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We have seen that a function ƒ that is the sum of two or more functions will share cer-
tain desirable properties with those functions. For example, our study of continuity,
differentiation, and integration allows us to state if

ƒ = ƒ1 + ƒ2 + ... + ƒn

on an interval  = [, b], then

� If ƒ1, ƒ2, ..., ƒn are continuous on , so is ƒ .

� If ƒ1, ƒ2, ..., ƒn are differentiable on , so is ƒ , and

ƒ ′ = ƒ ′1 + ƒ
′
2 + .... + ƒ

′
n.

� If ƒ1, ƒ2, ..., ƒn are integrable on , so is ƒ , and
∫ b


ƒ ()d =

∫ b


ƒ1d +

∫ b


ƒ2()d + .... +

∫ b


ƒn()d.

It is natural to ask whether the corresponding results hold when ƒ is the sum of an
infinite series of functions,

ƒ = ƒ1 + ƒ2 + ƒ3 + ... =
∞
∑

k=1

ƒk.

Such type of questions lead us to the theory of sequence of functions and series of
functions. If ƒ1, ƒ2, ƒ3, ... are real valued function defined on an interval  of the reals
numbers. We say that {ƒn} is an infinite sequence of functions on  and

∑∞
k=1 ƒk or

∑

ƒk represents the infinite series of functions on .

Definition 1: Pointwise convergence of sequences of functions

Suppose that {ƒn} is a sequence of functions on an interval  and the sequence
of values {ƒn()} converges for each  ∈ . Then we say that {ƒn} converges
pointwise on  to the limit function ƒ , defined by

ƒ () = lim
n→∞

ƒn(),  ∈ .

Thus if ƒ is the pointwise limit of a sequence of function {ƒn} define on [, b], then
to each ϵ > 0 and to each  ∈ [, b], there correspond an integer m such that

|ƒn() − ƒ ()| < ϵ, ∀ n ≥m. (1)



Definition 2: Pointwise convergence of series of functions

Suppose that
∑∞

k=1 ƒk is a series of functions on an interval . If the series
∑∞

k=1 ƒk() converges for every point  ∈ , then we say
∑∞

k=1 ƒk converges point-
wise on . We define

ƒ () =
∞
∑

k=1

ƒk,  ∈ ,

the function ƒ is called the sum or the pointwise sum of the series
∑

ƒn on .

Examples:

(1) Let {ƒn} be a sequence of functions on R define by

ƒn() =


n
.

This sequence converges pointwise to the zero function on R. Indeed, given an
ϵ > 0, choose N >

�

�


ϵ

�

� then

|ƒn() − 0| =
�

�

�

�



n

�

�

�

�

<

�

�

�

�



N

�

�

�

�

< ϵ, for n > N.

(2) Consider a sequence {ƒn()} define by ƒn() = n on [0,1]. One can note that
lim
n→∞

ƒn() = 0, when  ∈ [0,1) and lim
n→∞

ƒn(1) = 1. Thus we have

ƒ () := lim
n→∞

ƒn() =

¨

0 if 0 ≤  < 1,
1 if  = 1.

Remark: Note that the pointwise limit ƒ of the sequence of continuous functions
{ƒn} is discontinuous at  = 1.

(3) Consider a sequence {ƒn}, where ƒn() =
sinn
p
n

for real . Since −1 ≤ sinn ≤ 1

and
p
n > 0, therefore we have

−
1
p
n
≤
sinn
p
n
≤

1
p
n
.

This give ƒ () := lim
n→∞

ƒn() = 0.

Remark: One can note that ƒ ′n() =
p
n cosn, so that ƒ ′n(0) =

p
n. It is clear that

ƒ ′n(0)→∞ as n→∞ but ƒ ′(0) = 0.
Thus at  = 0, the sequence {ƒ ′n()} diverges whereas the limit function ƒ ′() = 0,
i.e., the limit of differentials is not equal to the differential of the limit.

(4) The geometric series
1 +  + 2 + 3 + ...

converges to (1 − )−1 in the interval −1 <  < 1.

