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 Derivative of a function: 

Let f  be defined and real valued on ( ),a b . For any point ( ),c a b∈ , form the 

quotient 

( ) ( )f x f c

x c

−

−
. 

We fix point c  and study the behaviour of this quotient as x c→ . 

 

 Definition 

Let f  be defined on an open interval ( ),a b , and assume that ( , )c a b∈ . Then f is said to 

be differentiable at c whenever the limit 

( ) ( )
lim
x c

f x f c

x c→

−

−
 

exists. This limit is denoted by ( )f c′  and is called the derivative of f at point c. 

 

If x c h− = , then we have 

0

( ) ( )
( ) lim .

h

f c h f c
f c

h→

+ −
′ =  

 Example 

(i) A function :f →ℝ ℝ  defined by  

2 1 ; 0sin
( )

; 00

x xx
f x

x

≠
= 

=
 

   This function is differentiable at 0x =  because 

0

( ) (0)
lim

0x

f x f

x→

−

−
 

2

0

1sin 0
lim

0x

xx

x→

−
=

−
 

       
2

0

1sin
lim
x

xx

x→
=    

       
0

1lim sin
x

xx
→

=  0= . 

(ii) Let  ( ) nf x x=   ;  0n ≥   (n is integer),   x∈ℝ . 

Then  

( ) ( )
lim
x c

f x f c

x c→

−

−
   lim

n n

x c

x c

x c→

−
=

−
 

         
1 2 2 1( )( ... )

lim
n n n n

x c

x c x cx c x c

x c

− − − −

→

− + + + +
=

−
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1 2 2 1lim ( ... )n n n n

x c
x cx c x c− − − −

→
= + + + +  

    1nnc −=  

implies that f  is differentiable every where and  1( ) nf x nx −′ = . 

 Theorem  

Let f  be defined on ( ),a b , if f  is differentiable at a point  ( ),x a b∈ , then f  is 

continuous at x. (Differentiability implies continuity)  

Proof 

We know that  

( ) ( )
lim ( )
t x

f t f x
f x

t x→

−
′=

−
   where t x≠    and  a t b< <  

   Now  

( ) ( )
( ) ( )

lim ( ) ( ) lim lim
t x t x t x

f t f x
f t f x t x

t x→ → →

− 
− = − 

− 
 

       ( ) 0f x′= ⋅    

       0=  

     lim ( ) ( )
t x

f t f x
→

 = . 

   This show that f is continuous at x. 

 

 Remarks 

(i) The converse of the above theorem does not hold. 

   Consider   
0

( )
0

x if x
f x x

x if x

≥
= = 

− <
 

   (0)f ′  does not exists but ( )f x  is continuous at 0x =  

(ii) If f is discontinuous at fc ∈D  then ( )f c′  does not exist. 

e.g.  

1 0
( )

0 0

if x
f x

if x

>
= 

≤
  

           is discontinuous at 0x =  therefore it is not differentiable at 0x = . 

 

 Theorem 

    Suppose f  and g  are defined on [ , ]a b  and are differentiable at a point [ , ]x a b∈ , 

then f g+ , fg  and 
f

g
 are differentiable at x and  

(i)     ( ) ( ) ( ) ( )f g x f x g x′ ′ ′+ = +  

(ii)    ( ) ( ) ( ) ( ) ( ) ( )fg x f x g x f x g x′ ′ ′= +  

(iii)   
2

( ) ( ) ( ) ( )
( )

( )

f g x f x f x g x
x

g g x

′ ′ ′  −
= 

 
 

   The proof of this theorem can be get from any F.Sc or B.Sc text book. 
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 Remark 

As we know 
( ) ( )

lim ( )
t x

f t f x
f x

t x→

−
′=

−
, this gives 

( ) ( )
( ) ( )

f t f x
f x u t

t x

−
′= +

−
,  

where ( )u t  is a function such that ( ) 0u t →  as t x→ . 

