20E  . 

Set of all lower bound of  1,2,3,4,5E  . 

 Set of all upper bound of  20,21,22,23,...,50E  .  

 Least Upper Bound (Supremum) 

Suppose S is an ordered set, E S  and E is bounded above. Suppose there 

exists an S  such that 

(i)   is an upper bound of E. 

(ii) If   , then   is not an upper bound of E. 

Then   is called least upper bound of E or supremum of E and written as supE  . 

In other words   is the least member of the set of upper bound of E. 

 Example 

     Consider  1,2,3,...,50S   and  5,10,15,20E  . 

(i) It is clear that 20 is upper bound of E . 

(ii)  If 20  then clearly   is not an upper bound of E . Hence sup 20E  . 

 Greatest Lower Bound (Infimum) 

Suppose S is an ordered set, E S  and E is bounded below. Suppose there 

exists a S   such that 

(i)   is a lower bound of E. 

(ii) If   ,  then   is not a lower bound of E. 

Then   is called greatest lower bound of E or infimum of E and written as 

inf E  . 

In other words   is the greatest member of the set of lower bound of E. 

 Example 

Consider the sets 

 2: 2A p p p     and 

 2: 2B p p p    , 

where  is set of rational numbers. Then the set A is bounded above. The upper 

bound of A are the exactly the members of B. Since B contain no smallest member 

therefore A has no supremum in . Similarly B is bounded below. The set of all 
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lower bounds of B consists of A and  r  with 0r  . Since A has no largest 

member therefore B has no infimum in . 

 Example 

If   is supremum of E then   may or may not belong to E. 

Let  1 : 0E r r r     and  2 : 0E r r r    . 

        Then 
1 2sup inf 0E E    and 

10 E  and 
20 E . 

 Example 

Let E  be the set of all numbers of the form  1
n

, where n is the natural 

numbers, that is, 

1 1 1
1, , ,

2 3 4
,E

 
  
 

. 

Then sup 1E   which is in E, but inf 0E   which is not in E. 

 Least Upper Bound Property 

A set S is said to have the least upper bound property if the followings is true 

(i)  S is non-empty and ordered. 

(ii) If E S  and E is non-empty and bounded above then supE exists in S. 

  Greatest lower bound property can be defined in a similar manner. 

 Example 

Let S  be set of rational numbers and 

 2: 2E p p p     

then E  , E is non-empty and also bounded above but supremum of E is not in S, 

this implies that  the set of rational number does not posses the least upper bound 

property. 

 Theorem 

Suppose S is an ordered set with least upper bound property. B S , B is non-

empty and is bounded below. Let L be set of all lower bound of B then supL   

exists in S and also inf B  . 

In particular infimum of B exists in S. 

OR 

An ordered set which has the least upper bound property has also the greatest 

lower bound property. 

Proof 

Since B is bounded below therefore L is non-empty. 

   Since L consists of exactly those y S  which satisfy the inequality. 

 y x      x B   
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   We see that every x B  is an upper bound of L. 

    L is bounded above. 

  Since S is ordered and non-empty therefore L has a supremum in S. Let us call it  . 

  If    ,  then   is not upper bound of L. 

B  , 

x x B L       . 

   Now if     then L   because supL  . 

   We have shown that L  but  L   if   .  

   In other words, if   , then   is a lower bound of B, but   is not, this means 

that inf B  . 

 Field  

A set F with two operations called addition and multiplication satisfying the 

following axioms is known to be field. 

Axioms for Addition: 

(i)   If ,x y F   then  x y F  . Closure Law 

(ii)  , ,x y y x x y F     . Commutative Law 

(iii) ( ) ( ) , ,x y z x y z x y z F       .  Associative Law 

(iv)  For any x F , 0 F   such that 0 0x x x      Additive Identity 

(v)   For any x F , x F    such that ( ) ( ) 0x x x x            +tive Inverse 
 

Axioms for Multiplication: 

     (i)  If ,x y F   then  x y F .  Closure Law 

     (ii)  , ,x y y x x y F      Commutative Law 

     (iii)  ( ) ( ) , ,x y z x y z x y z F    

     (iv)  For any x F , 1 F   such that 1 1x x x      Multiplicative Identity 

     (v)  For any x F , 0x  ,  
1

F
x

  ,  such that 
1 1

1x x
x x

   
    

   
   tive Inverse. 

