
 

    We discussed (in MTH321: Real Analysis I) Riemann-Stieltjes’s integrals of 

the form 
b

a
f d  under the restrictions that both f  and   are defined and bounded 

on a finite interval [ , ]a b . To extend the concept, we shall relax these restrictions on 

f  and  .  
 

 Definition 

    The integral 
b

a
f d  is called an improper integral of first kind if  a     or  

b     or  both  i.e. one or both integration limits is infinite. 

 

 Definition  

    The integral  
b

a
f d   is called an improper integral of second kind if ( )f x  is 

unbounded at one or more points of a x b  . Such points are called singularities of 

( )f x . 
 

 Examples 

 
2

0

1

1
dx

x




,  

1
1

2
dx

x


  and 2( 1)x dx





  are 

examples of improper integrals of first kind. 

 

 
1

1

1
dx

x


  and 

1

0

1

2 1
dx

x   are examples of improper 

integrals of second kind. 

 

 

 Notations 
    We shall denote the set of all functions  f  such that  

( )f R   on  [ , ]a b   by  ( ; , )a bR . When ( )x x  , we 

shall simply write ( , )a bR  for this set. The notation    on  

[ , )a   will mean that   is monotonically increasing on  

[ , )a  . 
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IMPROPER INTEGRAL OF THE FIRST KIND 
 

 

 Definition 

    Assume that  ( ; , )f a bR  for every  b a . Keep ,a   and f  fixed and define a 

function I  on [ , )a   as follows: 

                                 ( ) ( ) ( )

b

a

I b f x d x     if   b a  ………… (i) 

   The function I  so defined is called an infinite ( or an improper ) integral of first 

kind and is denoted by the symbol ( ) ( )
a

f x d x


  or by 
a

f d


 . 

   The integral  
a

f d


  is said to converge if the limit  

                                       lim ( )
b

I b


 ………… (ii) 

exists (finite). Otherwise,  
a

f d


  is said to diverge. 

   If the limit in (ii) exists and equals A , the number A  is called the value of the 

integral and we write 
a

f d A


  

 

 Example 

   Consider and integral  
1

px dx




 , where p  is any real number. 

   Now  
1 1

1 1

1
( )

1 1

bb p p
p x b

I b x dx
p p

 
 

  
     if 1p  . 

  As we know   

1
1,

1
lim ( ) lim 1

1.1
1

p

b b

if p
b

I b
if pp

p



 

 
 

  
  

  

 Thus integral  
1

px dx





  diverges if  1p   and converges if 1p   and has the value 

1

1p 
. 

      If  1p  , we get  1

1
log

b

x dx b      as   b .     1

1
x dx


   diverges. 

   Hence we concluded: 
1

1,

1
1.

1

p

diverges if p

x dx
if p

p
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 Example 

     Consider  
0

sin 2 xdx


   

Since 
0

1 cos2
sin 2

2

b
b

xdx l






    as  b , where l  has values between 0 and 

1


, that is, limit is not unique. 

Therefore the integral 
0

sin 2 xdx


   diverges. 

 

 Note 

    If  

a

f d


   and  
a

f d


  are both convergent for some value of a , we say that  the 

integral  f d




  is convergent  and its value is defined to be the sum  

a

a

f d f d f d  
 

 

     

   The choice of the point a  is clearly immaterial. 

   If the integral f d




  converges, its value is equal to the limit:   lim

b

b
b

f d




 . 

 

 Theorem 

   Assume that   is monotonically increasing on [ , )a    and suppose that 

( ; , )f a bR  for every b a . Assume that ( ) 0f x   for each  x a . Then  
a

f d


  

converges if, and only if, there exists a constant 0M   such that  

     

b

a

f d M    for every  b a . 

Proof 

 Let ( )

b

a

I b f d  and suppose that 
a

f d


  is convergent, then lim ( )
b

I b


 exists, that 

is, ( )I b  is bounded. 

 So there exists a constant 0M   such that  

( )I b M  for every .b a  

 As ( ) 0f x    for each x a , therefore  0

b

a

f d  . 



  Improper Integrals 4 

This gives  ( )

b

a

I b f d M   for every b a . 

Conversely, suppose that there exists a constant  0M   such that 

b

a

f d M   for 

every b a . This give ( )I b M for every b a . 

That is, I  is bounded on [ , )a  . 

