
 
 

Infinite Series 

   Given a sequence { }na , we use the notation 
1

n

n

a
∞

=

  or 
1 nn
a

∞

=  or simply 
n

a  to 

denotes the sum 1 2 3a a a+ + +…  and called a infinite series or just series. 
   
 

Convergence and divergence of the series 

  A series 
1

n

n

a
∞

=

  is said to be convergent if the sequence { }n
s , where 

1

n

n k

k

s a
=

= , is 

convergent. 

   If the sequence { }ns  diverges then the series is said to be diverge. 

 

Note: 

 For a series 
1

n

n

a
∞

=

 , the sequence { }n
s ,  where 

1

n

n k

k

s a
=

= , is called the sequence of 

partial sum of the series. The numbers 
n

a  are called terms and 
n

s  are called partial 

sums. One can note that 

1 1
s a=   

1 2s
s a a= +  

3 1 2 3
s a a a= + +  and 

1 2
...

n n
s a a a= + + +   or 

1n n n
s s a

−
= + . 

   If the sequence { }ns converges to s, we say that the series converges and write 

1

n

n

a s
∞

=

= , the number s is called the sum or value of the series but it should be clearly 

understood that the ‘s’ is the limit of the sequence of sums and is not obtained simply 

by addition. 

   Also note that the behaviors of the series remain unchanged by addition or deletion of 

the first finite terms. Just as a sequence may be indexed such that its first element is not 

n
a  , but is 

0
a  , or 

5
a  or  

99
a , we will denote the series having these numbers as their 

first element by the symbols 

0

n

n

a
∞

=

   or  
5

n

n

a
∞

=

  or  
99

n

n

a
∞

=

 . 

 

Review: 

 Let { }n
a  be a convergent sequence, then 

1
lim lim

n n
n n

a a
−→∞ →∞

= . 
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Theorem 

If  
1

n

n

a
∞

=

  converges then  lim 0
n

n
a

→∞
= . 

Proof 

   Let  1 2 3n ns a a a a= + + + +… . As 
1

n

n

a
∞

=

  is convergent, therefore { }n
s  is convergent. 

   Take          lim
n

n
s s

→∞
= . 

   Since  1n n ns s a−= +   or  1n n na s s −= − . 

   Therefore    ( )1lim limn n n
n n

a s s −
→∞ →∞

= −  

            
1

lim lim
n n

n n
s s −

→∞ →∞
= −  

            0s s= − =           
 

Note:  

   The converse of the above theorem is false. For example, consider the series
1

1

n n

∞

=

 . 

   We know that the sequence { }ns , where 1 1 1
2 3

1 ...n n
s = + + + + , is divergent therefore  

1

1

n n

∞

=

   is divergent series, although   lim 0
n

n
a

→∞
= . This implies that if    lim 0

n
n

a
→∞

≠ , then  

n
a  is divergent (It is known as basic divergent test). 

 

Examples: 

(i) Is the series 
1

1
1

n n

∞

=

 
+ 

 
  is convergent or divergent? 

Solution. 

Assume 
1

1
n

a
n

= + .  

Now we have  
1

lim lim 1 1 0n
n n

a
n→∞ →∞

 
= + = ≠ 

 
. 

Hence 
1

1
1

n n

∞

=

 
+ 

 
  is divergent (by basic divergent test) 

(ii)  Is the series 
1 !

n

n

n

n

∞

=

  is convergent or divergent? 

Solution. 

Assume that  
!

n

n

n
a

n
= . 

As      
( 1) ( 2) ... 3 2 1

n

n

n
a

n n n
=

⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅
  

... 1
1 2 2 1

n n n n n

n n n
= ⋅ ⋅ ⋅ ⋅ ⋅ ≥

− −
 for all 1n ≥ .  
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  We conclude lim
n

n
a

→∞
 cannot be zero.  

   Hence 
1 !

n

n

n

n

∞

=

  is divergent (by basic divergent test).  

Questions: 

(i) Prove that if  
1 nn
a

∞

=  is convergent then  lim 0
n

n
a

→∞
=  but converse is not true. 