Distributive Law 

For any , ,x y z F ,  (i)  ( )x y z xy xz    

(ii)  ( )x y z xz yz    

 Ordered Field 

   An ordered field is a field F which is also an ordered set such that  

i)  x y x z     if  , ,x y z F   and  y z . 

ii)  0xy   if  ,x y F  ,  0x   and 0y  . 

   e.g  the set  of rational number is an ordered field. 
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 Existance of Real Field 

   There exists an ordered field  (set of real) which has the least upper bound 

property and it contain  (set of rationales) as a subfield. 
 

 
 

 Theorem 

Let , ,x y z . Then axioms for addition imply the following.  

(a)  If x y x z    then y z  

(b)  If x y x   then 0y   

(c)  If 0x y   then y x  . 

(d)  ( )x x    

Proof 

(a) Suppose  x y x z   . 

Since   0y y   

     ( )x x y       0x x    

     ( )x x y       by Associative law 

     ( )x x z       by supposition 

     ( )x x z       by Associative law 

     (0) z      0x x    

     z  

(b) Take 0z   in (a) 

0x y x    

0y   

(c) Take z x   in (a) 

( )x y x x     

y x   

(d) Since ( ) 0x x    

then (c) gives ( )x x    
 

 Theorem 

Let , ,x y z . Then axioms of multiplication imply the following. 

(a)  If 0x   and x y x z   then  y z . 

There are many other ways to construct a set of real numbers. We are not 

interested to do so therefore we leave it on the reader if they are interested then 

following page is useful: 

http://en.wikipedia.org/wiki/Construction_of_the_real_numbers 

 



 Chap 01 - 6 

(b)  If 0x   and x y x  then  1y  . 

(c)  If 0x   and 1x y   then  
1

y
x

 . 

(d)  If 0x  , then 
1

1
x

x

 . 

Proof 

(a) Suppose x y x z  

Since 1y y   

   
1

x y
x

 
  
 

   
1

1x
x
   

    
1

x y
x

     by associative law 

         
1

x z
x

     x y x z  

   
1

x z
x

 
  
 

   by associative law 

   1 z z    

(b) Take 1z   in (a) 

1x y x   1y   

(c) Take 
1

z
x

  in (a) 

1
x y x

x
      i.e. 1x y   

1
y

x
   

(d)  Since       
1

1x
x
   

then (c) give  

1

1
x

x

  

 

 Theorem 

Let , ,x y z . Then field axioms imply the following. 

(i)  0 x x   

(ii)  if 0x  , 0y   then 0xy  . 
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(iii) ( ) ( ) ( )x y xy x y      

(iv) ( )( )x y xy    

Proof 

(i)         Since  0 0 (0 0)x x x    

0 0 0x x x    

        0 0x     0x y x y     

(ii)  Suppose 0, 0x y   but 0x y   

Since 
1

1 x y
x y

   

    
1

1 (0)
x y

     0xy   

   1 0      from (i)     0 0x   

a contradiction, thus (ii) is true. 

(iii)     Since ( ) ( ) 0 0x y xy x x y y       …….. (1) 

   Also          ( ) ( ) 0 0x y xy x y y x        ……… (2) 

   Also          ( ) 0xy xy    …………. (3) 

   Combining (1) and (2) 

       ( ) ( )x y xy x y xy      

 ( ) ( )x y x y     ………… (4) 

   Combining (2) and (3) 

( ) ( )x y xy xy xy      

      ( )x y xy     …………. (5) 

   From (4) and (5)  

      ( ) ( )x y x y xy      

(iv)        ( )( ) ( )x y x y xy xy                    using (iii) 

 

 Theorem 

Let , ,x y z . Then the following statements are true in every ordered field. 

i) If 0x   then 0x   and vice versa. 

ii) If 0x   and y z  then  xy xz . 

iii) If 0x   and y z  then  xy xz . 

iv) If 0x   then 2 0x   in particular  1 0 . 

v) If 0 x y   then 
1 1

0
y x

  . 
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Proof 

 i)   If 0x    then  0 0x x x         so that   0x  . 