Now for 
2 1b b a  , we have 

           
2 1 2

1

2( ) ( ) ( ) ( ) ( ) ( ) ( )

b b b

a a b

I b f x d x f x d x f x d x          

1

1( ) ( ) ( )

b

a

f x d x I b     
2

1

( ) ( ) 0

b

b

f x d x   as ( ) 0f x  .  

This gives I  is monotonically increasing on  [ , )a  . 

As  I  is monotonically increasing and bounded on [ , )a  , therefore it is 

convergent, that is 
a

f d


  converges. 

 

 Theorem: (Comparison Test) 
    Assume that   is monotonically increasing on [ , )a  . If ( ; , )f a bR  for every  

b a , if 0 ( ) ( )f x g x   for every x a , and if  
a

g d


  converges, then  
a

f d


  

converges and we have  

                         
a a

f d g d 
 

   

Proof 

    Let   1( )

b

a

I b f d       and     2 ( )

b

a

I b g d         ,    b a  

0 ( ) ( )f x g x     for every   x a  

1 2( ) ( )I b I b   …………………. (i) 

  
a

g d


   converges      a constant  0M    such that 

     

b

a

g d M    ,    b a  …………………(ii) 

   From (i) and (ii) we have   1( )I b M  for every   b a . 

   
1lim ( )

b
I b


    exists and is finite. 
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a

f d


    converges. 

   Also    
1 2lim ( ) lim ( )

b b
I b I b M

 
   

  
a a

f d g d 
 

   . 

 

 Theorem (Limit Comparison Test) 
    Assume that   is monotonically increasing on  [ , )a  . Suppose that  

( ; , )f a bR   and that ( ; , )g a bR   for every  b a , where  ( ) 0f x    and  

( ) 0g x    if  x a . If  

                                             
( )

lim 1
( )x

f x

g x
  

   then  
a

f d


   and  
a

g d


  both converge or both diverge. 

Proof 
    For all  b a , we can find some  0N    such that 

( )
1

( )

f x

g x
    x N     for every   0  . 

          
( )

1 1
( )

f x

g x
       

   Let  
1

2
  .  Then we have 

     
1 ( ) 3

2 ( ) 2

f x

g x
  . 

   ( ) 2 ( )g x f x   …..…..(i)       and       2 ( ) 3 ( )f x g x  ……....(ii) 

    From (i)   2
a a

g d f d 
 

  ,  

   
a

g d


    converges if 
a

f d


  converges and  
a

g d


  diverges if  
a

f d


   

diverges. 

   From (ii)   2 3
a a

f d g d 
 

  ,  

   
a

f d


    converges if  
a

g d


   converges and  
a

g d


  diverges if 
a

f d


  

diverges. 
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     The integrals  
a

f d


   and  
a

g d


   converge or diverge together. 

 

 Note 

    The above theorem also holds if  
( )

lim
( )x

f x
c

g x
 ,  provided that  0c  . If 0c  , we 

can only conclude that convergence of  
a

g d


  implies convergence of 
a

f d


 . 

 

 Example 

    For every real p , the integral  
1

x pe x dx





  converges. 

   This can be seen by comparison of this integral with 
2

1

1
dx

x



 .  

    Let ( ) x pf x e x   and  
2

1
( )g x

x
 .    

    Now   
2

( )
lim lim

1( )

x p

x x

f x e x

g x
x



 
  

        
2

2( )
lim lim lim 0

( )

p
x p

xx x x

f x x
e x

g x e


 

  
    . 

   Since 
2

1

1
dx

x



   is convergent, therefore the given integral  
1

x pe x dx





   is also 

convergent. 
 

 Remark 

It is easy to show that if 
a

f d


  and 
a

g d


  are convergent, then 

 ( )
a

f g d


  is convergent. 

 
a

cf d


 , where c  is some constant, is convergent. 

 

 Theorem 

    Assume     on [ , )a  . If ( ; , )f a bR  for every b a  and if 
a

f d


  

converges, then 
a

f d


  also converges. 

   Or:  An absolutely convergent integral is convergent. 
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Proof 

    If  x a  ,   ( ) ( )f x f x   

     ( ) ( ) 0f x f x    

     0 ( ) ( ) 2 ( )f x f x f x     

     
a

f f d


   converges. 

