Improper Integrals

Course Title: Real Analysis II Course instructor: Dr. Atiq ur Rehman Course URL: *www.mathcity.org/atiq/fa15-mth322*

Course Code: MTH322 Class: MSc-IV

We discussed (in MTH321: Real Analysis I) Riemann-Stieltjes's integrals of the form $\int_{a}^{b} f \, d\alpha$ under the restrictions that both f and α are defined and bounded on a finite interval [a,b]. To extend the concept, we shall relax these restrictions on f and α .

> Definition

The integral $\int_{a}^{b} f d\alpha$ is called an improper integral of first kind if $a = -\infty$ or $b = +\infty$ or *both* i.e. one or both integration limits is infinite.

> Definition

The integral $\int_{a}^{b} f d\alpha$ is called an improper integral of second kind if f(x) is unbounded at one or more points of $a \le x \le b$. Such points are called singularities of f(x).

> Examples

•
$$\int_{0}^{\infty} \frac{1}{1+x^2} dx$$
, $\int_{-\infty}^{1} \frac{1}{x-2} dx$ and $\int_{-\infty}^{\infty} (x^2+1) dx$ are

examples of improper integrals of first kind.

• $\int_{-1}^{1} \frac{1}{x} dx$ and $\int_{0}^{1} \frac{1}{2x-1} dx$ are examples of improper integrals of second kind.

> Notations

We shall denote the set of all functions f such that $f \in R(\alpha)$ on [a,b] by $R(\alpha;a,b)$. When $\alpha(x) = x$, we shall simply write R(a,b) for this set. The notation $\alpha \uparrow$ on $[a,\infty)$ will mean that α is monotonically increasing on $[a,\infty)$.

IMPROPER INTEGRAL OF THE FIRST KIND

> Definition

Assume that $f \in R(\alpha; a, b)$ for every $b \ge a$. Keep a, α and f fixed and define a function I on $[a, \infty)$ as follows:

$$I(b) = \int_{a}^{b} f(x) d\alpha(x) \quad \text{if} \quad b \ge a \quad \dots \quad (i)$$

The function *I* so defined is called an infinite (or an improper) integral of first kind and is denoted by the symbol $\int_{a}^{\infty} f(x) d\alpha(x)$ or by $\int_{a}^{\infty} f d\alpha$.

The integral $\int_{a}^{\infty} f d\alpha$ is said to converge if the limit

$$\lim_{b\to\infty} I(b) \quad \dots \quad (ii)$$

exists (finite). Otherwise, $\int_{a}^{\infty} f d\alpha$ is said to diverge.

If the limit in (*ii*) exists and equals A, the number A is called the value of the integral and we write $\int_{a}^{\infty} f d\alpha = A$

> Example

Consider and integral $\int_{1}^{\infty} x^{-p} dx$, where p is any real number.

Now
$$I(b) = \int_{1}^{b} x^{-p} dx = \frac{x^{1-p}}{1-p} \Big|_{1}^{b} = \frac{1-b^{1-p}}{p-1}$$
 if $p \neq 1$.

As we know

$$\lim_{b \to \infty} I(b) = \lim_{b \to \infty} \frac{1 - b^{1 - p}}{p - 1} = \begin{cases} \infty & \text{if } p < 1, \\ \frac{1}{p - 1} & \text{if } p > 1. \end{cases}$$

Thus integral $\int_{1}^{\infty} x^{-p} dx$ diverges if p < 1 and converges if p > 1 and has the value $\frac{1}{p-1}$.

If p=1, we get $\int_{1}^{b} x^{-1} dx = \log b \to \infty$ as $b \to \infty$. $\Rightarrow \int_{1}^{\infty} x^{-1} dx$ diverges. Hence we concluded: $\int_{1}^{\infty} x^{-p} dx = \begin{cases} diverges & if p \le 1, \\ \frac{1}{p-1} & if p > 1. \end{cases}$

> Example

Consider
$$\int_{0}^{\infty} \sin 2\pi x \, dx$$

Since $\int_{0}^{b} \sin 2\pi x \, dx = \frac{1 - \cos 2\pi b}{2\pi} \to l$ as $b \to \infty$, where *l* has values between 0 and $\frac{1}{\pi}$, that is, limit is not unique.

Therefore the integral $\int_{0}^{0} \sin 2\pi x \, dx$ diverges.

> Note

If $\int_{-\infty}^{a} f d\alpha$ and $\int_{a}^{\infty} f d\alpha$ are both convergent for some value of *a*, we say that the

integral $\int_{-\infty}^{\infty} f d\alpha$ is convergent and its value is defined to be the sum

$$\int_{-\infty}^{\infty} f \, d\alpha = \int_{-\infty}^{a} f \, d\alpha + \int_{a}^{\infty} f \, d\alpha$$

The choice of the point a is clearly immaterial.

If the integral $\int_{-\infty}^{\infty} f \, d\alpha$ converges, its value is equal to the limit: $\lim_{b \to +\infty} \int_{-b}^{b} f \, d\alpha$.

> Theorem

Assume that α is monotonically increasing on $[a, +\infty)$ and suppose that $f \in R(\alpha; a, b)$ for every $b \ge a$. Assume that $f(x) \ge 0$ for each $x \ge a$. Then $\int_a^{\infty} f d\alpha$ converges if, and only if, there exists a constant M > 0 such that

$$\int_{a}^{b} f \, d\alpha \leq M \quad \text{for every} \quad b \geq a \, .$$

Proof

Let $I(b) = \int_{a}^{b} f \, d\alpha$ and suppose that $\int_{a}^{\infty} f \, d\alpha$ is convergent, then $\lim_{b \to +\infty} I(b)$ exists, that is, I(b) is bounded. So there exists a constant M > 0 such that |I(b)| < M for every $b \ge a$.

As $f(x) \ge 0$ for each $x \ge a$, therefore $\int_{a}^{b} f d\alpha \ge 0$.

This gives
$$I(b) = \int_{a}^{b} f d\alpha \leq M$$
 for every $b \geq a$.

Conversely, suppose that there exists a constant M > 0 such that $\int_{a}^{b} f d\alpha \leq M$ for

every $b \ge a$. This give $|I(b)| \le M$ for every $b \ge a$. That is, *I* is bounded on $[a, +\infty)$.