(ii) Prove that if  lim 0
n

n
a

→∞
≠ , then 

n
a  is divergent. 

 

Review: 

 A sequence { }
n

s  is Cauchy sequence if and only if for all 0ε >  there exists 

positive integer 
0

n  such  
n m

s s ε− <  for all 
0

,n m n>  (or 
0

n m n> > ).  
 

 Theorem (General Principle of Convergence or Cauchy Criterion for Series) 

   A series 
n

a  is convergent if and only if for any real number 0ε > , there exists a 

positive integer 0n  such that  

     
1

n

i

i m

a ε
= +

<      0n m n∀ > >  

Proof 

   Let 1 2 3n ns a a a a= + + + +… .   

   Then 
n

a  is convergent if and only if { }ns  is convergent. 

   Now { }ns  is convergent if and only { }ns  is Cauchy sequence, 

   that is, for all real number 0ε > , there exists a positive integer 0n  such that  

n ms s ε− <       0n m n∀ > > . 

    1 2 ...m m na a a ε+ + + + + <     0n m n∀ > > . 

               
1

n

i

i m

a ε
= +

 <    0n m n∀ > > .      

Review: 

 If { }n
s  is bounded and monotone sequence, then it is convergent. 

 

 

Theorem 

   Let  
n

a  be an infinite series of non-negative terms and let { }ns  be a sequence of its 

partial sums. Then 
n

a  is convergent if { }ns  is bounded and it diverges if { }ns  is 

unbounded. 

Proof 

   We have 1 2 3 ...n ns a a a a= + + + + , this give  1 1n n ns s a+ += + . 

As we have given 0na ≥  for all 1n ≥  and 1n n n ns s a s+ = + ≥   for all 1n ≥ . 

Therefore, the sequence { }ns  is monotonic increasing. 

 Now if { }ns  is bounded then we concluded that { }ns  is convergent. 

 Now if { }ns  is unbounded, then it is divergent. 
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   Hence we conclude that 
n

a  is convergent if { }ns  is bounded and it divergent if 

{ }ns  is unbounded.            
 

Review: 

 A series 
n

a  is divergent if and only if there exists real number 0ε > , such that 

for all positive integer 
0

n , 

1

n

i

i m

a ε
= +

>      whenever 0n m n> >  

 

Theorem (Comparison Test) 

   Suppose 
n

a  and 
n

b  are infinite series such that  0na > , 0nb >  for all n . Also 

suppose that for a fixed positive number λ  and positive integer k , n na bλ<   n k∀ ≥ . 

   (i)  If 
n

b  is convergent, then  
n

a  is convergent. 

   (ii) If 
n

a  is divergent, then  
n

b  is divergent. 

Proof 

  (i)  Suppose 
n

b  is convergent and  

          n na bλ<     n k∀ ≥ , 0λ > ,  …………. (i) 

   By Cauchy criterion; for any positive number 0ε >  there exists 0n  such that 

      
1

n

i

i m

b
ε

λ= +

<   0n m n> >  

   from (i)  

1 1

n n

i i

i m i m

a bλ ε
= + = +

< <   ,     0n m n> >  

         
n

a   is convergent. 

   (ii) Now suppose 
n

a  is divergent then there exists a real number 0β > , such that  

     
1

n

i

i m

a λ β
= +

>  ,     n m> . 

   From (i) 

1 1

1n n

i i

i m i m

b a β
λ= + = +

> >  ,     n m>  

   
n

b   is divergent.           

 

Example 

   Prove that  
1

n
  is divergent. 

Since  0n n≥ >  1n∀ ≥ . 

      
1 1

n n
 ≤  
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1

n
   is divergent as  

1

n
   is divergent.        

 

Example 

    The series 
1

nα  is convergent if 1α >  and diverges if 1α ≤ . 

    Let    
1 1 1

1 ...
2 3

n
s

nα α α
= + + + + . 

    If  1α >   then 

     2n ns s<     and    
1 1

( 1)n nα α
<

−
. 

