

DEPARTMENT OF MATHEMATICS COMSATS University Islamabad, Attock Campus

Exponential and Logarithmic Functions Sample Questions: Set 01

1. Consider a sequence of functions $E_n : \mathbb{R} \to \mathbb{R}$ defined as follows:

$$E_1(x) = 1 + x$$
 and $E_{n+1}(x) = 1 + \int_0^x E_n(t) dt$

for all $n \in \mathbb{N}$, $x \in \mathbb{R}$. Prove that E_n is well-defined.

2. Consider a sequence of functions $E_n : \mathbb{R} \to \mathbb{R}$ defined by $E_1(x) = 1 + x$ and $E_{n+1}(x) = 1 + \int_0^x E_n(t) dt$, for all $n \in \mathbb{N}$, $x \in \mathbb{R}$. Prove that for all $n \in \mathbb{N}$, we have

$$E_n(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$
 for all $x \in \mathbb{R}$.

- 3. Prove that $\lim_{n \to \infty} \frac{A^n}{n!} = 0$ for A > 0.
- 4. Prove that if $\{s_n\}$ is convergent then $\lim_{n \to \infty} s_{n+1} = \lim_{n \to \infty} s_n$.
- 5. Consider a sequence of function $\{E_n(x)\}$ define by

$$E_n(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$
 for all $x \in \mathbb{R}$.

Prove that $\{E_n\}$ converges uniformly on the interval [-A, A], where A > 0.

6. Only sketch the proof that there exists a function $E : \mathbb{R} \to \mathbb{R}$ such that

E'(x) = E(x) for all $x \in \mathbb{R}$ and E(0) = 1.

- 7. State Taylor's and Maclaurin's theorem with remainder after *n* terms.
- 8. Consider a function $E : \mathbb{R} \to \mathbb{R}$ defined by E'(x) = E(x) for all $x \in \mathbb{R}$ and E(0) = 1. Prove that such a function E is unique.
- 9. Define an exponential function.
- 10. Define the Euler's number *e*.
- 11. Prove that the exponential function *E* is non-zero for all real, that is, $E(x) \neq 0$ for all $x \in \mathbb{R}$.
- 12. Prove that exponential function *E* is strictly increasing on \mathbb{R} .
- 13. Prove that the exponential function satisfies that

$$E(x + y) = E(x)E(y)$$
 for all $x, y \in \mathbb{R}$.

- 14. Prove that $E(r) = e^r$, where E(1) = e and $r \in \mathbb{Q}$.
- 15. Define logarithm function.

.....