   Now difference of 
a

f d


  and  
a

f f d


  is convergent,  

   that is, 
a

f d


  is convergent. 

 

 Note 

    
a

f d


  is said to converge absolutely if  
a

f d


  converges. It is said to be 

convergent conditionally if 
a

f d


  converges but 
a

f d


  diverges. 

 Remark 
    Every absolutely convergent integral is convergent. 

 

 Theorem (Cauchy condition for infinite integrals) 

    Assume that ( ; , )f a bR  for every b a . Then the integral 
a

f d


  converges if, 

and only if, for every 0   there exists a 0B   such that c b B   implies 

     ( ) ( )

c

b

f x d x   

Proof 

   Let  
a

f d


  be convergent. Then    0B   such that  

2

b

a a

f d f d


 


     for every  b B  ………..(i) 

   Also for  c b B  , 

2

c

a a

f d f d


 


    …………….. (ii) 

   Consider 

    

c c b

b a a

f d f d f d       

B b c 
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c b

a a a a

f d f d f d f d   
 

        

       
2 2

c b

a a a a

f d f d f d f d
 

    
 

           

       

c

b

f d      when  c b B  . 

   Conversely, assume that the Cauchy condition holds. 

   Define  

a n

n

a

a f d


     if   1,2,......n   

  Consider ,n m  such that ,a n a m b B    , then   
a n a m b a n b a m

n m

a a a b a b

a a f d f d f d f d f d f d     
   

              

                        

a n a m

b b

f d f d 
 

    2

a n a m

b b

f d f d    
 

        

 This gives, the sequence  na  is a Cauchy sequence    it converges. 

   Let    lim n
n

a A


  

   Given  0  , choose B  so that  
2

c

b

f d


      if   c b B  . 

   and also that  
2

na A


    whenever  a n B  . 

   Choose an integer N  such that  a N B    i.e.  N B a  . 

   Then, if  b a N  , we have 
b a N b

a a a N

f d A f d A f d  




       

         
2 2

b

N

a N

a A f d
 

 


       

   
a

f d A


   

   This completes the proof.  

 Remarks 

   It follows from the above theorem that convergence of  
a

f d


  implies 

lim 0
b

bb
f d







  for every fixed 0  .  

   However, this does not imply that ( ) 0f x   as x . 
 

 

a B c b 

a+N
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 IMPROPER INTEGRAL OF THE SECOND KIND 
 

 Definition 

   Let f  be defined on the half open interval  ,a b  and assume that ( ; , )f x bR  for 

every  ,x a b . Define a function I  on  ,a b  as follows: 

                                             ( )

b

x

I x f d      if   ,x a b  ……….. (i) 

   The function I  so defined is called an improper integral of the second kind and is 

denoted by the symbol  ( ) ( )

b

a

f t d t


   or  

b

a

f d


 . 

   The integral 

b

a

f d


  is said to converge if the limit   

  lim ( )
x a

I x
 

 ……...(ii)   exists (finite). 

Otherwise, 

b

a

f d


  is said to diverge. If the limit in (ii) exists and equals A , the 

number A  is called the value of the integral and we write  

b

a

f d A


 . 

   Similarly, if f  is defined on [ , )a b  and ( ; , )f a xR   [ , )x a b   then 

( )

x

a

I x f d    if  [ , )x a b  is also an improper integral of the second kind and is 

denoted as  

b

a

f d


   and is convergent if  lim ( )
x b

I x
 

 exists (finite). 

 

 Example 

     ( ) pf x x  is defined on (0, ]b  and ( , )f x bR  for every (0, ]x b . 

( )

b

p

x

I x x dx        if   (0, ]x b  

        
0

b

px dx



   
0

0

lim

b

px dx









   

        
1

0
lim

1

b
px

p








  

1 1

0
lim

1

p pb

p

 







      ,     ( 1)p   

                             
, 1

, 1

finite p

infinite p


 


 

      When 1p  , we get  
1

log log

b

dx b
x



      as  0  . 
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       1

0

b

x dx



    also diverges. 

     Hence the integral converges when  1p   and diverges when  1p  . 
 

 Note 

   If the two integrals 

c

a

f d


  and 

b

c

f d


  both converge, we write 

                                              

b bc

a a c

f d f d f d  
 

 

     

   The definition can be extended to cover the case of any finite number of sums. We 

can also consider mixed combinations such as 

                              

b

a b

f d f d 




    which can be written as  
a

f d




 . 