Remark: Note that all the terms are bounded without the sum being so.
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(5) Consider the sequence {ƒn}, where

ƒn() = n(1 − 2)n,  ∈ [0,1].

For  = 0 or  = 1, we have lim
n→∞

ƒn() = 0.

For  ∈ (0,1), we have

lim
n→∞

ƒn() = lim
n→∞

n(1 − 2)n = lim
n→∞

n

(1 − 2)−n

= lim
n→∞



(1 − 2)−n ln(1 − 2)(−1)
(by L’Hospital rule)

= lim
n→∞

−(1 − 2)n

ln(1 − 2)
= 0.

Thus the limit ƒ () = lim
n→∞

ƒn() = 0 for all  ∈ [0,1].

Remark: Note that
∫ 1

0
ƒ ()d = 0 and

∫ 1

0
ƒn()d =

∫ 1

0
n(1 − 2)nd =

−n

2

∫ 1

0
(1 − 2)n(−2)d

=
−n

2

�

�

�

�

�

(1 − 2)n+1

n + 1

�

�

�

�

�

1

0

=
n

2(n + 1)
.

So that lim
n→∞

∫ 1

0
ƒn()d =

1

2
.

Thus lim
n→∞

∫ 1

0
ƒn()d 6=

∫ 1

0
lim
n→∞

ƒn()d.

These few examples should convince us that a quite new category of problems arises
with the consideration of sequences (series) of variable terms. We have to to in-
vestigate under what supplementary conditions some properties (like boundedness,
continuity, differential etc.) of the terms ƒn are transferred to the limit function ƒ . A
concept of great importance in this respect is that known as uniform convergence of
sequences (series) in its domain of definition [, b].

Definition 3: Uniform convergence of sequence of functions

A sequence of functions {ƒn} is said to converge uniformly on an interval [, b]
to a function ƒ if for any ϵ > 0 and for all  ∈ [, b] there exist an integer N
(independent of  but dependent of ϵ) such that

|ƒn() − ƒ ()| < ϵ, ∀ n ≥ N and  ∈ [, b]. (2)

It is clear that every uniformly convergent sequence is pointwise convergent, and
the uniform limit function is same as the pointwise limit function.
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The difference between the two concepts is this: In case of pointwise convergence,
for ϵ > 0 and for each  ∈ [, b] there exist an integer N (depending on ϵ and  both)
such that (1) holds for n ≥ N; whereas in uniform convergence for each ϵ > 0, it is
possible to find one integer N (depend on ϵ alone) which will do for all  ∈ [, b].

Note: Uniform convergence ⇒ pointwise convergence but not vice-versa.
Also a sequence which is not pointwise convergent cannot be uniformly convergent.

Example:

Consider a sequence of functions {ƒn()} on [0, b], b > 0, where ƒn() =
1

 + n
.

Here
ƒ () := lim

n→∞
ƒn() = 0 ∀  ∈ [0, b],

so that the sequence converges pointwise to 0.

For any ϵ > 0,

|ƒn() − ƒ ()| =
1

 + n
< ϵ.

If n >
1

ϵ
− , which decreases with , the maximum value being

1

ϵ
. Let N be an

integer greater than or equal to
1

ϵ
, so that for ϵ > 0, there exists N such that

|ƒn() − ƒ ()| < ϵ, ∀ n ≥ N.

Hence the sequence is uniformly convergent in any interval [0, b], b > 0.

Definition 4: Uniform convergence of series of functions

A series of functions
∑

ƒn is said to converges uniformly on [, b] if the sequence
{sn} of partial sums, defined by

sn() =
n
∑

=1

ƒ()

converges uniformly on [, b].

Thus, a series of functions
∑

ƒn converge uniformly to ƒ on [, b] if for ϵ > 0 and all
 ∈ [, b] there exists an integer N (independent of  and dependent of ϵ) such that
for all  in [, b]

|ƒ1() + ƒ2() + ... + ƒn() − ƒ ()| < ϵ for n ≥ N.