Now   2

1 1 1 1
1 ...

2 3 4 (2 )
ns

n
α α α α

 
= + + + + + 
 

  

                
1 1 1 1 1 1 1

1
3 5 (2 1) 2 4 6 (2 )n n

α α α α α α α

   
= + + + + + + + + +   −   

… …  

                
1 1 1 1 1 1 1

1 1
3 5 (2 1) 2 2 3 ( )n n

α α α α α α α

   
= + + + + + + + + +   −   

… …  

               
1 1 1 1

1
2 4 (2 2) 2

ns
n

α α α α

 
< + + + + + − 

…      (replacing 3 by 2, 5 by 4 and so on.) 

      
1 1 1 1

1 1
2 2 ( 1) 2

ns
n

α α α α

 
= + + + + + − 

…  

      1

1 1
1

2 2
n ns s

α α−= + +    2 2

1 1
1

2 2
n ns s

α α
< + +   1 2n n ns s s− < <∵  

       2

2
1

2
ns

α
= +  

    2 21

1
1

2
n ns s

α −
 < + . 

   21

1
1 1

2
ns

α −

 
 − < 

 
 

1

21

2 1
1

2
ns

α

α

−

−

 −
 < 

 
    

1

2 1

2

2 1
ns

α

α

−

−
 <

−
, 

   i.e.  
1

2 1

2

2 1
n ns s

α

α

−

−
< <

−
 

   { }ns  is bounded and also monotonic. Hence, we conclude that 
1

nα  is 

convergent when 1α > . 

   If 1α ≤  then 

n nα ≤    1n∀ ≥  

   
1 1

n nα
 ≥    1n∀ ≥  
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1

n
∵   is divergent therefore 

1

nα  is divergent when 1α ≤ .    

 

Theorem 

   Let 0na > , 0nb >  and lim n

n
n

a

b
λ

→∞
= . 

(i) If 0λ ≠ , then the series 
n

a  and 
n

b  behave alike. 

(ii) If 0λ = and if 
n

b is convergent, then 
n

a is convergent. If 
n

a  is divergent 

then 
n

b  is divergent. 

Proof 

   Since  lim n

n
n

a

b
λ

→∞
= , therefore for 0ε > , there exists positive integer 0n  such that  

  n

n

a

b
λ ε− <     0n n∀ ≥ . ………….. (i) 

(i) If 0λ ≠ , then take 
2

λ
ε =  (as λ  will be positive) 

2

n

n

a

b

λ
λ − <     0n n∀ ≥ .  

2 2

n

n

a

b

λ λ
λ − < − <  0n n∀ ≥ . 

2 2

n

n

a

b

λ λ
λ λ − < < +  0n n∀ ≥ . 

3

2 2

n

n

a

b

λ λ
 < <    0n n∀ ≥ . 

   Then we got    

3

2
n na b

λ
<    and    

2
n n

b a
λ

<  for 0n n≥ .  

   Hence by comparison test we conclude that  
n

a  and  
n

b  converge or diverge 

together.  

(ii) If  0λ = , then (i) implies 

n na bε<  

   Hence by comparison test we conclude that  
n

a  is convergent if  
n

b  converges. 

Also 
n

b  is divergent if 
n

a diverges.        
 

Example 

   Is the series 21
sin

x

n n
  is convergent or divergent for real x ? 

    Consider  21
sin

n

x
a

n n
=     and take    

3

1
n

b
n

= . 
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   Then     2 2sinn

n

a x
n

b n
=   

2

2

sin

1

x

n

n

=    

2

2

sin
x

nx
x

n

 
 

=  
 
 

 

   Applying limit as n → ∞  
2 2

2 2 2 2

sin sin
lim lim lim (1)n

n n n
n

x x
a n nx x x x

x xb

n n

→∞ →∞ →∞

   
   

= = = =   
   
   

. 

   
n

a   and 
n

b  have the similar behavior for all finite values of  x except x = 0. 