 

 Example 

   Consider   1

0

x pe x dx



 



       ,    ( 0)p   

   This integral must be interpreted as a sum as 

                                    

1

1 1 1

0 0 1

x p x p x pe x dx e x dx e x dx

 

     

 

     

                                                        
1 2I I   ………..….…… (i) 

   
2I , the second integral, converges for every real  p  as proved earlier. 

   To test 1I , put 
1

t
x

      
2

1
dx dt

t
      

   

1

1

1
0

lim x pI e x dx




 


     

11

1

20
1

1
lim pte t dt

t



 



 
  

 
   

1
1

1

0
1

lim pte t dt




  


   

   Take  
1

1( ) ptf t e t
      and   1( ) pg t t   

   Then  

1
1

1

( )
lim lim 1

( )

p

pt t

tf t e t

g t t

  

  


    and since  1

1

pt dt



 

   converges when  0p    

   
1

1

1

pte t dt


      converges when  0p   

   Thus  
1

0

x pe x dx



 



   converges when  0p  . 

   When 0p  , the value of the sum in (i) is denoted by ( )p . The function so 

defined is called the Gamma function. 
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 Note 

   The tests developed to check the behaviour of the improper integrals of Ist kind are 

applicable to improper integrals of IInd kind after making necessary modifications. 

 

 A Useful Comparison Integral 

 

b

a

n

dx

x a
  

   We have, if 1n  , 

                         
 

1

1

(1 )( )

bb

n

a a

n

dx

n x ax a 



 


 

  

                                            
1 1

1 1 1

(1 ) ( )n nn b a  

 
  

  
 

   Which tends to 
1

1

(1 )( )nn b a  
  or    according as 1n   or  1n  , as  0  . 

   Again, if  1n  , 

                       log( ) log

b

a

dx
b a

x a





   
    as   0  . 

   Hence the improper integral  
 

b

a

n

dx

x a
  converges iff  1n  . 

 

 

 
 

 

 Question 
   Examine the convergence of  

    (i)    

 

1

1
23

0 1

dx

x x
             (ii)    

1

2 2

0
(1 )

dx

x x      (iii)    

 

1

1 1
2 3

0 1

dx

x x
  

 Solution 

(i)     

 

1

1
23

0 1

dx

x x
  

    Here ‘0’ is the only point of infinite discontinuity of the integrand. 

    We have 

 
1

23

1
( )

1
f x

x x



 

   Take   
1

3

1
( )g x

x
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   Then   
20 0

( ) 1
lim lim 1

( ) 1x x

f x

g x x 
 


 

        
1

0
( )f x dx    and  

1

0
( )g x dx   have identical behaviours. 

        

1

1
3

0

dx

x
   converges    

 

1

1
23

0 1

dx

x x



  also converges. 

 

(ii)    

1

2 2

0
(1 )

dx

x x  

   Here ‘0’ is the only point of infinite discontinuity of the given integrand. 

   We have 

                  
2 2

1
( )

(1 )
f x

x x



 

   Take  
2

1
( )g x

x
  

   Then   
 

2
0 0

( ) 1
lim lim 1

( ) 1x x

f x

g x x 
 


 

   
1

0
( )f x dx    and  

1

0
( )g x dx   behave alike. 

   But 2n   being greater than 1, the integral 
1

0
( )g x dx  does not converge. Hence the 

given integral also does not converge. 
 

(iii)     

 

1

1 1
2 3

0 1

dx

x x
  

   Here ‘0’ and ‘1’ are the two points of infinite discontinuity of the integrand. 

   We have 

                 

 
1 1

2 3

1
( )

1
f x

x x



 

   We take any number between 0 and 1, say 1
2

, and examine the convergence of  

the improper integrals  

1
2

0

( )f x dx   and  

1

1
2

( )f x dx . 

   To examine the convergence of  

1
2

11
32

0

1

(1 )
dx

x x
 , we take 

1
2

1
( )g x

x
  

   Then 

1
0 0 3

( ) 1
lim lim 1

( ) (1 )
x x

f x

g x x
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1
2

1
2

0

1
dx

x
   converges    

1
2

11
32

0

1

(1 )
dx

x x



  is convergent. 