Review: (Cauchy’s general principle of convergence)
A necessary and sufficient condition for the convergence of a sequence of numbers
{sn} is that, for each ϵ > 0 there exists a positive integer m such that

�

�sn+p − sn
�

� < ϵ, ∀ n ≥m ∧ p ≥ 1.
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Note: The proof of above result can be seen in [1, p.73]. It is equivalent to the
statement; “A sequence of real numbers is convergent if and only if it is Cauchy
sequence”.

Theorem 5: Cauchy’s criterion for uniform convergence of sequence

A sequence of functions {ƒn} defined on [, b] converges uniformly on [, b] if
and only if for every ϵ > 0 and for all  ∈ [, b], there exist an integer N such
that

�

�ƒn+p() − ƒn()
�

� < ϵ, n ≥ N,p ≥ 1 and  ∈ [, b]. (3)

Proof. Let the sequence {ƒn} uniformly converge on [, b] to the limit function ƒ , so
that for a given ϵ > 0 and for all  ∈ [, b], there exist integers m1,m2 such that

|ƒn() − ƒ ()| <
ϵ

2
∀ n ≥m1

and
�

�ƒn+p() − ƒ ()
�

� <
ϵ

2
∀ n ≥m2, p ≥ 1.

Let N =mx(m1,m2). Then

�

�ƒn+p() − ƒn()
�

� =
�

�ƒn+p() − ƒ () + ƒ () − ƒn()
�

�

≤
�

�ƒn+p() − ƒ ()
�

�+ |ƒn() − ƒ ()|

<
ϵ

2
+
ϵ

2
= ϵ, ∀ n ≥ N,p ≥ 1.

Conversely, suppose that the given condition (3) holds.

By Cauchy’s general principle of convergence, {ƒn} converges for each  ∈ [, b] to
a limit, say ƒ . Thus the sequence converges pointwise to ƒ . Let us now prove that
the convergence is uniform.

For a given ϵ > 0, let us choose an integer N such that (3) holds. Fix n, and consider
p→∞ in (3). This gives us ƒn+p → ƒ as p→∞, so we get

|ƒ () − ƒn()| < ϵ n ≥ N, all  ∈ [, b],

which proves that ƒn()→ ƒ () uniformly on [, b].

Theorem 6: Cauchy’s criterion for uniform convergence of series

A series of functions
∑

ƒn defined on [, b] converges uniformly on [, b] if and
only if for every ϵ > 0 and for all  ∈ [, b], there exist an integer N such that

�

�ƒn+1() + ƒn+2() + ... + ƒn+p()
�

� < ϵ, n ≥ N,p ≥ 1. (4)
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The proof of the above theorem is left for the readers.

Note: Relation (4) in the statement may be replaced by

|ƒm+1() + ƒm+2() + ... + ƒn()| < ϵ, n,m ≥ N.

Example: Consider a sequence of function {ƒn}, where

ƒn() =
n

1 + n22
, for all  ∈ R.

Prove that {ƒn} is pointwise convergent but not uniformly convergent on an interval
containing 0.

Solution.

ƒ () := lim
n→∞

ƒn() = lim
n→∞

n

1 + n22
= lim

n→∞



1/n + n2

= 0 ∀  ∈ R.

Hence sequence {ƒn} converges pointwise to ƒ () = 0 for all real .

Let {ƒn} converges uniformly in any interval [, b], so that the pointwise limit is also
the uniform limit. Therefore for given ϵ > 0, there exists an integer N such that for
all  ∈ [, b]

�

�

�

�

n

1 + n22
− 0

�

�

�

�

< ϵ ∀ n ≥ N.

In particular, we take ϵ = 1
3 , then we have

�

�

�

�

n

1 + n22

�

�

�

�

<
1

3
∀ n ≥ N.

Let m be an integer greater than N such that 1
m ∈ [, b]. Now if we take n = m and

 = 1
m , then we have

�

�

�

�

n

1 + n22

�

�

�

�

=
�

�

�

�

m · (1/m)

1 +m2 · (1/m2)

�

�

�

�

=
1

2
6<
1

3
= ϵ.

We thus arrive at a contradiction and so the sequence is not uniformly convergent in
the interval [, b], which contains the point 1/m. Since 1/m can tends to 0, therefore
the interval [, b] contains 0.