Now for $b_2 \ge b_1 > a$, we have

$$I(b_{2}) = \int_{a}^{b_{2}} f(x) d\alpha(x) = \int_{a}^{b_{1}} f(x) d\alpha(x) + \int_{b_{1}}^{b_{2}} f(x) d\alpha(x)$$

$$\geq \int_{a}^{b_{1}} f(x) d\alpha(x) = I(b_{1}) \qquad \because \int_{b_{1}}^{b_{2}} f(x) d\alpha(x) \ge 0 \text{ as } f(x) \ge 0.$$

This gives *I* is monotonically increasing on $[a, +\infty)$. As *I* is monotonically increasing and bounded on $[a, +\infty)$, therefore it is convergent, that is $\int_{a}^{\infty} f d\alpha$ converges.

> Theorem: (Comparison Test)

Assume that α is monotonically increasing on $[a, +\infty)$. If $f \in R(\alpha; a, b)$ for every

 $b \ge a$, if $0 \le f(x) \le g(x)$ for every $x \ge a$, and if $\int_{a}^{\infty} g \, d\alpha$ converges, then $\int_{a}^{\infty} f \, d\alpha$

converges and we have

$$\int_{a}^{\infty} f \, d\alpha \leq \int_{a}^{\infty} g \, d\alpha$$

Proof

Let
$$I_1(b) = \int_a^b f \, d\alpha$$
 and $I_2(b) = \int_a^b g \, d\alpha$, $b \ge a$
 $\therefore \quad 0 \le f(x) \le g(x)$ for every $x \ge a$
 $\therefore \quad I_1(b) \le I_2(b)$ (i)
 $\therefore \quad \int_a^\infty g \, d\alpha$ converges $\therefore \exists$ a constant $M > 0$ such that
 $\int_a^b g \, d\alpha \le M$, $b \ge a$ (ii)

From (i) and (ii) we have $I_1(b) \le M$ for every $b \ge a$. $\Rightarrow \lim_{b\to\infty} I_1(b)$ exists and is finite.

$$\Rightarrow \int_{a}^{\infty} f \, d\alpha \quad \text{converges.}$$

Also
$$\lim_{b \to \infty} I_1(b) \le \lim_{b \to \infty} I_2(b) \le M$$
$$\Rightarrow \int_{a}^{\infty} f \, d\alpha \le \int_{a}^{\infty} g \, d\alpha \, .$$

> Theorem (Limit Comparison Test)

Assume that α is monotonically increasing on $[a, +\infty)$. Suppose that $f \in R(\alpha; a, b)$ and that $g \in R(\alpha; a, b)$ for every $b \ge a$, where $f(x) \ge 0$ and $g(x) \ge 0$ if $x \ge a$. If

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$$

then $\int_{a}^{\infty} f d\alpha$ and $\int_{a}^{\infty} g d\alpha$ both converge or both diverge.

Proof

For all $b \ge a$, we can find some N > 0 such that

$$\left| \frac{f(x)}{g(x)} - 1 \right| < \varepsilon \qquad \forall x \ge N \quad \text{for every} \quad \varepsilon > 0.$$

$$\Rightarrow 1 - \varepsilon < \frac{f(x)}{g(x)} < 1 + \varepsilon$$

Let $\varepsilon = \frac{1}{2}$. Then we have
 $\frac{1}{2} < \frac{f(x)}{g(x)} < \frac{3}{2}$.

$$\Rightarrow g(x) < 2f(x) \dots \dots \dots (i) \quad \text{and} \quad 2f(x) < 3g(x) \dots \dots \dots (ii)$$

From (i) $\int_{a}^{\infty} g \, d\alpha < 2 \int_{a}^{\infty} f \, d\alpha$,

$$\Rightarrow \int_{a}^{\infty} g \, d\alpha \quad \text{converges if} \quad \int_{a}^{\infty} f \, d\alpha \quad \text{converges and} \quad \int_{a}^{\infty} g \, d\alpha \quad \text{diverges if} \quad \int_{a}^{\infty} f \, d\alpha$$

diverges.

From (ii)
$$2\int_{a}^{\infty} f \, d\alpha < 3\int_{a}^{\infty} g \, d\alpha$$
,
 $\Rightarrow \int_{a}^{\infty} f \, d\alpha$ converges if $\int_{a}^{\infty} g \, d\alpha$ converges and $\int_{a}^{\infty} g \, d\alpha$ diverges if $\int_{a}^{\infty} f \, d\alpha$
diverges.

$$\Rightarrow$$
 The integrals $\int_{a}^{\infty} f d\alpha$ and $\int_{a}^{\infty} g d\alpha$ converge or diverge together.

> Note

The above theorem also holds if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = c$, provided that $c \neq 0$. If c = 0, we can only conclude that convergence of $\int_{a}^{\infty} g \, d\alpha$ implies convergence of $\int_{a}^{\infty} f \, d\alpha$.

> Example

For every real p, the integral $\int_{1}^{\infty} e^{-x} x^{p} dx$ converges.

This can be seen by comparison of this integral with $\int_{1}^{\infty} \frac{1}{x^2} dx$.

Let
$$f(x) = e^{-x}x^p$$
 and $g(x) = \frac{1}{x^2}$.
Now $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{e^{-x}x^p}{\frac{1}{x^2}}$
 $\Rightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} e^{-x}x^{p+2} = \lim_{x \to \infty} \frac{x^{p+2}}{e^x} = 0.$
Since $\int_{1}^{\infty} \frac{1}{x^2} dx$ is convergent, therefore the given integral $\int_{1}^{\infty} e^{-x}x^p dx$ is also convergent.

> Remark

It is easy to show that if $\int_{a}^{\infty} f d\alpha$ and $\int_{a}^{\infty} g d\alpha$ are convergent, then

∫_a[∞] (f ± g)dα is convergent.
 ∫_a[∞] cf dα, where c is some constant, is convergent.

> Theorem

Assume
$$\alpha \uparrow$$
 on $[a, +\infty)$. If $f \in R(\alpha; a, b)$ for every $b \ge a$ and if $\int_{a}^{\infty} |f| d\alpha$
converges, then $\int_{a}^{\infty} f d\alpha$ also converges.

Or: An absolutely convergent integral is convergent.

Proof

If
$$x \ge a$$
, $\pm f(x) \le |f(x)|$
 $\Rightarrow |f(x)| - f(x) \ge 0$
 $\Rightarrow 0 \le |f(x)| - f(x) \le 2|f(x)|$
 $\Rightarrow \int_{a}^{\infty} (|f| - f) d\alpha$ converges.
Now difference of $\int_{a}^{\infty} |f| d\alpha$ and $\int_{a}^{\infty} (|f| - f) d\alpha$ is convergent,
that is, $\int_{a}^{\infty} f d\alpha$ is convergent.