   To examine the convergence of  

1

11
321

2

1

(1 )
dx

x x
 , we take  

1
3

1
( )

(1 )
g x

x



 

   Then 

            
1

1 1 2

( ) 1
lim lim 1

( )x x

f x

g x x
 

   

   

1

1
31

2

1

(1 )
dx

x
   converges     

1

11
321

2

1

(1 )
dx

x x
   is convergent. 

   Hence 
1

0
( )f x dx  converges. 

 

 Question 

   Show that   
1

11

0

1
nmx x dx
   exists iff  ,m n  are both positive. 

Solution 
   The integral is proper if  1m    and  1n  . 

   The number ‘0’ is a point of infinite discontinuity if  1m   and the number ‘1’ is a 

point of infinite discontinuity if  1n  . 

   Let  1m    and  1n  . 

   We take any number, say 1
2

, between 0 & 1 and examine the convergence of the 

improper integrals   

1
2

11

0

1
nmx x dx
    and   

1
11

1
2

1
nmx x dx
    at ‘0’ and ‘1’ 

respectively.  

Convergence at 0: 

   We write  

                  
1

1 1

1

(1 )
( ) (1 )

n
m n

m

x
f x x x

x


 




      and take  

1

1
( )

m
g x

x 
  

   Then  
( )

1
( )

f x

g x
   as  0x   

   As  

1
2

1

0

1
m

dx
x    is convergent at 0  iff   1 1m    i.e. 0m   

  We deduce that the integral   

1
2

11

0

1
nmx x dx
    is convergent at 0, iff  m  is +ive. 

Convergence at 1: 
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   We write  
1

1 1

1
( ) (1 )

(1 )

m
m n

n

x
f x x x

x


 


  


   and take  

1

1
( )

(1 ) n
g x

x 



 

   Then  
( )

1
( )

f x

g x
   as  1x   

   As  

1

1

1
2

1

(1 ) n
dx

x    is convergent, iff   1 1n     i.e. 0n  . 

   We deduce that the integral   
1

11

1
2

1
nmx x dx
   converges iff  0n  . 

   Thus   
1

11

0

1
nmx x dx
   exists for positive values of ,m n  only.  

   It is a function which depends upon m  & n  and is defined for all positive values of 

m  & n . It is called Beta function. 
 

 Question  
   Show that the following improper integrals are convergent. 

   (i)  2

1

1
sin dx

x



     (ii)  
2

2

1

sin x
dx

x



     (iii)  

1

2

0

log

(1 )

x x
dx

x     (iv)  

1

0

log log(1 )x x dx   

Solution 

(i)   Let  2 1
( ) sinf x

x
    and   

2

1
( )g x

x
   

   then    
2

0
2

2
1

1

sin( ) sin
lim lim lim 1

( )x x y

x

x

f x y

g x y  

 
   

 
 

    
1

( )f x dx



    and  
2

1

1
dx

x



   behave alike. 

    
2

1

1
dx

x



   is convergent   2

1

1
sin dx

x



   is also convergent. 

 

(ii)   
2

2

1

sin x
dx

x



  

   Take  
2

2

sin
( )

x
f x

x
   and  

1
( )g x

x
  

   2sin 1x      
2

2 2

sin 1x

x x
      1,x    

   and   
1

1
dx

x



   converges    
2

2

1

sin x
dx

x



    converges. 
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 Note 

   

1 2

2

0

sin x
dx

x   is a proper integral because  
2

20

sin
lim 1
x

x

x
   so that ‘0’ is not a point of 

infinite discontinuity. Therefore  
2

2

0

sin x
dx

x



  is convergent. 

(iii)    

1

2

0

log

(1 )

x x
dx

x  

       log x x  ,     (0,1)x      

     2logx x x   

             
   

2

2 2

log

1 1

x x x

x x
 

 
 

   Now  
 

1 2

2

0 1

x
dx

x
   is a proper integral. 

        
 

1

2

0

log

1

x x
dx

x



   is convergent. 

 

(iv)   

1

0

log log(1 )x x dx   

log x x       log( 1) 1x x     

          log log(1 ) ( 1)x x x x      

          

1

0

( 1)x x dx   is a proper integral    

1

0

log log(1 )x x dx     is convergent. 

 

 Note 

    (i)   
0

1
a

p
dx

x
  diverges when 1p   and converges when 1p  . 