Hence the sequence is not uniformly convergent on any interval [, b] containing 0.
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Theorem 7

Let {ƒn} be a sequence of functions, such that

lim
n→∞

ƒn() = ƒ (),  ∈ [, b]

and let
Mn = sp

∈[,b]
|ƒn() − ƒ ()| .

Then ƒn → ƒ uniformly on [, b] if and only if Mn → 0 as n→∞.

Proof. Let ƒn → ƒ uniformly on [, b], so that for a given ϵ > 0, there exists an integer
N such that

|ƒn() − ƒ ()| < ϵ, ∀ n ≥ N, ∀  ∈ [, b]

⇒ Mn := sp
∈[,b]

|ƒn() − ƒ ()| < ϵ, ∀ n ≥ N.

⇒ Mn → 0 as n→∞.

Conversely, suppose that Mn → 0 as n→∞, i.e. lim
n→∞

Mn = 0.

This gives for all ϵ > 0, there exists an integer N such that

|Mn − 0| < ϵ, ∀ n ≥ N,

⇒ Mn < ϵ ∀ n ≥ N,

that is

sp
∈[,b]

|ƒn() − ƒ ()| < ϵ, ∀ n ≥ N,

⇒ |ƒn() − ƒ ()| < ϵ, ∀ n ≥ N, ∀  ∈ [, b],

⇒ ƒn → ƒ unifromly on [, b].

This complete the proof.

Question: Use the above theorem to prove that a sequence {ƒn}, where

ƒn() =
n

1 + n22

is not uniformly convergent on any interval containing zero.

Solution of the above question left for the reader.
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Question: Prove that the sequence {ƒn}, where

ƒn() =


1 + n2

is uniformly convergent on any interval .

Solution. Here the pointwise limit

ƒ () := lim
n→∞

ƒn() = lim
n→∞



1 + n2
= 0 ∀  ∈ R.

Now let

Mn = sp
∈
|ƒn() − ƒ ()| = sp

∈

�

�

�

�



1 + n2

�

�

�

�

.

If we take g() =


1 + n2
, then

g′() =
(1 + n2) · 1 −  · 2n

(1 + n2)2
=
1 + n2 − 2n2

(1 + n2)2

=
1 − n2

(1 + n2)2
.

Put g′() = 0, we get

1 − n2 = 0 ⇒ n2 = 1 ⇒ 2 =
1

n
⇒  = ±

1
p
n
.

This gives g() has extreme values at  = ± 1p
n
.

Now

g′′() =
(1 + n2)2 · (−2n) − (1 − n2) · 2(1 + n2)(2n)

(1 + n2)4

=
−2n(1 + n2)(1 + n2 + 2 − 2n2)

(1 + n2)4
=
−2n(3 − n2)

(1 + n2)3
.

Since

g′′
�

1
p
n

�

= −
p
n

2
< 0 and g′′

�

−
1
p
n

�

=

p
n

2
> 0,

this gives g has extreme value at  = ± 1p
n

and g
�

± 1p
n

�

= ± 1
2
p
n
.

Hence

Mn = sp
�

�

�

�

g
�

±
1
p
n

��

�

�

�

=
1

2
p
n

and Mn → 0 as n→∞.

This implies {ƒn} converges uniformly on .

Exercises

1. Show that the sequence {ƒn}, where

ƒn() = ne−n
2
,  ≥ 0,

is not uniformly convergent on [0, k], k > 0.
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2. Show that the sequence {n} is not uniformly convergent on [0,1].

3. Show that the sequence {exp(−n)} is not uniformly convergent on [0, k], k > 0.

4. Test the following sequences for uniform convergence.

a.
�

sinn
p
n

�

, 0 ≤  ≤ 2π.

b.
§ 

n + 

ª

, 0 ≤  ≤ k, where k > 0.

c.
§ 

n + 

ª

, 0 ≤  <∞.

Review: (Cauchy’s criterion for convergence of series)
A necessary and sufficient condition for the convergence of a series of numbers

∑

n
is that, for each ϵ > 0 there exists a positive integer m such that

�

�n+1 + n+2 + ... + n+p
�

� < ϵ for n > m and p ≥ 1.