   Since 
3

1

n
  is convergent series therefore the given series is also convergent for 

finite values of x except x = 0. 

   If 0x = , then the given series is also convergent because it is just zero.   

 

Theorem (Cauchy Condensation Test) 

    Let  0na ≥ , 1n na a +>  for all 1n ≥  (i.e. { }
n

a  is positive term decreasing series). Then 

the series  
n

a  and   1

1

2
2 n

n a −

−  converges or diverges together. 

Proof 

The condensation test follows from noting that if we collect the terms of the 

series into groups of lengths 2n
, each of these groups will be less than 

2
2 n

n a  by 

monotonicity. Observe, 

1

2 2 4 4 4 4
2 2 2

1 2 3 4 5 6 7 2 2 1 2 1
1

1 2 4 2 2
0

2 4 2 2 .

n n n

n n n

n n

n

n
a a a a a a a a a

n n

n

a a a a a a a a a a a

a a a a a

+

∞

+ −
=

≤ + ≤ + + + ≤ + + +

∞

=

= + + + + + + + + + + + +

≤ + + + + + =





⋯

⋯ ⋯ ⋯
��� ������� ���������

⋯ ⋯

 

We have use the fact that 
n

a  is decreasing sequence. The convergence of the original 

series now follows from direct comparison to this "condensed" series. To see that 

convergence of the original series implies the convergence of this last series, we 

similarly put, 

1 1

1 1 2 2 3 3 12 2 ( 2 1) ( 2 1) ( 2 1)

1 2 2 4 4 42 2 2 2
0

1 1 2 2 3 3

1

2

2 .

n n n n

n n n n n

n

n
a a a a a a a a a a a

n n n

n

a a a a a a a a a a

a a a a a a a a a

+ +

++ + −

∞

=
≤ + ≤ + + + ≤ + + + + +

∞

=

= + + + + + + + + + + +

≤ + + + + + + + + + =





⋯

⋯ ⋯ ⋯
��� ������� ���������

⋯ ⋯

  

And we have convergence, again by direct comparison. And we are done. Note that we 

have obtained the estimate 

2
1 0 1

2 2 .n

n

n n

n n n

a a a
∞ ∞ ∞

= = =

≤ ≤           
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Example 

   Find value of p for which 
1

pn
  is convergent or divergent.  

   If 0p ≤  then  
1

lim 0
pn n→∞

≠ , therefore the series diverges when 0p ≤ . 

   If 0p >  then the condensation test is applicable and we are lead to the series  

0 0

1 1
2

(2 ) 2

k

k p kp k
k k

∞ ∞

−
= =

=   

                             
( 1) ( 1)

0 0

1 1

2 2

k

p k p
k k

∞ ∞

− −
= =

 
= =  

 
   

(1 )

0

2
p k

k

∞
−

=

=  . 

   Now 12 1p− <   iff  1 0p− <   i.e. when  1p > . 

   And the result follows by comparing this series with the geometric series having 

common ratio less than one. 

   The series diverges when 12 1p− =   ( i.e. when 1p = ). 

   The series is also divergent if 0 1.p< <         
 

Example 

Prove that if  1p > , 
2

1

(ln ) p
n n n

∞

=

  converges and if  1p ≤  the series is divergent. 

Since { }ln n  is increasing, therefore 
1

lnn n

 
 
 

 decreases 

   and we can use the condensation test to the above series. 

   We have  
( )

1

ln
n p

a
n n

=  

 

( )
2

1

2 ln 2
n p

n n
a =   

( )2

1
2

ln 2
n

n

p
a

n
 =  

   Now   
( )2

1 1 1
2

( ln 2) ln 2
n

n

pp p
a

n n
= =   . 

   This converges when 1p >   and diverges when 1p ≤ .      

 
 

Example 

Prove that 
1

ln n
  is divergent. 

   Since { }ln n  is increasing there 
1

ln n

 
 
 

 decreases. 

   We can apply the condensation test to check the behavior of the series.  