> Note

 $\int_{a}^{\infty} f \, d\alpha \text{ is said to converge absolutely if } \int_{a}^{\infty} |f| \, d\alpha \text{ converges. It is said to be}$ convergent conditionally if $\int_{a}^{\infty} f \, d\alpha$ converges but $\int_{a}^{\infty} |f| \, d\alpha$ diverges.

> Remark

Every absolutely convergent integral is convergent.

> Theorem (Cauchy condition for infinite integrals)

Assume that $f \in R(\alpha; a, b)$ for every $b \ge a$. Then the integral $\int_{a}^{a} f d\alpha$ converges if, and only if, for every $\varepsilon > 0$ there exists a B > 0 such that c > b > B implies

$$\left|\int_{b}^{c} f(x) d\alpha(x)\right| < \varepsilon$$

Proof

Let
$$\int_{a}^{\infty} f \, d\alpha$$
 be convergent. Then $\exists B > 0$ such that $\frac{x + x + x}{B + b + c}$
 $\left| \int_{a}^{b} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| < \frac{\varepsilon}{2}$ for every $b \ge B$ (*i*)
Also for $c > b > B$,
 $\left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| < \frac{\varepsilon}{2}$ (*ii*)

Consider

$$\left|\int_{b}^{c} f \, d\alpha\right| = \left|\int_{a}^{c} f \, d\alpha - \int_{a}^{b} f \, d\alpha\right|$$

$$= \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha + \int_{a}^{\infty} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right|$$
$$\leq \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| + \left| \int_{a}^{\infty} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
$$\Rightarrow \left| \int_{b}^{c} f \, d\alpha \right| < \varepsilon \quad \text{when } c > b > B.$$

Conversely, assume that the Cauchy condition holds.

Define
$$a_n = \int_a^{a+n} f \, d\alpha$$
 if $n = 1, 2, \dots$

Consider n,m such that a+n,a+m>b>B, then

$$|a_{n} - a_{m}| = \left| \int_{a}^{a+n} f \, d\alpha - \int_{a}^{a+m} f \, d\alpha \right| = \left| \int_{a}^{b} f \, d\alpha + \int_{b}^{a+n} f \, d\alpha - \int_{a}^{b} f \, d\alpha - \int_{b}^{a+m} f \, d\alpha \right|$$
$$= \left| \int_{b}^{a+n} f \, d\alpha - \int_{b}^{a+m} f \, d\alpha \right| \le \left| \int_{b}^{a+n} f \, d\alpha \right| + \left| \int_{b}^{a+m} f \, d\alpha \right| < \varepsilon + \varepsilon = 2\varepsilon$$

This gives, the sequence $\{a_n\}$ is a Cauchy sequence \Rightarrow it converges. Let $\lim_{n\to\infty} a_n = A$

Given
$$\varepsilon > 0$$
, choose *B* so that $\left| \int_{b}^{c} f \, d\alpha \right| < \frac{\varepsilon}{2}$ if $c > b > B$.

and also that $|a_n - A| < \frac{\varepsilon}{2}$ whenever $a + n \ge B$. Choose an integer N such that a + N > B i.e. N > B - a. Then, if b > a + N, we have

$$\left| \int_{a}^{b} f \, d\alpha - A \right| = \left| \int_{a}^{a+N} f \, d\alpha - A + \int_{a+N}^{b} f \, d\alpha \right|$$
$$\leq \left| a_{N} - A \right| + \left| \int_{a+N}^{b} f \, d\alpha \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
$$\Rightarrow \int_{a}^{\infty} f \, d\alpha = A$$

This completes the proof.

> Remarks

It follows from the above theorem that convergence of $\int_{a}^{\infty} f \, d\alpha$ implies $\lim_{b \to \infty} \int_{b}^{b+\varepsilon} f \, d\alpha = 0$ for every fixed $\varepsilon > 0$.

However, this does not imply that $f(x) \rightarrow 0$ as $x \rightarrow \infty$.

IMPROPER INTEGRAL OF THE SECOND KIND

> Definition

Let *f* be defined on the half open interval (a,b] and assume that $f \in R(\alpha;x,b)$ for every $x \in (a,b]$. Define a function I on (a,b] as follows:

$$I(x) = \int_{x}^{b} f \, d\alpha \quad \text{if} \quad x \in (a, b] \dots \dots \dots (i)$$

The function I so defined is called an improper integral of the second kind and is denoted by the symbol $\int_{a+}^{b} f(t) d\alpha(t)$ or $\int_{a+}^{b} f d\alpha$.

The integral $\int_{a+}^{b} f \, d\alpha$ is said to converge if the limit $\lim_{x \to a+} I(x) \dots \dots (ii) \text{ exists (finite)}.$ Otherwise, $\int_{a+}^{b} f \, d\alpha$ is said to diverge. If the limit in (*ii*) exists and equals *A*, the

number A is called the value of the integral and we write $\int_{-\infty}^{\infty} f d\alpha = A$.

Similarly, if f is defined on [a,b) and $f \in R(\alpha;a,x) \quad \forall x \in [a,b)$ then

 $I(x) = \int_{a}^{x} f \, d\alpha$ if $x \in [a,b)$ is also an improper integral of the second kind and is denoted as $\int_{a}^{b^{-}} f d\alpha$ and is convergent if $\lim_{x \to b^{-}} I(x)$ exists (finite).

> Example

 $f(x) = x^{-p}$ is defined on (0,b] and $f \in R(x,b)$ for every $x \in (0,b]$.

$$I(x) = \int_{x}^{b} x^{-p} dx \quad \text{if} \quad x \in (0,b]$$

$$= \int_{0+}^{b} x^{-p} dx = \lim_{\varepsilon \to 0} \int_{0+\varepsilon}^{b} x^{-p} dx$$

$$= \lim_{\varepsilon \to 0} \left| \frac{x^{1-p}}{1-p} \right|_{\varepsilon}^{b} = \lim_{\varepsilon \to 0} \frac{b^{1-p} - \varepsilon^{1-p}}{1-p} , \quad (p \neq 1)$$

$$= \begin{bmatrix} \text{finite} , p < 1 \\ \text{infinite} , p > 1 \end{bmatrix}$$

When $p = 1$, we get $\int_{\varepsilon}^{b} \frac{1}{x} dx = \log b - \log \varepsilon \to \infty$ as $\varepsilon \to 0$.