Theorem 8: Weierstrass’s M-test

A series of functions
∑

ƒn will converge uniformly (and absolutely) on [, b] if
there exists a convergent series

∑

Mn of positive numbers such that for all  ∈
[, b]

|ƒn()| ≤ Mn for all n.

Proof. Since
∑

Mn is convergent, therefore by Cauchy criterion for convergence of
series, for all ϵ > 0, there exists and integer N such that

�

�Mn+1 + Mn+2 + ... + Mn+p
�

� < ϵ ∀ n > N and p ≥ 1,

i.e. Mn+1 + Mn+2 + ... + Mn+p < ϵ ∀ n > N and p ≥ 1 as Mn > 0 ∀ n.

Hence for all  ∈ [, b] and for all n > N, p ≥ 1, we have

|ƒn+1() +ƒn+2() + ... + ƒn+p()
�

�

≤ |ƒn+1()| + |ƒn+2()| + ... + |ƒn+p()|

≤ Mn+1 + Mn+2 + ... + Mn+p

< ϵ

(5)

This gives that
∑

ƒn is uniformly convergent on [, b]. Also from (5), one can conclude
that

∑

ƒn is absolutely convergent on [, b].

Remark: The converse of above theorem is not true, i.e. non-convergence of
∑

Mn

does not imply anything as for as
∑

ƒn is concerned.

Example: Consider the series
∑ cosnθ

np
for all θ ∈ R. Since we have

�

�

�

�

cosnθ

np

�

�

�

�

≤
1

np
.
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We know that
∑ 1

np is convergent for p > 1. Hence we conclude that the given series
is uniformly convergent on any interval in R.

Exercise: Prove that the following series are uniformly convergent for all real .

()
∑ sin(2 + n2)

n(n + 1)
()

∑ (−1)n2n

np+1(1 + 2n)
, p > 0.

Theorem 9: Uniform convergence and continuity

Let {ƒn} be a sequence of functions defined on an interval , and 0 ∈ . If the
sequence {ƒn} converges uniformly to some function ƒ on  and if each of the
function ƒn is continuous at 0, then the function ƒ is also continuous at 0.

Proof. Since ƒn → ƒ uniformly on , for given ϵ > 0, there exists an integer N such that

|ƒn() − ƒ ()| <
ϵ

3
, ∀ n ≥ N, ∀  ∈ . (6)

As we have given, each ƒn is continuous at 0, there is a δ > 0 such that

|ƒn() − ƒn(0)| <
ϵ

3
, whenever | − 0| < δ. (7)

Now for all  ∈  and all n ≥ N such that | − 0| < δ, we have

|ƒ () − ƒ (0)| = |ƒ () − ƒn() + ƒn() − ƒn(0) + ƒn(0) − ƒ (0)|

≤ |ƒ () − ƒn()| + |ƒn() − ƒn(0)| + |ƒn(0) − ƒ (0)|

<
ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ, by using (6) and (7).

This conclude that ƒ is continuous at 0.

Corollary 9

Let {ƒn} be a sequence of functions defined on an interval . If the sequence
{ƒn} converges uniformly to some function ƒ on  and if each of the function ƒn is
continuous on , then the function ƒ is also continuous on .
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Theorem 10: Uniform convergence and integration

Let {ƒn} be a sequence of functions defined on [, b]. If ƒn → ƒ uniformly on
[, b] and each function ƒn is continuous on [, b], then

∫ b


ƒ ()d = lim

n→∞

∫ b


ƒn()d. (8)

Proof. Since each ƒn is continuous and ƒn → ƒ uniformly on [, b], therefore ƒ is con-
tinuous on [, b] and hence

∫ b
 ƒ ()d exists.