    Take 
1

ln
n

a
n

= , then   
2

1

ln 2
n n

a = . 
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   So    
2

2
2

ln 2
n

n
n

n
a =      

2

2
2

ln 2
n

n
n a

n
 = . 

   Since  
2 1n

n n
>  1n∀ ≥  

   and  
1

n
   is diverges therefore the given series is also diverges.     

 

 

 

Alternating Series 

   A series in which successive terms have opposite signs is called an alternating series. 
 

Example: 
1( 1) 1 1 1

1
2 3 4

n

n

+−
= − + − + … is an alternating series. 

Review: 

 If { }ns  is convergent to s , then every subsequence of { }ns  converges to s . 

 If 
n

a  is convergent, then lim 0
n

n
a

→∞
= . 

 If a sequence is decreasing and bounded below then it is convergent. 
 

Theorem (Alternating Series Test or Leibniz Test) 

   Let { }na  be a decreasing sequence of positive numbers such that lim 0
n

n
a

→∞
=  then the 

alternating series 
1

1 2 3 4

1

( 1)
n

n

n

a a a a a
∞

+

=

− = − + − + …  converges. 

Proof 

    Looking at the odd numbered partial sums of this series we find that 

2 1 1 2 3 4 5 6 2 1 2 2 1( ) ( ) ( ) ( )n n n ns a a a a a a a a a+ − += − + − + − + + − +… . 

   Since { }na  is decreasing therefore all the terms in the parenthesis are non-negative 

      2 1 0ns + >    n∀ . 

   Moreover 

       2 3 2 1 2 2 2 3n n n ns s a a+ + + += − +  

               ( )2 1 2 2 2 3n n ns a a+ + += − −  

   Since   2 2 2 3 0n na a+ +− ≥    therefore  2 3 2 1n ns s+ +≤ . 

   Hence the sequence of odd numbered partial sum is decreasing and is bounded below 

by zero.  (as it has +ive terms) 

   It is therefore convergent. 

   Thus 2 1ns +  converges to some limit l  (say). 

  Now consider the even numbered partial sum. We find that 

   2 2 2 1 2 2n n ns s a+ + += −  

   and   

  ( )2 2 2 1 2 2lim limn n n
n n

s s a+ + +
→∞ →∞

= −  

      
2 1 2 2

lim lim
n n

n n
s a+ +

→∞ →∞
= −   0l= − l=      lim 0

n
n

a
→∞

=∵ . 

   so that the even partial sum is also convergent to l . 
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      both sequences of odd and even partial sums converge to the same limit. 

   Hence, we conclude that the corresponding series is convergent.     
 

Absolute Convergence 

A series 
n

a  is said to converge absolutely if 
n

a  converges. 
 

Review: 

 A series 
n

a is convergent if and only if for any real number 0ε > , there exists 

a positive integer 0n  such that  
1

n

i

i m

a ε
= +

<  for all 0n m n> > . 

 For all ia ∈ℝ , 1,2,...,i n= ;  
1 1

n n

i i

i i

a a
= =

≤  .  

 

Theorem 

An absolutely convergent series is convergent. 

Proof: 

   If 
n

a  is convergent then by Cauchy criterion for convergence; for a real number 

0ε > , there exists a positive integer 0n  such that 

1 1

n n

i i

i m i m

a a ε
= + = +

= <       0,n m n∀ > .  ………….. (i) 

   Also, we have 

1 1

n n

i i

i m i m

a a
= + = +

<    ……………….. (ii) 

   By using (i) and (ii), one has 

1

n

i

i m

a ε
= +

<      0,n m n∀ > .   

   This implies the series 
n

a  is convergent. 
 

Note: 

   The converse of the above theorem does not hold. 

e.g.     
1( 1)n

n

+−
  is convergent but 

1

n
  is divergent.      

Question: 

 Prove that every absolute convergent series is convergent, but convers is not true 

in general. 
 

Review 

 Let ,x y ∈ℝ  and x y< . Then there exist number r  such that x r y< < .  

