| Name: | Class: MSc-III | Reg. No.: | | | | | |--|----------------|---|--|--|--|--| | Quiz 4: Real Analysis II | | | | | | | | Instructions: Please choose the most correct option be spoiled or overwritten selection has not | | g the box. | | | | | | Question 1 Find the value of p for which convergent | | If $\left\{ f_n(x) = \frac{1}{x^n} \right\}$ be sequence of functions $I := [2, 10]$, then $\min_{x \in I} f_n(x) =$ | | | | | | p > 0. $p < 0$. | ()110ct10n /l | | | | | | | NOT true. | | | | | | | | None of these $\left[\left(\lim_{n \to \infty} f_n(x) \right)' = \lim_{n \to \infty} f'_n(x) \text{ for all } x \in [a, b]. \right]$ | e e | must be | | | | | | Name: | | Class: MSc-III | Reg. No.: | | | |--------------------------|--|--------------------------|--|--|--| | Quiz 4: Real Analysis II | | | | | | | | hoose the most correct option by fil
or overwritten selection has no cree | | ng the box. | | | | Question 1 convergent. | If $\lim_{n\to\infty} a_n = 0$, then $\sum a_n$ | = | If $\{f_n\}$ is uniformly convergent on $[a,b]$, suitable condition which of the following is | | | | is must be | may be is not | | $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} (\lim_{x\to x_0} f_n(x))$ | | | | Question 2 convergent | Find the value of <i>p</i> for which $\int_0^1 \frac{1}{x^p}$ | $\frac{1}{n+1}ux$ is | $f_n(x)$ $= \lim_{n \to \infty} f'_n(x)$ for all $x \in [a, b]$.
$\int_a^b f_n(x) dx = \lim_{n \to \infty} \int_a^b \lim_{x \to x_0} f_n(x) dx$ | | | | | | _ | of these If f , $ f \in \mathcal{R}(\alpha; a, b)$, then one has | | | | | If $\left\{ f_n(x) = \frac{1}{x^n} \right\}$ be sequence of fur $= [2, 10]$, then $\min_{x \in I} f_n(x) =$ | $\bigsqcup \int_a fa$ | $\alpha \ge \int_a^b f d\alpha. \qquad \qquad \left \int_a^b f d\alpha \right \le \int_a^b f d\alpha.$ $ d\alpha \ge \int_a^b f d\alpha. \qquad \qquad d\alpha \le \int_a^b f d\alpha.$ | | | | 2^n | 10^n | $\sqcup \sqcup J_a J^a$ | $ \alpha \leq J_a J \alpha \alpha \leq J_a J \alpha \alpha \leq J_a J \alpha \alpha $ | | | | Name: | Class: MSc-III | Reg. No.: | | | | | |--|--------------------|--|--|--|--|--| | Quiz 4: Real Analysis II | | | | | | | | Instructions: Please choose the most correct option Spoiled or overwritten selection has n | | ng the box. | | | | | | Question 1 If $\{f_n\}$ is uniformly converge then under suitable condition which of the NOT true. | Question | 3 If $\left\{ f_n(x) = \frac{1}{x^n} \right\}$ be sequence of functions $I := [2, 10]$, then $\min_{x \in I} f_n(x) =$ | | | | | | $\left[\left(\lim_{n \to \infty} f_n(x) \right)' = \lim_{n \to \infty} f'_n(x) \text{ for all } x \in [a, b] \right]$ | | $\blacksquare \frac{1}{10^n}$ | | | | | | | | $\square \frac{1}{2^n}$ | | | | | | $\lim_{n \to \infty} \int_a^b f_n(x) dx = \lim_{n \to \infty} \int_a^b \lim_{x \to x_0} f_n(x) dx$ | Question convergen | — · · · · · · · · · · · · · · · · · · · | | | | | | None of these Question 2 Find the value of <i>p</i> for which | | may be must be | | | | | | convergent | Question | If f , $ f \in \mathcal{R}(\alpha; a, b)$, then one has | | | | | | | | $ d\alpha \ge \int_a^b f d\alpha. \qquad \qquad \int_a^b f d\alpha \le \int_a^b f d\alpha $ $ d\alpha \ge \int_a^b f d\alpha. \qquad \qquad \int_a^b f d\alpha \ge \int_a^b f d\alpha. $ | | | | | | Name: | Class: MSc-III | Reg. No.: | | | | |--|--|---|--|--|--| | Quiz 4: Real Analysis II | | | | | | | Instructions: Please choose the most correct option leads of the selection has not selection has not selection. | | the box. | | | | | Question 1 If $\{f_n\}$ is uniformly converged then under suitable condition which of the follows: | Questions | If $\left\{ f_n(x) = \frac{1}{x^n} \right\}$ be sequence of functions = [2, 10], then $\min_{x \in I} f_n(x) =$ | | | | | $\left[\left(\lim_{n \to \infty} f_n(x) \right)' = \lim_{n \to \infty} f'_n(x) \text{ for all } x \in [a, b].