 $\Rightarrow \int_{0+}^{b} x^{-1} dx \text{ also diverges.}$

Hence the integral converges when p < 1 and diverges when $p \ge 1$.

> Note

If the two integrals $\int_{a+}^{c} f \, d\alpha$ and $\int_{c}^{b-} f \, d\alpha$ both converge, we write $\int_{a+}^{b-} f \, d\alpha = \int_{a+}^{c} f \, d\alpha + \int_{c}^{b-} f \, d\alpha$

The definition can be extended to cover the case of any finite number of sums. We can also consider mixed combinations such as

$$\int_{a+}^{b} f \, d\alpha + \int_{b}^{\infty} f \, d\alpha \quad \text{which can be written as} \quad \int_{a+}^{\infty} f \, d\alpha$$

> Example

Consider $\int_{0+}^{\infty} e^{-x} x^{p-1} dx$, (p > 0)

This integral must be interpreted as a sum as

 $I_{2}, \text{ the second integral, converges for every real } p \text{ as proved earlier.}$ To test $I_{1}, \text{ put } t = \frac{1}{x} \implies dx = -\frac{1}{t^{2}} dt$ $\Rightarrow I_{1} = \lim_{\epsilon \to 0} \int_{\epsilon}^{1} e^{-x} x^{p-1} dx = \lim_{\epsilon \to 0} \int_{\frac{1}{2}}^{1} e^{-\frac{1}{t}} t^{1-p} \left(-\frac{1}{t^{2}} dt \right) = \lim_{\epsilon \to 0} \int_{1}^{\frac{1}{2}} e^{-\frac{1}{t}} t^{-p-1} dt$ Take $f(t) = e^{-\frac{1}{t}} t^{-p-1}$ and $g(t) = t^{-p-1}$ Then $\lim_{t \to \infty} \frac{f(t)}{g(t)} = \lim_{t \to \infty} \frac{e^{-\frac{1}{t}} \cdot t^{-p-1}}{t^{-p-1}} = 1$ and since $\int_{1}^{\infty} t^{-p-1} dt$ converges when p > 0 $\therefore \int_{1}^{\infty} e^{-x} x^{p-1} dt$ converges when p > 0.

When p > 0, the value of the sum in (*i*) is denoted by $\Gamma(p)$. The function so defined is called the Gamma function.

> Note

The tests developed to check the behaviour of the improper integrals of Ist kind are applicable to improper integrals of IInd kind after making necessary modifications.

> A Useful Comparison Integral

$$\int_{a}^{b} \frac{dx}{\left(x-a\right)^{n}}$$

We have, if $n \neq 1$,

$$\int_{a+\varepsilon}^{b} \frac{dx}{(x-a)^{n}} = \left| \frac{1}{(1-n)(x-a)^{n-1}} \right|_{a+\varepsilon}^{b}$$
$$= \frac{1}{(1-n)} \left(\frac{1}{(b-a)^{n-1}} - \frac{1}{\varepsilon^{n-1}} \right)$$

Which tends to $\frac{1}{(1-n)(b-a)^{n-1}}$ or $+\infty$ according as n < 1 or n > 1, as $\varepsilon \to 0$.

Again, if n=1,

$$\int_{a+\varepsilon}^{b} \frac{dx}{x-a} = \log(b-a) - \log \varepsilon \to +\infty \quad \text{as} \quad \varepsilon \to 0.$$

Hence the improper integral $\int_{a}^{b} \frac{dx}{(x-a)^{n}}$ converges iff n < 1.

> Question

Examine the convergence of

(i)
$$\int_{0}^{1} \frac{dx}{x^{1/3}(1+x^2)}$$
 (ii) $\int_{0}^{1} \frac{dx}{x^2(1+x)^2}$ (iii) $\int_{0}^{1} \frac{dx}{x^{1/2}(1-x)^{1/3}}$

Solution

Take

(i)
$$\int_{0}^{1} \frac{dx}{x^{\frac{1}{3}}(1+x^2)}$$

Here '0' is the only point of infinite discontinuity of the integrand. We have

$$f(x) = \frac{1}{x^{\frac{1}{3}} (1 + x^2)}$$
$$g(x) = \frac{1}{x^{\frac{1}{3}}}$$

Then
$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{1+x^2} = 1$$

 $\Rightarrow \int_0^1 f(x) dx$ and $\int_0^1 g(x) dx$ have identical behaviours.
 $\therefore \int_0^1 \frac{dx}{x^{\frac{1}{3}}}$ converges $\therefore \int_0^1 \frac{dx}{x^{\frac{1}{3}}(1+x^2)}$ also converges.

(*ii*) $\int_{0}^{1} \frac{dx}{x^{2}(1+x)^{2}}$

Here '0' is the only point of infinite discontinuity of the given integrand. We have

$$f(x) = \frac{1}{x^2 (1+x)^2}$$

Take $g(x) = \frac{1}{x^2}$

Then $\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{(1+x)^2} = 1$

$$\Rightarrow \int_0^1 f(x) dx$$
 and $\int_0^1 g(x) dx$ behave alike.

But n = 2 being greater than 1, the integral $\int_0^1 g(x) dx$ does not converge. Hence the given integral also does not converge.

(iii)
$$\int_{0}^{1} \frac{dx}{x^{1/2} (1-x)^{1/3}}$$

Here '0' and '1' are the two points of infinite discontinuity of the integrand. We have

$$f(x) = \frac{1}{x^{\frac{1}{2}} (1-x)^{\frac{1}{3}}}$$

We take any number between 0 and 1, say $\frac{1}{2}$, and examine the convergence of

the improper integrals
$$\int_{0}^{\frac{1}{2}} f(x) dx$$
 and $\int_{\frac{1}{2}}^{1} f(x) dx$.

To examine the convergence of
$$\int_{0}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx$$
, we take $g(x) = \frac{1}{x^{\frac{1}{2}}}$

Then

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{(1-x)^{\frac{1}{3}}} = 1$$

$$\therefore \int_{0}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}} dx \text{ converges} \quad \therefore \int_{0}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx \text{ is convergent.}$$

To examine the convergence of $\int_{\frac{1}{2}}^{1} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx$, we take $g(x) = \frac{1}{(1-x)^{\frac{1}{3}}}$
Then

Then

$$\lim_{x \to 1} \frac{f(x)}{g(x)} = \lim_{x \to 1} \frac{1}{x^{\frac{1}{2}}} = 1$$

$$\therefore \int_{\frac{1}{2}}^{1} \frac{1}{(1-x)^{\frac{1}{3}}} dx \text{ converges} \quad \because \int_{\frac{1}{2}}^{1} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx \text{ is convergent.}$$

Hence $\int_{1}^{1} f(x) dx$ converges.