This gives us [ ]( ) ( ) ( ) ( ) ( )f t f x t x f x u t′− = − + , where ( ) 0u t →  as t x→ , as an 

alternative definition of derivative. 
 

 Theorem (Chain Rule) 

Suppose f  is continuous on [ , ]a b , ( )f x′  exists at some point [ , ]x a b∈ . A 

function g  is defined on an interval I  which contains the range of f , and g  is 

differentiable at the point ( )f x . 

   If    ( )( ) ( )h t g f t=  ;  a t b≤ ≤  

   Then h  is differentiable at x  and  ( )( ) ( ) ( )h x g f x f x′ ′ ′= ⋅ . 

Proof 

   Let ( )y f x=  

   By the definition of the derivative we have 

[ ]( ) ( ) ( ) ( ) ( )f t f x t x f x u t′− = − +  ………... (i) 

and [ ]( ) ( ) ( ) ( ) ( )g s g y s y g y v s′− = − +  ……….. (ii) 

   where  [ ],t a b∈ , s I∈  and ( ) 0u t →  as t x→  and ( ) 0v s →  as s y→ . 

   Let us suppose  ( )s f t=  then  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )h t h x g f t g f x g s g y− = − = −   

       [ ][ ]( ) ( )s y g y v s′= − +      by (ii) 

       [ ][ ]( ) ( ) ( ) ( )f t f x g y v s′= − +      

       [ ][ ]( ) ( ) ( ) ( ) ( )t x f x u t g y v s′ ′= − + +   by (i) 

   or  if t x≠  

[ ][ ]
( ) ( )

( ) ( ) ( ) ( )
h t h x

f x u t g y v s
t x

−
′ ′= + +

−
 

   taking the limit as t x→  we have 

[ ][ ]( ) ( ) 0 ( ) 0h x f x g y′ ′ ′= + +  

        ( )( ) ( )g f x f x′ ′= ⋅   ( )y f x=∵  

   which is the required result. 

 

 Example 

Let us find the derivative of sin(2 )x , One way to do that is through some trigonometric 

identities. Indeed, we have 
sin(2 ) 2sin( )cos( )x x x= ⋅  

So we will use the product formula to get  
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sin(2 ) 2 sin ( )cos( ) sin( )cos ( )( ) ( )x x x x x
′ ′′ = +

 
which implies 

2 2
sin(2 ) 2 cos ( ) sin ( )( ) ( )x x x′ = − ⋅  

Using the trigonometric formula 2 2cos(2 ) cos ( ) sin ( )x x x= − , we have 

sin(2 ) 2cos(2 )( )x x′ = ⋅  

Once this is done, you may ask about the derivative of sin(5 )x ? The answer can be 

found using similar trigonometric identities, but the calculations are not as easy as 

before. We will see how the Chain Rule formula will answer this question in an elegant 

way. 

Let us find the derivative of sin(5 )x ⋅   

We have  ( )( ) ( )h x f g x=  , where ( )   5g x x=  and  ( ) sin( )f x x=  . Then the Chain rule 

implies that '( )h x  exists and  

 ( ) 5 cos(5 ) 5cos(5 )[ ]h x x x′ = ⋅ = ⋅  

 

 Local Maximum 

Let f  be a real valued function defined 

on a set E ⊆ ℝ , we say that f  has a local 

maximum at a point p E∈  if there exist 0δ >  

such that ( ) ( )f x f p≤  x D∀ ∈  with 

x p δ− < . 

Local minimum is defined likewise.  

 

 

 Theorem 

Let f  be defined on [ ],a b , if f  has a local maximum at a point [ ],x a b∈  and if 

( )f x′  exist then ( ) 0f x′ = . 