 If lim
n

n
a

→∞
 exists and lim

n
n

a l
→∞

< , 0l > , then there exist positive integer 0n  such that  

na l<   for 0n n≥ . 
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Theorem (The Root Test) 

Let    
1

lim n
n

n
a p

→∞
= . 

   Then 
n

a  converges absolutely if 1p <  and it diverges if 1p > . 

Proof 

   Let 1p <  then there exist real number r  such that 1p r< < .  

   As we have 
1

lim n
n

n
a p

→∞
= , there is some 0n  so that 

1
n

na r<  0n n∀ >  

     1n

na r < <  0n n∀ > . 

   Since nr  is convergent because it is a geometric series with 1r < , therefore 

n
a  is convergent. 

      
n

a   converges absolutely. 

   Now let 1p > . Also we have 
1

lim n
n

n
a p

→∞
= , there is some 0n  so that 

1

1n
na >  for 0n n≥ .  

1na >   for 0n n≥ . 

lim 0n
n

a
→∞

 ≠    lim 0
n

n
a

→∞
 ≠ . 

n
a   is divergent.           

 

Note: 

The above test gives no information when 1p = . 

   e.g.   Consider the series  
1

n
   and  

2

1

n
 . 

  For each of these series; 1p = , but  
1

n
   is divergent and  

2

1

n
   is convergent. 

 

Theorem (Ratio Test) 

The series 
n

a  

  (i)    Converges if 1lim 1n

n
n

a

a

+

→∞
< . 

  (ii)   Diverges if 1lim 1n

n
n

a

a

+

→∞
> . 

Proof 

If (i) holds we can find 1β <  and integer N such that  

1n

n

a

a
β+ <  for n N≥  

   In particular  
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1N

N

a

a
β+ <  

    1N Na aβ+ <  

    2

2 1N N Na a aβ β+ + < <  

    3

3N Na aβ+ <  

……………………. 

……………………. 

……………………. 

   p

N p Na aβ+ <  

   n N

n Na aβ − <   we put N p n+ = . 

 i.e.   N n

n Na a β β−<   for n N≥ . 

   ∵ nβ  is convergent because it is geometric series with common ratio less than 1, 

   therefore 
n

a  is convergent (by comparison test). 

   If (ii) holds, then we can find integer 0n  such that  

1 1n

n

a

a

+ >  for 0n n≥ . 

   This gives 

1n na a+ ≥      for 0n n≥ , 

   that is, the terms are getting larger and guaranteed to not be negative, therefore 

   lim 0n
n

a
→∞

≠ . This provide us lim 0
n

n
a

→∞
≠ . 

     
n

a   is divergent.          
 

Note: 

   The knowledge 1lim 1n

n
n

a

a

+

→∞
=  implies nothing about the convergent or divergent of 

series. 

 
 

Example 

   Prove that series  
n

a  with   

1

1 1

n
n

n

n n
a

n n

−
+  

= −  
+ +   

, is divergent. 

   Since  1
1

n

n
<

+
, therefore 0na >  n∀ . 

     Also   ( )
1

11

1 1

n

n
n

n n
a

n n

−
+  

= −  
+ +   
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1

1
1

1

n
n n

n n

−
 +   

= −    
+     

  

1

1 1
1

n
n n

n n

−
− + +   

= −    
     

 

    

1

1 1
1 1 1

n

n n

−
−    

= + − +    
     

 

  

1

1 1
lim lim 1 1 1

n

n
n n

a
n n

−
−

→∞ →∞

    
= + − +    

     
 

   

1

1 1
lim 1 lim 1 1

n

n nn n

−
−

→∞ →∞

    
= + − +    

     
 

   
1

11 1 e
−

− = ⋅ −   

1
1

1
e

−
 

= −  
 

1
1e

e

−
− 

=   
 

1

e

e

 
=  − 

   1>  

        the series is divergent.           
 

Dirichlet’s Theorem 

   Suppose that  

(i) { }ns , 1 2 3n ns a a a a= + + + +…   is bounded and  

(ii) { }nb  be positive term decreasing sequence such that  lim 0
n

n
b

→∞
= . 

