
 

A sequence (of real numbers, of sets, of functions, of anything) is simply a list. 

There is a first element in the list, a second element, a third element, and so on 

continuing in an order forever. In mathematics a finite list is not called a 

sequence (some authors considered it finite sequence); a sequence must 

continue without interruption. Formally it is defined as follows: 
 

Sequence  

A sequence is a function whose domain of definition is the set of natural 

numbers. 
 

Notation: 

An infinite sequence is denoted as  

1

{ }n
n

s


=

 or   :ns n  or   1 2 3, , ,...s s s  or simply as  ns  or by ( )ns . 

The values 
ns  are called the terms or the elements of the sequence  ns . 

  e.g.        i)      1,2,3,n = . 

    ii) 
1 1 1

1, , ,
2 3n

   
=   

   
. 

   iii)    1( 1) 1, 1,1, 1,n+− = − − . 

   iv)  2,3,5,7,11,... , a sequence of positive prime numbers.  
 

Subsequence 

It is a sequence whose terms are contained in given sequence. 

A subsequence of { }ns  is usually written as { }
kns . 

 

Increasing Sequence  

A sequence  ns  is said to be an increasing sequence if  

1 1n ns s n+    . 
 

Decreasing Sequence 

A sequence  ns  is said to be an decreasing sequence if  

1 1n ns s n+    . 
 

Monotonic Sequence 

A sequence  ns  is said to be monotonic sequence if it is either increasing 

or decreasing. 
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Examples: 

➢   {1,2,3,...}n = is an increasing sequence. 

➢ 
1

n

 
 
 

 is a decreasing sequence. 

➢  cos { 1,1, 1,1,...}n = − −  is neither increasing nor decreasing. 
 

Bounded Sequence 

A sequence is said to be bounded if its range is a bounded set. 
 

Definition 

A sequence  ns  is said to be bounded if there is a number   so that   

 
ns n   .  

 

 

Examples 

a)  
( 1)n

nu
n

 −
=  
 

 is a bounded sequence  

b)    sinnv nx=  is also bounded sequence. Its supremum is 1 and infimum 

is 1− . 

c) The geometric sequence  1nar − , 1r   is an unbounded above sequence. 

It is bounded below by a. 

d)  exp( )n  is an unbounded sequence.   
 

Definition 

A sequence  ns  of real numbers is said to convergent to limit  ‘s’  as 

n→ , if for every real number 0  , there exists a positive integer 
0n , 

depending on  , such that 

ns s −     whenever 
0n n . 

 

A sequence that converges is said to be convergent. A sequence that fails to 

converge is said to divergent. If  ns  converges to s , then we write lim n
n

s s
→

=  

or lim ns s= .  
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Theorem 

A convergent sequence of real number has one and only one limit (i.e. 

limit of the sequence is unique.) 
 

Theorem (Sandwich Theorem or Squeeze Theorem) 

Suppose that  ns  and  nt  be two convergent sequences such that 

lim limn n
n n

s t s
→ →

= = . If 
n n ns u t    

0n n  , then the sequence  nu  also 

converges to s. 
 

Cauchy Sequence 

A sequence  ns  of real number is said to be a Cauchy sequence if for 

given number 0  , there exists a positive integer 
0( )n   such that  

     
n ms s −    

0,m n n   
 

Theorem 

A Cauchy sequence of real numbers is bounded. 
 

 

Theorem 

Let a sequence  ns  be a bounded sequence. 

  (i)  If  ns  is monotonically increasing then it converges to its supremum. 

  (ii)  If  ns  is monotonically decreasing then it converges to its infimum. 
 

Remark: 

  Let  ns  be a sequence and lim n
n

s s
→

= . Then 1lim n
n

s s+
→

= .   
 

Theorem 

Every Cauchy sequence of real numbers has a convergent subsequence. 
 

Theorem (Cauchy’s General Principle for Convergence) 

A sequence of real number is convergent if and only if it is a Cauchy 

sequence. 
 

 

Limit Inferior of the sequence 

Suppose  ns  is bounded below then we define limit inferior of  ns  as 

follow 

    liminf limn n
nn

s u
→→

= ,   where    inf :n ku s k n=  . 

