DEPARTMENT OF MATHEMATICS

COMSATS Institute of Information Technology, Attock

Exponential, Logarithmic and Trigonometric Functions
 Sample Questions

1. Only sketch the proof that there exists a function $E: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
E^{\prime}(x)=E(x) \text { for all } x \in \mathbb{R} \text { and } E(0)=1
$$

2. Consider a sequence of functions $E_{n}: \mathbb{R} \rightarrow \mathbb{R}$ defined as follows:

$$
E_{1}(x):=1+x \text { and } E_{n}(x)=1+\int_{0}^{x} E_{n}(t) d t
$$

for all $n \in \mathbb{N}, x \in \mathbb{R}$. Prove that E_{n} is well-defined.
3. Consider a sequence of function $\left\{E_{n}(x)\right\}$ define by

$$
E_{n}(x)=1+\frac{x}{1}+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!} \quad \text { for all } x \in \mathbb{R} .
$$

Prove that $\left\{E_{n}\right\}$ converges uniformly on the interval $[-A, A]$, where $A>0$.
4. Prove that $\lim _{n \rightarrow \infty} \frac{A^{n}}{n!}=0$ for $A>0$.
5. Consider a function $E: \mathbb{R} \rightarrow \mathbb{R}$ define as follows:

$$
E^{\prime}(x)=E(x) \text { for all } x \in \mathbb{R} \text { and } E(0)=1
$$

Prove that $1+x<E(x)$ for all $x>0$.
6. Prove that there exist unique function $E: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
E^{\prime}(x)=E(x) \text { for all } x \in \mathbb{R} \text { and } E(0)=1
$$

7. Define exponential function.
8. Prove that exponential function satisfies the following properties
a. $E(x) \neq 0$
b. $E(x+y)=E(x) E(y)$ for all $x, y \in \mathbb{R}$.
9. Define logarithm function.
10. Prove that the exponential function E is strictly increasing on \mathbb{R}. Also $\lim _{x \rightarrow-\infty} E(x)=0$ and $\lim _{x \rightarrow \infty} E(x)=\infty$.
11. Prove that there exist functions $C: \mathbb{R} \rightarrow \mathbb{R}$ and $S: \mathbb{R} \rightarrow \mathbb{R}$ such that
(i) $C^{\prime \prime}(x)=-C(x)$ and $S^{\prime \prime}(x)=-S(x)$ for all $x \in \mathbb{R}$
(ii) $C(0)=1, C^{\prime}(0)=0$ and $S(0)=0, S^{\prime}(0)=1$.
12. Consider a sequence of functions $\left\{C_{n}(x)\right\}$ define by

$$
C_{n+1}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots+(-1)^{n} \frac{x^{2 n}}{(2 n)!} \quad \text { for all } x \in \mathbb{R} .
$$

Prove that $\left\{C_{n}\right\}$ converges uniformly on the interval $[-A, A]$, where $A>0$.
13. Consider a sequence of functions $\left\{S_{n}(x)\right\}$ define by

$$
S_{n+1}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad \text { for all } x \in \mathbb{R} .
$$

Prove that $\left\{S_{n}\right\}$ converges uniformly on the interval $[-A, A]$, where $A>0$.
14. Consider the functions $C: \mathbb{R} \rightarrow \mathbb{R}$ and $S: \mathbb{R} \rightarrow \mathbb{R}$ such that
(i) $C^{\prime \prime}(x)=-C(x)$ and $S^{\prime \prime}(x)=-S(x)$ for all $x \in \mathbb{R}$
(ii) $C(0)=1, C^{\prime}(0)=0$ and $S(0)=0, S^{\prime}(0)=1$.

Prove that $C^{2}(x)+S^{2}(x)=1$ for $x \in \mathbb{R}$.
15. Consider the functions $C: \mathbb{R} \rightarrow \mathbb{R}$ and $S: \mathbb{R} \rightarrow \mathbb{R}$ such that
(i) $C^{\prime \prime}(x)=-C(x)$ and $S^{\prime \prime}(x)=-S(x)$ for all $x \in \mathbb{R}$
(ii) $C(0)=1, C^{\prime}(0)=0$ and $S(0)=0, S^{\prime}(0)=1$.

Prove that the functions C and S defined in this way are unique.
16. Define cosine and sine functions.
17. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that

$$
f^{\prime \prime}(x)=-f(x) \quad \text { for } \quad x \in \mathbb{R},
$$

then there exist real numbers α and β such that

$$
f(x)=\alpha C(x)+\beta S(x) \quad \text { for } \quad x \in \mathbb{R},
$$

where C and S represents cosine and sine function.
Above question can be rephrases as follows:
18. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that

$$
f^{\prime \prime}(x)=-f(x) \quad \text { for } \quad x \in \mathbb{R}
$$

then there exist real numbers α and β such that

$$
f(x)=\alpha \cos x+\beta \sin x \quad \text { for } \quad x \in \mathbb{R}
$$