$ | 10 ⁿ | $\Box \frac{1}{2^n}$ | | | | | $ \lim_{x \to x_0} \left(\lim_{n \to \infty} f_n(x) \right) = \lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right) $ | | \blacksquare $\frac{1}{10^n}$ | | | | | $\lim_{n \to \infty} \int_a^b f_n(x) dx = \lim_{n \to \infty} \int_a^b \lim_{x \to x_0} f_n(x) dx$ | Question 4 convergent. | If $\lim_{n\to\infty} a_n = 0$, then $\sum a_n$ | | | | | None of these Question 2 Find the value of <i>p</i> for which | $\int_0^1 \frac{1}{x^{p+1}} dx \text{ is} \qquad \qquad \text{must be}$ | is not may be | | | | | convergent | | If $f, f \in \mathcal{R}(\alpha; a, b)$, then one has $\geq \int_a^b f d\alpha.$ $\leq \int_a^b f d\alpha$ $\int_a^b f d\alpha \geq \int_a^b f d\alpha.$ | | | | | | | | | | | | Name: | Class: MS | Sc-III | Reg. No.: | | | |---|------------------------------|--|--|--|--| | Quiz 4: Real Analysis II | | | | | | | Instructions:Please choose the most correctSpoiled or overwritten selectio | | cking or crossing the bo | x. | | | | Question 1 If $\{f_n\}$ is uniformly continuous then under suitable condition which NOT true. | · · | Question 3 If $\{f_i\}$ defined on $I := [2, 10]$ | $f_n(x) = \frac{1}{x^n}$ be sequence of function 0], then $\min_{x \in I} f_n(x) = 0$ | | | | $ \lim_{x \to x_0} \left(\lim_{n \to \infty} f_n(x) \right) = \lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right) = \lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right) = \lim_{n \to \infty} \int_a^b \lim_{x \to x_0} f_n(x) dx = \lim_{n \to \infty} \int_a^b \lim_{x \to x_0} f_n(x) dx = \lim_{n \to \infty} \lim_{n$ | | | | | | | None of these | | Question 4 If f , | $f \in \mathcal{R}(\alpha; a, b)$, then one has | | | | $\left[\lim_{n \to \infty} f_n(x) \right]' = \lim_{n \to \infty} f'_n(x) \text{ for all } x$ | $x \in [a,b].$ | | $\left d\alpha. \right \left \int_a^b f d\alpha \right \le \int_a^b f d\alpha$ | | | | Question 2 If $\lim_{n\to\infty} a_n = 0$, the | $\operatorname{en} \sum a_n$ | $\left \int_{a}^{b} f d\alpha \right \ge \int_{a}^{b} \left \int_{a}^{b} d\alpha \right $ | $f d\alpha$. | | | | convergent. | may be | Question 5 Find convergent | the value of p for which $\int_0^1 \frac{1}{x^{p+1}} dx$ is | | | | is not | must be | p > 0. | p < 1. | | | | | | p < 0. | p < 0. | | | Class: MSc-III Reg. No.: Quiz 4: Real Analysis II **Instructions:** • Please choose the most correct option by filling or ticking or crossing the box. • Spoiled or overwritten selection has no credit. If $\lim_{n\to\infty} a_n = 0$, then $\sum a_n$ Question 4 If f, $|f| \in \mathcal{R}(\alpha; a, b)$, then one has Question 1 convergent. must be is not may be If $\{f_n\}$ is uniformly convergent on [a, b], Question 5 Find the value of *p* for which $\int_0^1 \frac{1}{x^{p+1}} dx$ is **Question 2** then under suitable condition which of the following is convergent p > 0. p < 0. None of these $p \leq 0$. p < 1. **Question 3** If $\left\{ f_n(x) = \frac{1}{x^n} \right\}$ be sequence of functions defined on I := [2, 10], then $\min_{x \in I} f_n(x) =$ $\blacksquare \frac{1}{10^n}$ 2^n $\rfloor 10^n$