    (ii)  
1

p

a

dx
x



   converges iff  1p  . 
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UNIFORM CONVERGENCE OF IMPROPER INTEGRALS 
 

 Definition 
   Let f  be a real valued function of two variables x  & y , [ , )x a  , yS  where 

S . Suppose further that, for each y  in S , the integral ( , ) ( )
a

f x y d x


  is 

convergent. If F  denotes the function defined by the equation 

                                     ( ) ( , ) ( )
a

F y f x y d x


       if    yS  

the integral is said to converge pointwise to F  on S  

 

 Definiton 

   Assume that the integral ( , ) ( )
a

f x y d x


  converges pointwise  to F  on S . The 

integral is said to converge Uniformly on S  if, for every 0   there exists a 0B   

(depending only on  ) such that b B  implies 

                                       ( ) ( , ) ( )

b

a

F y f x y d x        y S . 

( Pointwise convergence means convergence when y  is fixed but uniform 

convergence is  for every yS  ). 
 

 Theorem (Cauchy condition for uniform convergence.) 

   The integral ( , ) ( )
a

f x y d x


  converges uniformly on S , iff, for every 0   there 

exists a  0B   (depending on  ) such that  c b B    implies  

                         ( , ) ( )

c

b

f x y d x       y S . 

Proof 

   Proceed as in the proof for Cauchy condition for infinite integral  
a

f d


 . 

 

 

 Theorem (Weierstrass M-test) 

   Assume that    on [ , )a   and suppose that the integral ( , ) ( )
b

a
f x y d x  exists 

for every b a  and for every y  in S . If there is a positive function M  defined on 

[ , )a   such that the integral ( ) ( )
a

M x d x


  converges and ( , ) ( )f x y M x  for 

each x a  and every y  in S , then the integral ( , ) ( )
a

f x y d x


  converges uniformly 

on S . 
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Proof 

   ( , ) ( )f x y M x  for each x a  and every y  in S . 

    For every c b , we have 

                    ( , ) ( ) ( , ) ( )

c c c

b b b

f x y d x f x y d x M d       ………… (i) 

    
a

I M d


   is convergent 

      given 0  , 0B    such that b B  implies 

                         
2

b

a

M d I     …………… (ii) 

   Also if  c b B  , then 

                         
2

c

a

M d I     …………… (iii) 

   Then  

c c b

b a a

M d M d M d       

                            

c b

a a

M d I I M d       

                            

c b

a a

M d I M d I       
2 2

          (By ii & iii) 

      ( , ) ( )

c

b

f x y d x    ,    c b B   & for each yS  

   Cauchy condition for convergence (uniform) being satisfied. 

   Therefore the integral ( , ) ( )
a

f x y d x


  converges uniformly on S .  

 

 
 

 Example 

    Consider   
0

sinxye x dx





  

                sinxy xy xye x e e        sin 1x   

   and                 xy xce e                 if     c y  

   Now take      ( ) cxM x e  

   The integral   
0 0

( ) cxM x dx e dx

 

    is convergent & converging to  
1

c
. 
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     The conditions of M-test are satisfied and  
0

sinxye x dx





  converges uniformly 

on  [ , )c   for every  0c  . 

 

 Theorem (Dirichlet’s test for uniform convergence) 

   Assume that   is bounded on [ , )a   and suppose the integral ( , ) ( )

b

a

f x y d x  

exists for every b a  and for every y  in S . For each fixed y  in S , assume that 

( , ) ( , )f x y f x y   if  a x x    . Furthermore, suppose there exists a positive 

function g , defined on [ , )a  , such that ( ) 0g x   as x  and such that x a  

implies  

              ( , ) ( )f x y g x    for every y  in S .  

   Then the integral ( , ) ( )
a

f x y d x


  converges uniformly on S . 

Proof 

   Let  0M    be an upper bound for    on   ,a  .  