   If 
ns  is not bounded below then  

    liminf n
n

s
→

= − . 
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Limit Superior of the sequence 

Suppose  ns  is bounded above then we define limit superior of  ns  as 

follow 

   limsup limn n
nn

s v
→→

= ,  where   sup :n kv s k n=   

   If 
ns  is not bounded above then we have  

    limsup n
n

s
→

= + . 

 

Theorem 

  If  ns  is a convergent sequence, then  

    ( ) ( )lim lim inf lim supn n n
n n n

s s s
→ → →

= = . 

 

 
 

Infinite Series 

Given a sequence  na , we use the notation 
1

n

i

a


=

  or simply 
na  to 

denotes the sum 
1 2 3a a a+ + +  and called a infinite series or just series. 

   The numbers 
1

n

n k

k

s a
=

=  are called the partial sum of the series. 

If the sequence  ns  converges to s, we say that the series converges and write 

1

n

n

a s


=

= , the number s is called the sum of the series but it should be clearly 

understood that the ‘s’ is the limit of the sequence of sums and is not obtained 

simply by addition. 

   If the sequence  ns  diverges then the series is said to be diverge. 

Note: 

   The behaviors of the series remain unchanged by addition or deletion of the 

certain terms  
 

Theorem 

If  
1

n

n

a


=

  converges then  lim 0n
n

a
→

= . 

 

Note:  The converse of the above theorem is false. For example, the series
1

1

n n



=

  

is divergent, although   lim 0n
n

a
→

= . 

This implies that if    lim 0n
n

a
→

 , then  
na  is divergent (It is known as basic 

divergent test). 
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 Theorem (Cauchy Criterion for Convergence of Infinite Series) 

   A series 
na  is convergent if and only if for any real number 0  , there 

exists a positive integer 
0n  such that  

     
1

n

i

i m

a 
= +

      
0n m n   . 

 

Above theorem can be stated as A series 
na  is convergent if and only if for 

any real number 0  , there exists a positive integer 
0n  such that  

   
1 2 ...n n n pa a a + + ++ + +   such that 

0n n , 1p  .  
 
 
 

Theorem (Comparison Test) 

   Suppose 
na  and 

nb  are infinite series such that  0na  , 0nb    n . 

Also suppose that for a fixed positive number   and positive integer k , 

n na b   n k  . 

(i) If 
nb  is convergent, then    

na  is convergent. 

(ii) If 
na  is divergent, then 

nb  is divergent. 

 

Example 

    The series 
1

n  is convergent if 1   and diverges if 1  . 

 

Theorem 

   Let 0na  , 0nb   and lim 0n

n
n

a

b


→
=   then the series 

na  and 
nb  behave 

alike. 

 

 

Theorem (Cauchy Condensation Test) 

    Let  0na  , 
1n na a +  1n  . Then the series  

na  and   1

1

2
2 n

n a −

−  

converges or diverges together. 
 

 

Alternating Series 

   A series in which successive terms have opposite signs is called an alternating 

series. 

e.g.   
1( 1) 1 1 1

1
2 3 4

n

n

+−
= − + − +  is an alternating series. 
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Theorem (Alternating Series Test or Leibniz Test) 

Let  na  be a decreasing sequence of positive numbers such that lim 0n
n

a
→

=  then 

the alternating series  

1

1 2 3 4

1

( 1)n

n

n

a a a a a


+

=

− = − + − +   converges. 

 

Absolute Convergence 

na  is said to converge absolutely if 
na  converges. 

 

Theorem 

An absolutely convergent series is convergent. 
 

Note 

   The converse of the above theorem does not hold. 

e.g.     
1( 1)n

n

+−
  is convergent but 

1

n
  is divergent.  

 

Theorem (Dirichlet test for infinite series) 

   Let  na  be positive term decreasing sequence such that  lim 0n
n

a
→

=  and  ns , 

1

n

n kk
s b

=
=  is bounded, then 

n na b  is convergent. 

 

Theorem (Abel’s test for infinite series) 

   If  na  is monotonic convergent sequence and 
nb  is convergent then 

n na b  is also convergent. 
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