Hence $\int_0^{\infty} f(x) dx$ converges.

> Question

Show that
$$\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$$
 exists iff *m*, *n* are both positive.

Solution

The integral is proper if $m \ge 1$ and $n \ge 1$.

The number '0' is a point of infinite discontinuity if m < 1 and the number '1' is a point of infinite discontinuity if n < 1.

Let m < 1 and n < 1.

We take any number, say $\frac{1}{2}$, between 0 & 1 and examine the convergence of the

improper integrals
$$\int_{0}^{\frac{1}{2}} x^{m-1} (1-x)^{n-1} dx$$
 and $\int_{\frac{1}{2}}^{1} x^{m-1} (1-x)^{n-1} dx$ at '0' and '1'

respectively.

Convergence at 0:

We write

$$f(x) = x^{m-1}(1-x)^{n-1} = \frac{(1-x)^{n-1}}{x^{1-m}} \text{ and take } g(x) = \frac{1}{x^{1-m}}$$

Then $\frac{f(x)}{g(x)} \to 1$ as $x \to 0$
As $\int_{0}^{\frac{1}{2}} \frac{1}{x^{1-m}} dx$ is convergent at 0 iff $1-m < 1$ i.e. $m > 0$

We deduce that the integral $\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ is convergent at 0, iff *m* is +ive.

Convergence at 1:

We write
$$f(x) = x^{m-1}(1-x)^{n-1} = \frac{x^{m-1}}{(1-x)^{1-n}}$$
 and take $g(x) = \frac{1}{(1-x)^{1-n}}$
Then $\frac{f(x)}{g(x)} \to 1$ as $x \to 1$
As $\int_{\frac{1}{2}}^{1} \frac{1}{(1-x)^{1-n}} dx$ is convergent, iff $1-n < 1$ i.e. $n > 0$.

We deduce that the integral $\int_{\frac{1}{2}}^{1} x^{m-1} (1-x)^{n-1} dx$ converges iff n > 0. Thus $\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ exists for positive values of m, n only.

It is a function which depends upon m & n and is defined for all positive values of m & n. It is called Beta function.

> Question

Show that the following improper integrals are convergent.

(i)
$$\int_{1}^{\infty} \sin^2 \frac{1}{x} \, dx$$
 (ii) $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} \, dx$ (iii) $\int_{0}^{1} \frac{x \log x}{(1+x)^2} \, dx$ (iv) $\int_{0}^{1} \log x \cdot \log(1+x) \, dx$

Solution

(i) Let
$$f(x) = \sin^2 \frac{1}{x}$$
 and $g(x) = \frac{1}{x^2}$
then $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{\sin^2 \frac{1}{x}}{\frac{1}{x^2}} = \lim_{y \to 0} \left(\frac{\sin y}{y}\right)^2 = 1$
 $\Rightarrow \int_{1}^{\infty} f(x) \, dx$ and $\int_{1}^{\infty} \frac{1}{x^2} \, dx$ behave alike.
 $\therefore \int_{1}^{\infty} \frac{1}{x^2} \, dx$ is convergent $\therefore \int_{1}^{\infty} \sin^2 \frac{1}{x} \, dx$ is also convergent.
(ii) $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} \, dx$
Take $f(x) = \frac{\sin^2 x}{x^2}$ and $g(x) = \frac{1}{x^2}$
 $\sin^2 x \le 1 \Rightarrow \frac{\sin^2 x}{x^2} \le \frac{1}{x^2} \quad \forall x \in (1,\infty)$
and $\int_{1}^{\infty} \frac{1}{x^2} \, dx$ converges $\therefore \int_{1}^{\infty} \frac{\sin^2 x}{x^2} \, dx$ converges.

> Note

$$\int_{0}^{1} \frac{\sin^2 x}{x^2} dx$$
 is a proper integral because $\lim_{x \to 0} \frac{\sin^2 x}{x^2} = 1$ so that '0' is not a point of

infinite discontinuity. Therefore $\int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx$ is convergent.

(iii)
$$\int_{0}^{1} \frac{x \log x}{(1+x)^{2}} dx$$

$$\because \log x < x, \quad x \in (0,1)$$

$$\therefore x \log x < x^{2}$$

$$\Rightarrow \frac{x \log x}{(1+x)^{2}} < \frac{x^{2}}{(1+x)^{2}}$$

Now
$$\int_{0}^{1} \frac{x^{2}}{(1+x)^{2}} dx \text{ is a proper integral.}$$

$$\therefore \int_{0}^{1} \frac{x \log x}{(1+x)^{2}} dx \text{ is convergent.}$$

(iv)
$$\int_{0}^{1} \log x \cdot \log(1+x) dx$$

$$\because \log x < x \quad \therefore \log(x+1) < x+1$$

$$\Rightarrow \log x \cdot \log(1+x) < x(x+1)$$

$$\because \int_{0}^{1} x(x+1) dx \text{ is a proper integral} \quad \therefore \int_{0}^{1} \log x \cdot \log(1+x) dx \text{ is convergent.}$$

> Note

(i)
$$\int_{0}^{a} \frac{1}{x^{p}} dx$$
 diverges when $p \ge 1$ and converges when $p < 1$.
(ii) $\int_{a}^{\infty} \frac{1}{x^{p}} dx$ converges iff $p > 1$.

UNIFORM CONVERGENCE OF IMPROPER INTEGRALS

> Definition

Let *f* be a real valued function of two variables $x \& y, x \in [a, +\infty), y \in S$ where $S \subset \mathbb{R}$. Suppose further that, for each *y* in *S*, the integral $\int_{a}^{\infty} f(x, y) d\alpha(x)$ is

convergent. If F denotes the function defined by the equation

$$F(y) = \int_{a}^{\infty} f(x, y) d\alpha(x) \quad \text{if} \quad y \in S$$

the integral is said to converge *pointwise* to F on S

> Definiton

Assume that the integral $\int_{a}^{\infty} f(x, y) d\alpha(x)$ converges pointwise to *F* on *S*. The integral is said to converge Uniformly on *S* if, for every $\varepsilon > 0$ there exists a B > 0 (depending only on ε) such that b > B implies

$$F(y) - \int_{a}^{b} f(x, y) d\alpha(x) \bigg| < \varepsilon \quad \forall y \in S.$$

(Pointwise convergence means convergence when y is fixed but uniform convergence is for every $y \in S$).