   (The analogous for local minimum is of course also true) 

Proof 

   Choose δ  such that  

a x x x bδ δ< − < < + <  

   Now if  x t xδ− < <   then 

( ) ( )
0

f t f x

t x

−
≥

−
 

      Taking limit as t x→   we get 

   ( ) 0f x′ ≥  …………. (i) 

      If  x t x δ< < +  

      Then    

( ) ( )
0

f t f x

t x

−
≤

−
 

a b x – δ t x + δ t x 

f(x) 
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      Again taking limit when t x→  we get 

( ) 0f x′ ≤  ……………. (ii) 

      Combining (i) and (ii) we have  ( ) 0f x′ = . 

 

 Lagrange’s Mean Value Theorem. 
   Let f  be 

i)   continuous on  [ , ]a b  

ii) differentiable on  ( , )a b . 

     Then there exists a point  ( , )c a b∈  such that    

( ) ( )
( )

f b f a
f c

b a

−
′=

−
. 

We are skipping the proof as it is included in BSc calculus book. 

 

 Generalized Mean Value Theorem 

If f  and g  are continuous real valued functions on 

closed interval [ ],a b  and f  is differentiable on ( ),a b , then 

there is a point ( ),c a b∈  at which 

[ ] [ ]( ) ( ) ( ) ( ) ( ) ( )f b f a g c g b g a f c′ ′− = −  

   The differentiability is not required at the end point. 

We are skipping the proof as it is included in BSc calculus book. 

 

 Theorem (Intermediate Value Theorem or Darboux’s Theorem) 

Suppose f  is a real differentiable function on some interval ( ),a b  and suppose 

( ) ( )f a f bλ′ ′< <  then there exist a point ( , )x a b∈  such that ( )f x λ′ = . 

   A similar result holds if  ( ) ( )f a f b′ ′> . 

Proof 

   Put   ( ) ( )g t f t tλ= −  

   Then  ( ) ( )g t f t λ′ ′= −  

   If  t a=   we have 

( ) ( )g a f a λ′ ′= −  

( ) 0f a λ′ − <∵   ( ) 0g a′∴ <  

   implies that g  is monotonically decreasing at a . 

    ∃  a point 1 ( , )t a b∈  such that 1( ) ( )g a g t> . 

   Similarly,  

( ) ( )g b f b λ′ ′= −  

( ) 0f b λ′ − >∵  ( ) 0g b′∴ >  

   implies that g  is monotonically increasing at b . 

    ∃ a point 2 ( , )t a b∈  such that 2( ) ( )g t g b<  

      the function attain its minimum on  ( , )a b  at 

a point x  (say) 

a    1t            2t      b 
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such that  ( ) 0g x′ =    ( ) 0f x λ′ − =  

    ( )f x λ′ = . 

 

 Question 

   Let  f   be defined for all real  x   and suppose that  

   
2( ) ( ) ( )f x f y x y− ≤ −     ∀   real  x   &  y . Prove that  f   is constant. 

Solution 

   Since  
2( ) ( ) ( )f x f y x y− ≤ −  

   Therefore  
2 2( ) ( ) ( ) ( )x y f x f y x y− − ≤ − ≤ −  

   Dividing throughout by  x y− , we get 

( ) ( )
( ) ( )

f x f y
x y x y

x y

−
− − ≤ ≤ −

−
     when   x y>  

   and  

( ) ( )
( ) ( )

f x f y
x y x y

x y

−
− − ≥ ≥ −

−
     when   x y<  

   Taking limit as  x y→ , we get 

0 ( ) 0
( ) 0

0 ( ) 0

f y
f y

f y

′≤ ≤ 
′ =′≥ ≥ 

 

   which shows that function is constant. 
 

 

 Question  

   Suppose  f  is defined and differentiable for every  0x >   and ( ) 0f x′ →   as x → +∞   

put  ( ) ( 1) ( )g x f x f x= + − . Prove that  ( ) 0g x →   as  x → +∞ . 