 If 0x    then  0 0x x x         so that  0x  . 

 ii) Since  z y  we have  0z y y y     

which means that  0z y     also  0x   

    ( ) 0x z y   

   0xz xy    

0xz xy xy xy      

0 0xz xy     

xz xy   

iii) Since y z        y y y z      

 0z y     

 Also  0x     0x    

 Therefore    ( ) 0x z y    

    0xz xy      0xz xy xz xz       

    xy xz   

 

iv)   If 0x   then  0x x     2 0x   

  If 0x    then   0x    ( )( ) 0x x      2( ) 0x      2 0x   

  i.e.   if 0x    then  2 0x  ,  since  21 1   then 1 0 . 

v)    If 0y   and 0v     then   0yv  , But 
1

1 0y
y

 
  

 
    

1
0

y
   

 Likewise    
1

0
x
    as   0x   

If we multiply both sides of the inequality x y  by the positive quantity 

1 1

x y

  
  
  

 we obtain  
1 1 1 1

x y
x y x y

      
      

      
 

i.e.      
1 1

y x
  

 finally  
1 1

0
y x

  . 
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 Theorem (Archimedean Property) 

If x , y  and 0x    then there exists a positive integer n such that 

    nx y .  

Proof 

Let  : 0,A nx n x x      

   Suppose the given statement is false i.e.  nx y . 

   y is an upper bound of A. 

   Since we are dealing with a set of real therefore it has the least upper bound 

property. 

   Let sup A   

  x   is not an upper bound of A. 

  x mx     where mx A  for some positive integer m. 

  ( 1)m x     where  m + 1 is integer, therefore ( 1)m x A   

   Which is impossible because   is least upper bound of A  i.e. sup A  . 

   Hence we conclude that the given statement is true i.e. nx y . 

 The Density Theorem 

If x , y  and x y  then there exists p  such that  x p y   . 

i.e. between any two real numbers there is a rational number or  is dense in . 

Proof 

Since x y ,  therefore 0y x   

      a +ive integer n such that  

( ) 1n y x    (by Archimedean Property) 

        1ny nx    …………… (i) 

   We apply (a) part of the theorem again to obtain two +ive integers 1m  and 2m   

 such that  1 1m nx    and  2 1m nx    

    2 1m nx m     

   then there exists and integers  2 1( )m m m m    such that  

1m nx m    
 

   nx m     and   1m nx   

   1nx m nx     

   nx m ny       from (i) 

   
m

x y
n
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  x p y       where   
m

p
n

   is a rational. 

 Theorem 

   Given two real numbers x and y, x y  there is an irrational number u such that 

   x u y  . 

Proof 

   Take 0, 0x y   

   Then  a rational number q such that  

0
x y

q
 

     where   is an irrational. 

     x q y    

     x u y   , 

   where u q  is an irrational as product of rational and irrational is irrational. 

 Theorem 

   For every real number x there is a set  E of rational number such that supx E . 

Proof 

   Take { : }E q q x    where x is a real. 

   Then E is bounded above. Since E   therefore supremum of E exists in . 

   Suppose supE  . 

   It is clear that  x  . 

   If x   then there is nothing to prove. 

   If x   then   q  such that  q x   , 

   which can not happened hence we conclude that real x is supE. 
 

 The Extended Real Numbers 

   The extended real number system consists of real field  and two symbols   

and  , We preserve the original order in  and define 

  x x      . 

   The extended real number system does not form a field. Mostly we write  .    

   We make following conventions: 

i) If x is real the , , 0
x x

x x 


      
 

.      

ii) If 0x   then ( ) , ( )x x       . 

iii) If 0x   then ( ) , ( )x x      . 
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 Euclidean Space 

   For each positive integer k, let k  be the set of all ordered k-tuples  

      
1 2( , ,..., )kx x x x    

   where 
1 2, ,..., kx x x  are real numbers, called the coordinates of x . The elements of 

k  are called points, or vectors, especially when 1k  . 

   If 
1 2( , ,..., )ny y y y  and   is a real number, put 

1 1 2 2( , ,..., )k kx y x y x y x y      

    and  
1 2( , ,..., )kx x x x     

   So that kx y    and  kx  . These operations make k  into a vector space 

over the real field. 

   The inner product or scalar product of x  and y  is defined as  

1 1 2 2

1

. ( ... )
k

i i k k

i

x y x y x y x y x y


      

   And the norm of x  is defined by 
1

2
1

2 2

1

( )
k

ix x x x
 

    
 
  

   The vector space k  with the above inner product and norm is called  

Euclidean k-space. 