> Theorem (Cauchy condition for uniform convergence.)

The integral $\int_{a}^{\infty} f(x, y) d\alpha(x)$ converges uniformly on *S*, iff, for every $\varepsilon > 0$ there exists a B > 0 (depending on ε) such that c > b > B implies

$$\left|\int_{b}^{c} f(x,y) d\alpha(x)\right| < \varepsilon \quad \forall y \in S.$$

Proof

Proceed as in the proof for Cauchy condition for infinite integral $\int_{a}^{\infty} f d\alpha$.

> Theorem (Weierstrass M-test)

Assume that $\alpha \uparrow \text{ on } [a, +\infty)$ and suppose that the integral $\int_{a}^{b} f(x, y) d\alpha(x)$ exists for every $b \ge a$ and for every y in S. If there is a positive function M defined on $[a, +\infty)$ such that the integral $\int_{a}^{\infty} M(x) d\alpha(x)$ converges and $|f(x, y)| \le M(x)$ for each $x \ge a$ and every y in S, then the integral $\int_{a}^{\infty} f(x, y) d\alpha(x)$ converges uniformly on S.

Proof

- $\therefore |f(x, y)| \le M(x)$ for each $x \ge a$ and every y in S.
- \therefore For every $c \ge b$, we have

- $\therefore I = \int_{a}^{\infty} M \, d\alpha$ is convergent
- $\therefore \text{ given } \varepsilon > 0, \exists B > 0 \text{ such that } b > B \text{ implies}$

$$\int_{a}^{b} M \, d\alpha - I \, \bigg| < \frac{\varepsilon}{2} \, \dots \, (ii)$$

Also if c > b > B, then

$$\left| \int_{a}^{c} M \, d\alpha - I \right| < \frac{\varepsilon}{2} \dots \dots \dots (iii)$$

Then $\left| \int_{b}^{c} M \, d\alpha \right| = \left| \int_{a}^{c} M \, d\alpha - \int_{a}^{b} M \, d\alpha \right|$

$$= \left| \int_{a}^{c} M \, d\alpha - I + I - \int_{a}^{b} M \, d\alpha \right|$$

$$\leq \left| \int_{a}^{c} M \, d\alpha - I \right| + \left| \int_{a}^{b} M \, d\alpha - I \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad (By \, ii \, \& \, iii)$$

$$\Rightarrow \left| \int_{b}^{c} f(x, y) \, d\alpha(x) \right| < \varepsilon , \quad c > b > B \, \& \text{ for each } y \in S$$

Cauchy condition for convergence (uniform) being satisfied. Therefore the integral $\int_{a}^{\infty} f(x, y) d\alpha(x)$ converges uniformly on *S*.

> Example

Consider
$$\int_{0}^{\infty} e^{-xy} \sin x \, dx$$

 $\left| e^{-xy} \sin x \right| \le \left| e^{-xy} \right| = e^{-xy}$ (:: $\left| \sin x \right| \le 1$)
and $e^{-xy} \le e^{-xc}$ if $c \le y$
Now take $M(x) = e^{-cx}$
The integral $\int_{0}^{\infty} M(x) \, dx = \int_{0}^{\infty} e^{-cx} \, dx$ is convergent & converging to $\frac{1}{c}$

 \therefore The conditions of M-test are satisfied and $\int_{0}^{\infty} e^{-xy} \sin x \, dx$ converges uniformly

on $[c, +\infty)$ for every c > 0.

> Theorem (Dirichlet's test for uniform convergence)

Assume that α is bounded on $[a, +\infty)$ and suppose the integral $\int f(x, y) d\alpha(x)$

exists for every $b \ge a$ and for every y in S. For each fixed y in S, assume that $f(x, y) \le f(x', y)$ if $a \le x' < x < +\infty$. Furthermore, suppose there exists a positive function g, defined on $[a, +\infty)$, such that $g(x) \to 0$ as $x \to +\infty$ and such that $x \ge a$ implies

 $|f(x,y)| \le g(x)$ for every y in S.

Then the integral $\int_{a}^{\infty} f(x, y) d\alpha(x)$ converges uniformly on *S*.

Proof

Let M > 0 be an upper bound for $|\alpha|$ on $[a, +\infty)$. Given $\varepsilon > 0$, choose B > a such that $x \ge B$ implies

$$g(x) < \frac{\varepsilon}{4M}$$

 $(\because g(x) \text{ is +ive and } \to 0 \text{ as } x \to \infty \therefore |g(x) - 0| < \frac{\varepsilon}{4M} \text{ for } x \ge B)$

If c > b, integration by parts yields

$$\int_{b}^{c} f \, d\alpha = \left| f(x, y) \cdot \alpha(x) \right|_{b}^{c} - \int_{b}^{c} \alpha \, df$$
$$= f(c, y)\alpha(c) - f(b, y)\alpha(b) + \int_{b}^{c} \alpha \, d(-f) \quad \dots \dots \quad (i)$$

But, since -f is increasing (for each fixed y), we have

$$\left| \int_{b}^{c} \alpha d(-f) \right| \leq M \int_{b}^{c} d(-f) \qquad (\because \text{ upper bound of } |\alpha| \text{ is } M)$$
$$= M f(b, y) - M f(c, y) \dots \dots \dots (ii)$$

Now if c > b > B, we have from (*i*) and (*ii*)

$$\begin{aligned} \left| \int_{b}^{c} f \, d\alpha \right| &\leq \left| f(c, y) \alpha(c) - f(b, y) \alpha(b) \right| + \left| \int_{b}^{c} \alpha \, d(-f) \right| \\ &\leq \left| \alpha(c) \right| \left| f(c, y) \right| + \left| f(b, y) \right| \left| \alpha(b) \right| + M \left| f(b, y) - f(c, y) \right| \\ &\leq \left| \alpha(c) \right| \left| f(c, y) \right| + \left| \alpha(b) \right| \left| f(b, y) \right| + M \left| f(b, y) \right| + M \left| f(c, y) \right| \\ &\leq M \, g(c) + M \, g(b) + M \, g(b) + M \, g(c) \\ &= 2M \big[g(b) + g(c) \big] \end{aligned}$$

$$< 2M \left[\frac{\varepsilon}{4M} + \frac{\varepsilon}{4M} \right] = \varepsilon$$
$$\Rightarrow \left| \int_{b}^{c} f \, d\alpha \right| < \varepsilon \quad \text{for every } y \text{ in } S.$$

Therefore the Cauchy condition is satisfied and $\int_{a}^{\infty} f(x, y) d\alpha(x)$ converges uniformly on *S*.