Now
�

�

�

�

�

∫ b


ƒn()d −

∫ b


ƒ ()d

�

�

�

�

�

=

�

�

�

�

�

∫ b


(ƒn() − ƒ ())d

�

�

�

�

�

≤
∫ b


|ƒn() − ƒ ()|d

≤
∫ b


mx
∈[,b]

|ƒn() − ƒ ()|d

= mx
∈[,b]

|ƒn() − ƒ ()|
∫ b


d,

that is, we have
�

�

�

�

�

∫ b


ƒn()d −

∫ b


ƒ ()d

�

�

�

�

�

≤ (b − ) mx
∈[,b]

|ƒn() − ƒ ()| . (9)

Since ƒn → ƒ uniformly on [, b], for all ϵ > 0, there exists an integer N such that

|ƒn() − ƒ ()| <
ϵ

b − 
∀ n ≥ N, ∀  ∈ [, b],

this gives

mx
∈[,b]

|ƒn() − ƒ ()| <
ϵ

b − 
∀ n ≥ N.

Thus for n ≥ N, expression (9) leads us to
�

�

�

�

�

∫ b


ƒn()d −

∫ b


ƒ ()d

�

�

�

�

�

≤ (b − ) ·
ϵ

b − 
= ϵ,

which is equivalent to the required result.

Review: Mean value theorem (see [5, Page 108])
If ƒ is a real continuous function on [, b] which is differentiable in (, b), then there
is a point c ∈ (, b) at which

ƒ (b) − ƒ () = (b − )ƒ ′(c).
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Review: Fundamental theorem of calculus (see [5, Page 134])
If ϕ is integrable over [, b] and there exists a differentiable function ƒ on [, b] such
that ƒ ′ = ϕ then

∫ b


ϕ(t)dt = ƒ (b) − ƒ ().

Theorem 11: Uniform convergence and differentiation

Let {ƒn} be a sequence of functions defined on [, b] such that ƒn(0) converges
for some point 0 on [, b]. If each ƒn is differentiable and {ƒ ′n} converges uni-
formly on [, b], then {ƒn} converges uniformly on [, b], to a function ƒ , and

ƒ ′() = lim
n→∞

ƒ ′n() ( <  < b).

Proof. Let ϵ > 0 be given. Choose N such that n,m ≥ N implies

|ƒn(0) − ƒm(0)| <
ϵ

2
(10)

and
�

�

�ƒ ′n(t) − ƒ
′
m(t)

�

�

� <
ϵ

2(b − )
( ≤ t ≤ b). (11)

If we apply the mean value theorem to function ƒn − ƒm, we have

ƒn() − ƒm() − ƒn(t) + ƒm(t)

 − t
= ƒ ′n(c) − ƒ

′
m(c) (12)

for any  and t in [, b], c ∈ (, b) and n,m ≥ N.

Using it in (11), we have

|ƒn() − ƒm() − ƒn(t) + ƒm(t)| ≤
| − t|ϵ

2(b − )
≤
ϵ

2
. (13)

Now we have

|ƒn() − ƒm()| = |ƒn() − ƒm() − ƒn(0) + ƒm(0) + ƒn(0) − ƒm(0)|

≤ |ƒn() − ƒm() − ƒn(0) + ƒm(0)| + |ƒn(0) − ƒm(0)|.

Using (10) and (13) in above inequality, we have

|ƒn() − ƒm()| <
ϵ

2
+
ϵ

2
= ϵ ( ≤  ≤ b, n,m ≥ N),

this implies {ƒn} converges uniformly on [, b]. Let

ƒ () = lim
n→∞

ƒn() ( ≤  ≤ b). (14)

Since we have given that {ƒ ′n} is uniformly convergent, therefore consider

ϕ() = lim
n→∞

ƒ ′n() ( ≤  ≤ b).
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Let us know fix a point  on [, b]. Then we have
∫ 


ϕ(t)dt =

∫ 


lim
n→∞

ƒ ′n(t)dt

= lim
n→∞

∫ 


ƒ ′n(t)d (as ƒ ′n is uniformly convergent)

= lim
n→∞

[ƒn() − ƒn()] (by fundamental theorem of calculus)

By using (14), we get that
∫ 


ϕ(t)dt = ƒ () − ƒ ()

Now again by using fundamental theorem of calculus, we get that

ϕ() = ƒ ′() ( ≤  ≤ b).

This complete the proof.

Disclaimer: Most of the contents in these notes are taken from [1]. These notes are
made for students and they are encourage to read the books. Also see some other
useful books in references.
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