   Given  0  , choose B a  such that x B  implies  

       ( )
4

g x
M


    

( ( )g x  is +ive and 0  as x  
4

( ) 0
M

g x


    for x B ) 

   If  c b , integration by parts yields 

( , ) ( )

c c
c

b

b b

f d f x y x df        

 ( , ) ( ) ( , ) ( ) ( )

c

b

f c y c f b y b d f       ………… (i) 

   But, since f  is increasing (for each fixed y ), we have 

                   ( ) ( )

c c

b b

d f M d f        (  upper bound of   is M ) 

        ( , ) ( , )M f b y M f c y   …………… (ii) 

   Now if  c b B  , we have from (i) and (ii) 

 ( , ) ( ) ( , ) ( ) ( )

c c

b b

f d f c y c f b y b d f         

     ( ) ( , ) ( , ) ( ) ( , ) ( , )c f c y f b y b M f b y f c y      

     ( ) ( , ) ( ) ( , ) ( , ) ( , )c f c y b f b y M f b y M f c y      

     ( ) ( ) ( ) ( )M g c M g b M g b M g c     

      2 ( ) ( )M g b g c   
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     2
4 4

M
M M

 


 
   

 
 

       

c

b

f d       for every y  in S . 

   Therefore the Cauchy condition is satisfied and ( , ) ( )
a

f x y d x


  converges 

uniformly on S . 
 

 Example 

   Consider   
0

sin
xye

xdx
x

 

  

   Take  ( ) cosx x     and   ( , )
xye

f x y
x



    if  0x  , 0y  . 

   If    0, S   and  
1

( )g x
x

   on   ,    for every  0    then 

i)    ( , ) ( , )f x y f x y     if  x x   and ( )x  is bounded on  ,  . 

ii)   ( ) 0g x    as  x  

iii)  
1

( , ) ( )
xye

f x y g x
x x



        y S . 

   So that the conditions of Dirichlet’s theorem are satisfied. 

   Hence    

        sin ( cos )
xy xye e

x dx d x
x x

 

  

      converges uniformly on   ,   if 0  . 

   
0

sin
lim 1
x

x

x
        

0

sinxy x
e dx

x


    converges being a proper integral. 

   
0

sinxy x
e dx

x



    also converges uniformly on  0, . 

 

 Remarks 
   Dirichlet’s test can be applied to test the convergence of the integral of a product. 

For this purpose the test can be modified and restated as follows: 

    Let  ( )x  be bounded and monotonic in  ,a   and let ( ) 0x  , when x . 

Also let ( )

X

a

f x dx  be bounded when X a . 

   Then  ( ) ( )
a

f x x dx


   is convergent. 
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 Example 

   Consider  
0

sin x
dx

x



  

sin
1

x

x
    as   0x  . 

0  is not a point of infinite discontinuity. 

   Now consider the improper integral  
1

sin x
dx

x



 . 

   The factor  
1

x
 of the integrand is monotonic and 0  as x . 

   Also 
1

sin cos cos(1) cos cos(1) 2

X

xdx X X       

   So that  
1

sin

X

x dx   is bounded above for every 1X  . 

   
1

sin x
dx

x



    is convergent. Now since  

1

0

sin x
dx

x  is a proper integral, we see that  

0

sin x
dx

x



  is convergent. 

 

 Example 

    Consider   2

0

sin x dx



 . 

   We write   2 21
sin 2 sin

2
x x x

x
    

   Now   2 2

1 1

1
sin 2 sin

2
x dx x x dx

x

 

     

   
1

2x
  is monotonic and 0   as  x  . 

   Also   
2 2

1

2 sin cos cos(1) 2

X

x x dx X     

   So that  
2

1

2 sin

X

x x dx   is bounded for 1X  . 

   Hence  
2

1

1
2 sin

2
x x dx

x



     i.e.   
2

1

sin x dx



  is convergent. 
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   Since  

1

2

0

sin x dx  is only a proper integral, we see that the given integral is 

convergent. 
 

 Example 

Consider 
0

sina x x
e dx

x





   ,  0a   

   Here  a xe  is monotonic and bounded and  
0

sin x
dx

x



  is convergent. 

   Hence  
0

sina x x
e dx

x





   is convergent. 

 
 

 
 Example 

   Show that 
0

sin x
dx

x



  is not absolutely convergent. 

Solution    

   Consider the proper integral  
0

sinn x
dx

x



  

   where n  is a positive integer. We have 

10 ( 1)

sin sinn rn

r r

x x
dx dx

x x

 

 

   

   Put  ( 1)x r y     so that  y  varies in   0, . 