Solution 

   Since  f   is defined and differentiable for  0x >  therefore we can apply the 

Lagrange’s M.V. T. to have 

               1( 1) ( ) ( 1 ) ( )f x f x x x f x′+ − = + −      where    1x x< . 

     Since ( ) 0f x′ →    as   x → ∞ , 

     therefore 1( ) 0f x′ →    as  x → ∞  

   ( 1) ( ) 0f x f x + − →   as  x → ∞  

   ( ) 0g x →   as  x → ∞ . 
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 Question (L’Hospital Rule) 

   Suppose  ( ), ( )f x g x′ ′  exist,  ( ) 0g x′ ≠   and  ( ) ( ) 0f x g x= = . 

    Prove that 
( ) ( )

lim
( ) ( )t x

f t f x

g t g x→

′
=

′
  

Proof  

    
( ) ( ) 0

lim lim
( ) ( ) 0t x t x

f t f t

g t g t→ →

−
=

−

( ) ( )
lim

( ) ( )t x

f t f x

g t x→

−
=

−
  ( ) ( ) 0f x g x= =∵  

        
( ) ( )

lim
( ) ( )t x

f t f x t x

t x g t x→

− −
= ⋅

− −
 

        
( ) ( ) 1

lim lim
( ) ( )t x t x

f t f x

g t xt x

t x

→ →

−
= ⋅

−−

−

 

        
( ) ( ) 1

lim
( ) ( )

lim
t x

t x

f t f x

g t xt x

t x

→

→

−
= ⋅

−−

−

 
1

( )
( )

f x
g x

′= ⋅
′

( )

( )

f x

g x

′
=

′
. 

      

 Question  

   Suppose  f   is defined in the neighborhood of a point  x  and  ( )f x′′  exists. 

   Show that  
20

( ) ( ) 2 ( )
lim ( )
h

f x h f x h f x
f x

h→

+ + − −
′′= . 

Solution  
   By use of Lagrange’s Mean Value Theorem 

1( ) ( ) ( )f x h f x hf x′+ − =     where   1x x x h< < +  …………… (i) 

   and  

                  2[ ( ) ( )] ( )f x h f x hf x′− − − =   where   2x h x x− < <  …………… (ii) 

  Subtract (ii) from (i) to get 

1 2( ) ( ) 2 ( ) [ ( ) ( )]f x h f x h f x h f x f x′ ′+ + − − = −  

    1 2

2

( ) ( ) 2 ( ) ( ) ( )f x h f x h f x f x f x

h h

′ ′+ + − − −
 = . 

   Since 2 1 0x x− →   as  0h → , 

   therefore  

    
1 2

1 2

20
1 2

( ) ( ) 2 ( ) ( ) ( )
lim lim
h x x

f x h f x h f x f x f x

h x x→ →

′ ′+ + − − −
=

−
 

           2( )f x′′= . 

 
 

 Question 

   If   1 2 1
0

0
2 3 1

n n
c c c c

c
n n

−+ + + + + =
+

…  

   Where   0 1 2, , , , nc c c c…   are real constants.  

   Prove that  2

0 1 2 0n

nc c x c x c x+ + + + =…   has at least one real root between 0 and 1. 
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Solution 

   Suppose 2 11
0

( )
2 1

nn
c c

f x c x x x
n

+= + + +
+

…  

   Then  (0) 0f =   and  1 2
0

(1) 0
2 3 1

n
c c c

f c
n

= + + + + =
+

…  

   (0) (1) 0f f = =  

   ( )f x∵   is a polynomial therefore we have 

i) It is continuous on  [0,1]  

ii) It is differentiable on  (0,1)  

iii) And  ( ) 0 ( )f a f b= =  

    the function  f  has local maximum or a local minimum at some point  ( )0,1x ∈  

          ( )f x′ = 2

0 1 2 0n

nc c x c x c x+ + + + =…   for some ( )0,1x ∈  

             the given equation has real root between 0 and 1. 
 

…………………………… 
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