   Then 
n n

a b  is convergent. 

Proof 

   Since { }ns  is bounded, therefore, there exists a positive number λ  such that  

ns λ≤  1n∀ ≥ . 

   Then  ( )1i i i i ia b s s b−= −   for 2i ≥  

       1i i i is b s b−= −  

       1 1 1i i i i i i i is b s b s b s b− + += − + −  

        ( )1 1 1i i i i i i is b b s b s b+ − += − − +  

         ( ) ( )1 1 1

1 1

n n

i i i i i m m n n

i m i m

a b s b b s b s b+ + +
= + = +

 = − − −   

   Since { }nb  is positive term decreasing,  

   therefore ( )1 1 1

1 1

n n

i i i i i m m n n

i m i m

a b s b b s b s b+ + +
= + = +

= − − +   

   ( ){ }1 1 1

1

n

i i i m m n n

i m

s b b s b s b+ + +
= +

≤ − + +  

   ( ){ }1 1 1

1

n

i i m n

i m

b b b bλ λ λ+ + +
= +

≤ − + +   is λ≤∵  

   ( )1 1 1

1

n

i i m n

i m

b b b bλ + + +
= +

 
= − + + 
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   ( )( )1 1 1 1m n m n
b b b bλ + + + += − + + 12 mbλ +=   12 1mbλ +< + .  

   
1

n

i i

i m

a b ε
= +

 <   where 12 1mbε λ += +  a certain number 

      The 
n n

a b  is convergent.  (We have use Cauchy Criterion here.)    
 

Theorem 

   Suppose that  

(i) 
n

a  is convergent and  

(ii) { }nb  is monotonic convergent sequence, 

   then 
n n

a b  is also convergent. 

Proof 

  Suppose { }nb  is decreasing and it converges to b . 

  Put n nc b b= −  for all n .   

     0nc ≥   and lim 0
n

n
c

→∞
= . 

  Since 
n

a  is convergent,  

  therefore { }ns ,  1 2n ns a a a= + + +…  is convergent, that is, { }ns  is bounded. 

   By Dirichlet’s theorem, we have 
n n

a c  is convergent. 

   Since n n n n na b a c a b= +  and 
n n

a c  and 
n

a b  are convergent, 

   therefore  
n n

a b  is convergent. 

   Now if { }nb  is increasing and converges to b then we shall put n nc b b= − .         
 

Example 

A series 
1

( ln )n n α  is convergent if 1α >  and divergent  if 1α ≤ . 

   To see this we proceed as follows 

1

( ln )
n

a
n n α

=  

   Take  

( )2

2
2

2 ln 2
n

n
n

n
n n

b a
α

= =   

( )
2

2 ln 2

n

n n
α

=  

            
( )

2

2 ln 2

n

n n
αα α

=   
( )

1

2 ln 2n n n
αα α−

=  

          
( )

( 1)
1

1 2

ln 2

n

n

α

α α

−
 
 
 = ⋅  
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Since 
1

nα  is convergent when 1α >  and 

( 1)
1

2

nα −
 
 
 

 is decreasing for 1α >  and it 

converges to 0. Therefore 
n

b  is convergent  

   
n

a   is also convergent. 

   Now 
n

b  is divergent for 1α ≤  therefore 
n

a  diverges for 1α ≤ .    
 

Example 

To check 
1

lnn nα  is convergent or divergent. 

   We have 
1

ln
n

a
n nα

=  

   Take        
2

2
2

(2 ) (ln 2 )
n

n
n

n n n
b a

α
= =    

2

2 ( ln 2)

n

n nα
=  

         
(1 )1 2

ln 2

n

n

α−

= ⋅   

( 1)
1

21

ln 2

n

n

α −
 
 
 = ⋅  

    
1

n
∵   is divergent although  

( 1)
1

2

n α−   
  
   

 is decreasing, tending to zero for 1α >  

therefore 
n

b  is divergent. 

   
n

a   is divergent. 

      The series also divergent if  1α ≤ . 

      i.e. it is always divergent.          
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