

+3/1/58+

Name:

Class: MSc-III

Reg. No.:

Quiz 3: Real Analysis II

Instructions:

- Please choose the most correct option by filling or ticking or crossing the box.
- Spoiled or overwritten selection has no credit.

Question 1 If the sequence of functions is convergent, then it is convergent.

uniformly; piecewise

piecewise; uniformly

Question 2 If f_1 , f_2 , f_3 , ... are continuous, then choose f so that f may not continuous.

Question 3 If $\{f_n(x) = \frac{1}{x^n}\}$ be sequence of functions defined on I := [2, 10], then $\max_{x \in I} f_n(x) =$

Question 4 A concept of uniform convergence doesn't exist in

sequence of numbers.

series of functions.

sequence of functions.

Question 5 A series of functions $\sum f_n$ is said to be converges uniformly on [a, b] if the sequence of functions $\{s_n(x)\}$, where $s_n(x)$ =...., is uniformly convergent on [a, b].

Question 6 $\exp(ab) \le \exp(ac)$ iff

$a < 0$ and $b \le c$.	$a > 0$ and $b \ge c$.
$a \ge 0$ and $b \ge c$.	$a < 0$ and $b \ge c$.

sequence of numbers.

piecewise; uniformly

piecewise; uniformly

- Please choose the most correct option by filling or ticking or crossing the box.
- Spoiled or overwritten selection has no credit.

Question 1 If f_1 , f_2 , f_3 , ... are continuous, then choose f so that f may not continuous.

 $f = f_1 + f_2 + \dots + f_n$ $f = f_1 + f_2 + \dots + f_{100}$ $f = f_1 + f_2 + f_3 + \dots$

Question 2 If $\{f_n(x) = \frac{1}{x^n}\}$ be sequence of functions defined on I := [2, 10], then $\max_{x \in I} f_n(x) =$

_____ 2ⁿ

10ⁿ

Question 3 If the sequence of functions is convergent, then it is convergent.

uniformly; piecewise

piecewise; uniformly

Question 4 $\exp(ab) \le \exp(ac)$ iff

 $a < 0 \text{ and } b \le c.$ $a < 0 \text{ and } b \ge c.$ $a \ge 0 \text{ and } b \ge c.$ $a > 0 \text{ and } b \ge c.$

Question 5 A series of functions $\sum f_n$ is said to be converges uniformly on [a, b] if the sequence of functions $\{s_n(x)\}$, where $s_n(x)$ =...., is uniformly convergent on [a, b].

$\sum_{n=1}^{\infty}$	$f_n(x)$
$\sum_{k=1}^{n}$	$f_k(x)$

Question 6 A concept of uniform convergence doesn't exist in

sequence of functions.

series of functions.

sequence of numbers.