> Example

Consider
$$\int_{0}^{\infty} \frac{e^{-xy}}{x} \sin x \, dx$$

Take $\alpha(x) = \cos x$ and $f(x, y) = \frac{e^{-xy}}{x}$ if $x > 0, y \ge 0$.
If $S = [0, +\infty)$ and $g(x) = \frac{1}{x}$ on $[\varepsilon, +\infty)$ for every $\varepsilon > 0$ then
i) $f(x, y) \le f(x', y)$ if $x' \le x$ and $\alpha(x)$ is bounded on $[\varepsilon, +\infty)$.
ii) $g(x) \to 0$ as $x \to +\infty$
iii) $|f(x, y)| = \left|\frac{e^{-xy}}{x}\right| \le \frac{1}{x} = g(x) \quad \forall y \in S$.
So that the conditions of Dirichlet's theorem are satisfied.

So that the conditions of Dirichlet's theorem are satisfied. Hence

$$\int_{\varepsilon}^{\infty} \frac{e^{-xy}}{x} \sin x \, dx = + \int_{\varepsilon}^{\infty} \frac{e^{-xy}}{x} \, d(-\cos x) \quad \text{converges uniformly on } [\varepsilon, +\infty) \text{ if } \varepsilon > 0.$$

$$\because \lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \therefore \int_{0}^{\varepsilon} e^{-xy} \frac{\sin x}{x} \, dx \quad \text{converges being a proper integral.}$$

$$\Rightarrow \int_{0}^{\infty} e^{-xy} \frac{\sin x}{x} \, dx \quad \text{also converges uniformly on } [0, +\infty).$$

> Remarks

Dirichlet's test can be applied to test the convergence of the integral of a product. For this purpose the test can be modified and restated as follows:

Let $\phi(x)$ be bounded and monotonic in $[a, +\infty)$ and let $\phi(x) \to 0$, when $x \to \infty$. Also let $\int_{a}^{x} f(x) dx$ be bounded when $X \ge a$. Then $\int_{a}^{\infty} f(x) \phi(x) dx$ is convergent.

> Example

Consider $\int_{0}^{\infty} \frac{\sin x}{x} dx$ $\therefore \frac{\sin x}{x} \to 1$ as $x \to 0$. $\therefore 0$ is not a point of infinite discontinuity. Now consider the improper integral $\int_{1}^{\infty} \frac{\sin x}{x} dx$. The factor $\frac{1}{x}$ of the integrand is monotonic and $\to 0$ as $x \to \infty$. Also $\left| \int_{1}^{x} \sin x dx \right| = |-\cos X + \cos(1)| \le |\cos X| + |\cos(1)| < 2$ So that $\int_{1}^{x} \sin x dx$ is bounded above for every $X \ge 1$. $\Rightarrow \int_{0}^{\infty} \frac{\sin x}{x} dx$ is convergent. Now since $\int_{0}^{1} \frac{\sin x}{x} dx$ is a proper integral, we see that $\int_{0}^{\infty} \frac{\sin x}{x} dx$ is convergent.

> Example

Consider
$$\int_{0}^{\infty} \sin x^{2} dx$$
.
We write $\sin x^{2} = \frac{1}{2x} \cdot 2x \cdot \sin x^{2}$
Now $\int_{1}^{\infty} \sin x^{2} dx = \int_{1}^{\infty} \frac{1}{2x} \cdot 2x \cdot \sin x^{2} dx$
 $\frac{1}{2x}$ is monotonic and $\rightarrow 0$ as $x \rightarrow \infty$.
Also $\left| \int_{1}^{x} 2x \sin x^{2} dx \right| = \left| -\cos X^{2} + \cos(1) \right| < 2$
So that $\int_{1}^{x} 2x \sin x^{2} dx$ is bounded for $X \ge 1$.
Hence $\int_{1}^{\infty} \frac{1}{2x} \cdot 2x \cdot \sin x^{2} dx$ i.e. $\int_{1}^{\infty} \sin x^{2} dx$ is convergent.

Since $\int_{0}^{1} \sin x^2 dx$ is only a proper integral, we see that the given integral is convergent.

> Example

Consider
$$\int_{0}^{\infty} e^{-ax} \frac{\sin x}{x} dx$$
, $a > 0$

Here e^{-ax} is monotonic and bounded and $\int_{0}^{\infty} \frac{\sin x}{x} dx$ is convergent.

Hence
$$\int_{0}^{\infty} e^{-ax} \frac{\sin x}{x} dx$$
 is convergent.

> Example

Show that $\int_{0}^{\infty} \frac{\sin x}{x} dx$ is not absolutely convergent.

Solution

Consider the proper integral
$$\int_{0}^{n\pi} \frac{|\sin x|}{x} dx$$
We need not
take $|x|$
where *n* is a positive integer. We have

$$\int_{0}^{\pi} \frac{|\sin x|}{x} dx = \sum_{r=1}^{n} \int_{(r-1)\pi}^{r\pi} \frac{|\sin x|}{x} dx$$
Put $x = (r-1)\pi + y$ so that *y* varies in $[0,\pi]$.
We have $|\sin[(r-1)\pi + y]| = |(-1)^{r-1}\sin y| = \sin y$
 $\therefore \int_{(r-1)\pi}^{r\pi} \frac{|\sin x|}{x} dx = \int_{0}^{\pi} \frac{\sin y}{(r-1)\pi + y} dy$
 $\because r\pi$ is the max. value of $[(r-1)\pi + y]$ in $[0,\pi]$
 $\therefore \int_{0}^{\pi} \frac{\sin y}{(r-1)\pi + y} dy \ge \frac{1}{r\pi} \int_{0}^{\pi} \sin y dy = \frac{2}{r\pi}$
 $\left[\because \text{Division by max. value} \\ \Rightarrow \int_{0}^{\pi} \frac{|\sin x|}{x} dx \ge \sum_{1}^{n} \frac{2}{r\pi} = \frac{2}{\pi} \sum_{1}^{n} \frac{1}{r}$
 $\because \sum_{1}^{n} \frac{1}{r} \to \infty \text{ as } n \to \infty, \text{ we see that}$
 $\int_{0}^{\pi} \frac{|\sin x|}{x} dx \to \infty \text{ as } n \to \infty.$

Let, now, X be any real number.