 Theorem 

   Let , nx y  then 

i) 
2

x x x   

ii) x y x y    (Cauchy-Schwarz’s inequality) 

Proof 

i)  Since 
1

2( )x x x    therefore 
2

x x x   

ii)  If 0x   or 0y  , then Cauchy-Schwarz’s inequality holds with equality. 

If 0x   and 0y  , then for   we have 

2

0 x y       x y x y      

         x x y y x y          

    ( ) ( ) ( ) ( )x x x y y x y y                

    
22 22 ( )x x y y      



 Chap 01 - 12 

   Now put 
2

x y

y



   (certain real number) 

 
    

2

22

2 4
0 2

x y x y x y
x y

y y

  
        

 
2

2

2
0

x y
x

y


        

2 22
0 x y x y      2 2| |a a a   , 

  0 x y x y x y x y      . 

Which hold if and only if  

      0 x y x y    

i.e. x y x y  . 

 

 Question  

   Suppose , , nx y z  the prove that 

a) x y x y    

b) x z x y y z      

Proof 

 a)  Consider         
2

x y x y x y      

x x x y y x y y         

    
22

2x x y y     

22
2x x y y        | |a a a   . 

   
22

2x x y y     x y x y   

    
2

x y   

    x y x y      …………. (i) 

b) We have           x z x y y z      

x y y z      from (i)  
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 Relatively Prime 

Let ,a b . Then a  and b  are said to be relatively prime or co-prime if a  and b  

don’t have common factor other than 1. If a  and b  are relatively prime then we 

write ( , ) 1a b  .  
 

 Question  

   If r is non-zero rational and x is irrational then prove that r x  and r x  are 

irrational. 

Proof 

   Let r x  be rational. 

a
r x

b
      where ,a b  , 0b   such that  , 1a b   

a
x r

b
    

   Since r is rational therefore 
c

r
d

   where ,c d , 0d   such that  , 1c d   

a c
x

b d
      

ad bc
x

bd


   

   Which is rational, which can not happened because x is given to be irrational. 

   Similarly let us suppose that r x  is rational then  

       
a

r x
b

         for some ,a b , 0b   such that  , 1a b   

1a
x

b r
    

   Since r is rational therefore 
c

r
d

   where ,c d , 0d   such that  , 1c d   

1a a d ad
x

cb b c bc
d

       

   Which shows that x is rational, which is again contradiction; hence we conclude 

that r x  and r x  are irrational.     
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 Question  

   If n is a positive integer which is not perfect square then prove that n  is irrational 

number. 

Solution 

   There will be two cases 

Case I. When n contain no square factor greater then 1. 

   Let us suppose that n  is a rational number. 

p
n

q
     where ,p q , 0q   and  , 1p q   

2

2

p
n

q
      2 2 ...............( )p nq i   

2
2 p

q
n

   

2n p          ( n p  means “ n divides p” ) 

Since n  has no square factor greater than 1, therefore 

         ................( )n p ii  

So there exists c , such that 

     p nc  2 2 2p n c   

   Putting this value of 2p  in equation (i) 

       2 2 2n c nq  

2 2nc q     
2

2 q
c

n
   

2 ................( )n q iii     

   From (ii) and (iii) we get p and q both have common factor n i.e. ( , )p q n  

   Which is a contradiction. 

   Hence our supposition is wrong. 

Case II  When n contain a square factor greater then 1. 

Let us suppose 2 1n k m   

n k m    

Where k is rational and m   is irrational because m has no square factor greater than 

one, this implies n , the product of rational and irrational, is irrational. 
 

 

 



 Chap 01 - 15 

 

 Question  

   Prove that 12  is irrational. 

Proof 

   Since 12 2 3  and 3  is an irrational number, therefore 2 3  is irrational.  

 

 Question  

   Let E be a non-empty subset of an ordered set, suppose   is a lower bound of E 

and   is an upper bound then prove that   . 

Proof 

   Since E is a subset of an ordered set S i.e. E S . 

   Also   is a lower bound of E therefore by definition of lower bound  

x    x E   …………… (i) 

   Since   is an upper bound of E therefore by the definition of upper bound 

x    x E   …………… (ii) 

   Combining (i) and (ii) 

x    

         as required. 
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