   We have  1sin[( 1) ] ( 1) sin sinrr y y y       

   
( 1) 0

sin sin

( 1)

r

r

x y
dx dy

x r y

 






 
    

   r  is the max. value of  [( 1) ]r y    in   0,  

   
0 0

sin 1 2
sin

( 1)

y
dy ydy

r y r r

 

  
  

           
   Division by max. value

will lessen the value




 

   
1 10

sin 2 2 1
n n nx

dx
x r r



 
     

   
1

1n

r
   as  n ,  we see that  

      
0

sinn x
dx

x



    as  n . 

We need not 

take x  

because  0x  . 
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   Let, now, X  be any real number. 

   There exists a  +tive integer n  such that   ( 1)n X n    . 

   We have   
0 0

sin sinX nx x
dx dx

x x



    

   Let  X    so that  n  also  . Then we see that  
0

sinX x
dx

x
  

   So that  
0

sin x
dx

x



   does not converge. 

 

 Questions 
Examine the convergence of  

(i)   
3

1
(1 )

x
dx

x



       (ii)   
1

1

(1 )
dx

x x




      (iii)   

 
1 1

3 2
1 1

dx

x x




  

Solution 

(i)   Let  
3

( )
(1 )

x
f x

x



 and take 

3 2

1
( )

x
g x

x x
   

   As   
3

3

( )
lim lim 1

( ) (1 )x x

f x x

g x x 
 


 

   Therefore the two integrals  
3

1
(1 )

x
dx

x



   and  
2

1

1
dx

x



   have identical behaviour for 

convergence at   . 

   
2

1

1
dx

x



   is convergent     
3

1
(1 )

x
dx

x




   is convergent. 

 

(ii)  Let  
1

( )
(1 )

f x
x x




   and take   
3

2

1 1
( )g x

x x x
   

   We have  
( )

lim lim 1
( ) 1x x

f x x

g x x 
 


 

   and   
3

2
1

1
dx

x



  is convergent. Thus  
1

1

(1 )
dx

x x




   is convergent. 

(iii)   Let  

 
1 1

3 2

1
( )

1
f x

x x



 

   we take  
1 51

3 2 6

1 1
( )g x

x x x
 


 

   We have  
( )

lim 1
( )x

f x

g x
  and  

5
6

1

1
dx

x



  is convergent   
1

( )f x dx



   is convergent. 
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 Question  

   Show that  
2

1

1
dx

x




   is convergent. 

Solution 
   We have  

         

0

2 2 2

0

1 1 1
lim

1 1 1

a

a
a

dx dx dx
x x x




 

 
  

    
    

       
2 2

0 0

1 1
lim

1 1

a a

a
dx dx

x x

 
  

  
   

2

0

1
2lim

1

a

a
dx

x

 
  

 
  

       1

0
2 lim tan

a

a
x


  2

2




 
  

 
 

   therefore the integral is convergent. 
 

 Question 

   Show that  
1

2

0

tan

1

x
dx

x

 

   is  convergent. 

Solution 

   
1

2 1

2

tan
(1 ) tan

(1 ) 2

x
x x

x


   


    as   x  

   
1

2

0

tan

1

x
dx

x

 

     &    
2

0

1

1
dx

x




  behave alike. 

   
2

0

1

1
dx

x




  is convergent     A given integral is convergent. 

 

 Question 

   Show that  
0

sin

(1 )

x
dx

x 



  converges for 0  . 

Solution 

   
0

sin xdx



   is bounded because  
0

sin 2

X

xdx      0x  . 

   Furthermore the function  
1

(1 )x 
,  0   is monotonic on   0, . 

      the integral  
0

sin

(1 )

x
dx

x 



  is convergent. 

 

 

Here 

1

2

tan
( )

1

x
f x

x






 

and   2
( ) 1g x x   
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 Question 

   Show that  
0

cosxe xdx





  is absolutely convergent. 

Solution 

   cosx xe x e     and   
0

1xe dx



   

     the given integral is absolutely convergent. (comparison test) 

 

 Question 

   Show that   

1

4
0 1

xe
dx

x




   is convergent. 

Solution 

   1xe    and  21 1x   

   
4 2 2 2

1 1

1 (1 )(1 ) 1

xe

x x x x



  
   

 

   Also   

1 1

2 20
0 0

1 1
lim

1 1
dx dx

x x










 
   

             1

0
lim sin (1 )

2





    

   

1

4
0 1

xe
dx

x






  is convergent. (by comparison test) 
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