There exists a +tive integer *n* such that $n\pi \le X < (n+1)\pi$.

We have
$$\int_{0}^{X} \frac{|\sin x|}{x} dx \ge \int_{0}^{n\pi} \frac{|\sin x|}{x} dx$$

Let $X \to \infty$ so that n also $\to \infty$. Then we see that $\int_{0}^{X} \frac{|\sin x|}{x} dx \to \infty$
So that $\int_{0}^{\infty} \frac{|\sin x|}{x} dx$ does not converge.

> Questions

Examine the convergence of

(i)
$$\int_{1}^{\infty} \frac{x}{(1+x)^3} dx$$
 (ii) $\int_{1}^{\infty} \frac{1}{(1+x)\sqrt{x}} dx$ (iii) $\int_{1}^{\infty} \frac{dx}{x^{1/3}(1+x)^{1/2}}$

Solution

(i) Let
$$f(x) = \frac{x}{(1+x)^3}$$
 and take $g(x) = \frac{x}{x^3} = \frac{1}{x^2}$
As $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^3}{(1+x)^3} = 1$
Therefore the two integrals $\int_{x}^{\infty} \frac{x}{(1+x)^3} dx$ and $\int_{x}^{\infty} \frac{1}{2} dx$ have identical behaviour for

 $\int_{1}^{1} (1+x)^{3} = \int_{1}^{1} x^{2}$

convergence at ∞ .

$$\because \int_{1}^{\infty} \frac{1}{x^2} dx \text{ is convergent} \quad \therefore \int_{1}^{\infty} \frac{x}{(1+x)^3} dx \text{ is convergent.}$$

(*ii*) Let
$$f(x) = \frac{1}{(1+x)\sqrt{x}}$$
 and take $g(x) = \frac{1}{x\sqrt{x}} = \frac{1}{x^{3/2}}$
We have $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x}{1+x} = 1$

and
$$\int_{1}^{\infty} \frac{1}{x^{\frac{3}{2}}} dx$$
 is convergent. Thus $\int_{1}^{\infty} \frac{1}{(1+x)\sqrt{x}} dx$ is convergent.

(iii) Let
$$f(x) = \frac{1}{x^{\frac{1}{3}}(1+x)^{\frac{1}{2}}}$$

we take $g(x) = \frac{1}{x^{\frac{1}{3}} \cdot x^{\frac{1}{2}}} = \frac{1}{x^{\frac{5}{6}}}$
We have $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$ and $\int_{1}^{\infty} \frac{1}{x^{\frac{5}{6}}} dx$ is convergent $\therefore \int_{1}^{\infty} f(x) dx$ is convergent.

> Question

Show that $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ is convergent.

Solution

We have

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \lim_{a \to \infty} \left[\int_{-a}^{0} \frac{1}{1+x^2} dx + \int_{0}^{a} \frac{1}{1+x^2} dx \right]$$
$$= \lim_{a \to \infty} \left[\int_{0}^{a} \frac{1}{1+x^2} dx + \int_{0}^{a} \frac{1}{1+x^2} dx \right] = 2 \lim_{a \to \infty} \left[\int_{0}^{a} \frac{1}{1+x^2} dx \right]$$
$$= 2 \lim_{a \to \infty} \left| \tan^{-1} x \right|_{0}^{a} = 2 \left(\frac{\pi}{2} \right) = \pi$$

therefore the integral is convergent.

> Question

Show that $\int_{0}^{\infty} \frac{\tan^{-1} x}{1+x^2} dx$ is convergent.

Solution

$$\therefore (1+x^2) \cdot \frac{\tan^{-1}x}{(1+x^2)} = \tan^{-1}x \to \frac{\pi}{2} \quad \text{as} \quad x \to \infty$$
Here $f(x) = \frac{\tan^{-1}x}{1+x^2}$

$$\int_0^\infty \frac{\tan^{-1}x}{1+x^2} dx \quad \& \quad \int_0^\infty \frac{1}{1+x^2} dx \quad \text{behave alike.}$$

$$\therefore \int_0^\infty \frac{1}{1+x^2} dx \quad \text{is convergent} \quad \therefore \text{ A given integral is convergent.}$$

> Question

Show that $\int_{0}^{\infty} \frac{\sin x}{(1+x)^{\alpha}} dx$ converges for $\alpha > 0$.

Solution

 $\int_{0}^{\infty} \sin x \, dx \quad \text{is bounded because} \quad \int_{0}^{X} \sin x \, dx \le 2 \quad \forall \ x > 0 \, .$ Furthermore the function $\frac{1}{(1+x)^{\alpha}}, \ \alpha > 0$ is monotonic on $[0, +\infty)$. \Rightarrow the integral $\int_{0}^{\infty} \frac{\sin x}{(1+x)^{\alpha}} \, dx$ is convergent.

> Question

Show that $\int_{0}^{\infty} e^{-x} \cos x \, dx$ is absolutely convergent.

Solution

$$\therefore |e^{-x}\cos x| < e^{-x} \text{ and } \int_{0}^{\infty} e^{-x} dx = 1$$

 \therefore the given integral is absolutely convergent. (comparison test)

> Question

Show that $\int_{0}^{1} \frac{e^{-x}}{\sqrt{1-x^4}} dx$ is convergent.

Solution

$$\therefore e^{-x} < 1 \text{ and } 1 + x^2 > 1$$

$$\therefore \frac{e^{-x}}{\sqrt{1 - x^4}} < \frac{1}{\sqrt{(1 - x^2)(1 + x^2)}} < \frac{1}{\sqrt{1 - x^2}}$$

Also
$$\int_0^1 \frac{1}{\sqrt{1 - x^2}} dx = \lim_{\varepsilon \to 0} \int_0^{1 - \varepsilon} \frac{1}{\sqrt{1 - x^2}} dx$$

$$= \lim_{\varepsilon \to 0} \sin^{-1}(1 - \varepsilon) = \frac{\pi}{2}$$

$$\Rightarrow \int_0^1 \frac{e^{-x}}{\sqrt{1 - x^4}} dx \text{ is convergent. (by comparison test)}$$

References:

(1) Book Mathematical Analysis Tom M. Apostol (John Wiley & Sons, Inc.)