Ch 01: Improper Integrals of 1st and 2nd Kinds

Course Title: Real Analysis II Course Code: MTH322

Course instructor: Dr. Atiq ur Rehman Class: MSc-III

Course URL: www.mathcity.org/atiq/fa16-mth322

We discussed Riemann-Stieltjes's integrals of the form $\int_a^b f \, d\alpha$ under the restrictions that both f and α are defined and bounded on a finite interval [a,b]. The integral of the form $\int_a^b f \, d\alpha$ are called definite integrals. To extend the concept, we shall relax some condition on definite integral like f on finite interval or boundedness of f on finite interval.

> Definition

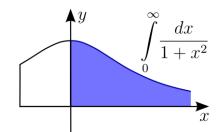
The integral $\int_a^b f \, d\alpha$ is called an improper integral of first kind if $a = -\infty$ or $b = +\infty$ or both i.e. one or both integration limits is infinite.

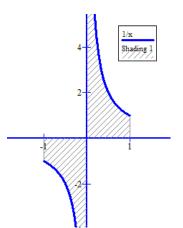
> Definition

The integral $\int_a^b f \, d\alpha$ is called an improper integral of second kind if f(x) is unbounded at one or more points of $a \le x \le b$. Such points are called singularities of f(x).

> Examples

- $\int_{0}^{\infty} \frac{1}{1+x^2} dx$, $\int_{-\infty}^{1} \frac{1}{x-2} dx$ and $\int_{-\infty}^{\infty} (x^2+1) dx$ are examples of improper integrals of first kind.
- $\int_{-1}^{1} \frac{1}{x} dx$ and $\int_{0}^{1} \frac{1}{2x-1} dx$ are examples of improper integrals of second kind.





> Notations

We shall denote the set of all functions f such that $f \in R(\alpha)$ on [a,b] by $R(\alpha;a,b)$. When $\alpha(x) = x$, we shall simply write R(a,b) for this set. The notation $\alpha \uparrow$ on $[a,\infty)$ will mean that α is monotonically increasing on $[a,\infty)$.

IMPROPER INTEGRAL OF THE FIRST KIND

> Definition

Assume that $f \in R(\alpha; a, b)$ for every $b \ge a$. Keep a, α and f fixed and define a function I on $[a, \infty)$ as follows:

$$I(b) = \int_{a}^{b} f(x) d\alpha(x) \quad \text{if} \quad b \ge a.$$

The integral $\int_a^\infty f(x) d\alpha(x)$ is said to converge if the $\lim_{b\to\infty} I(b)$ exists (finite).

Otherwise, $\int_{a}^{\infty} f d\alpha$ is said to diverge.

If the $\lim_{b\to\infty} I(b)$ exists and equals A, the number A is called the value of the integral and we write $\int_a^\infty f \, d\alpha = A$.

> Remark

If $\int_{a}^{\infty} f \, d\alpha$ is convergent(divergent), then $\int_{c}^{\infty} f \, d\alpha$ is convergent(divergent) for c > a.

If $\int_{c}^{\infty} f \, d\alpha$ is convergent (divergent), then $\int_{a}^{\infty} f \, d\alpha$ is convergent (divergent) for a < c

> Example

if f in bounded in [a,c].

Consider and integral $\int_{1}^{\infty} x^{-p} dx$, where *p* is any real number. Discuss its convergence or divergence.

Solution

Let
$$I(b) = \int_{1}^{b} x^{-p} dx$$
 where $b \ge 1$.

Then
$$I(b) = \int_{1}^{b} x^{-p} dx = \frac{x^{1-p}}{1-p} \bigg|_{1}^{b} = \frac{1-b^{1-p}}{p-1}$$
 if $p \ne 1$.

If $b \to \infty$, then $b^{1-p} \to 0$ for p > 1 and $b^{1-p} \to \infty$ for p < 1.

Therefore we have

$$\lim_{b \to \infty} I(b) = \lim_{b \to \infty} \frac{1 - b^{1-p}}{p - 1} = \begin{cases} \infty & \text{if } p < 1, \\ \frac{1}{p - 1} & \text{if } p > 1. \end{cases}$$

Now if p=1, we get $\int_1^b x^{-1} dx = \log b \to \infty$ as $b \to \infty$.

Hence we concluded:
$$\int_{1}^{\infty} x^{-p} dx = \begin{cases} diverges & if \quad p \le 1, \\ \frac{1}{p-1} & if \quad p > 1. \end{cases}$$

> Example

Is the integral $\int_{0}^{\infty} \sin 2\pi x dx$ converges or diverges?

Solution:

Consider $I(b) = \int_{0}^{b} \sin 2\pi x \, dx$, where $b \ge 0$.

We have
$$\int_{0}^{b} \sin 2\pi x \, dx = \frac{-\cos 2\pi x}{2\pi} \Big|_{0}^{b} = \frac{1 - \cos 2\pi b}{2\pi}$$
.

Also $\cos 2\pi b \to l$ as $b \to \infty$, where l has values between -1 and 1, that is, limit is not unique.

Therefore the integral $\int_{0}^{\infty} \sin 2\pi x \, dx$ diverges.

> Note

If $\int_{-\infty}^{a} f d\alpha$ and $\int_{a}^{\infty} f d\alpha$ are both convergent for some value of a, we say that the

integral $\int_{-\infty}^{\infty} f \, d\alpha$ is convergent and its value is defined to be the sum

$$\int_{-\infty}^{\infty} f \, d\alpha = \int_{-\infty}^{a} f \, d\alpha + \int_{a}^{\infty} f \, d\alpha$$

The choice of the point a is clearly immaterial.

If the integral $\int_{-\infty}^{\infty} f \, d\alpha$ converges, its value is equal to the limit: $\lim_{b \to +\infty} \int_{-b}^{b} f \, d\alpha$.

> Review:

- A function f is said to be increasing, if for all $x_1, x_2 \in D_f$ (domain of f) and $x_1 \le x_2$ implies $f(x_1) \le f(x_2)$.
- A function f is said to be bounded if there exist some positive number μ such that $|f(t)| \le \mu$ for all $t \in D_f$.
- If f is define on $[a, +\infty)$ and $\lim_{x\to\infty} f(x)$ exists then f is bounded on $[a, +\infty)$.
- If $f \in R(\alpha; a, b)$ and $c \in [a, b]$, then $\int_a^b f d\alpha = \int_a^c f d\alpha + \int_c^b f d\alpha$.
- If $f \in R(\alpha; a, b)$ and $f(x) \ge 0$ for all $x \in [a, b]$, then $\int_a^b f d\alpha \ge 0$.

■ If f is monotonically increasing and bounded on $[a, +\infty)$, then $\lim_{x\to\infty} f(x) = \sup_{x\in[a,\infty)} f(x)$.

> Theorem

Assume that α is monotonically increasing on $[a,+\infty)$ and suppose that $f \in R(\alpha;a,b)$ for every $b \ge a$. Assume that $f(x) \ge 0$ for each $x \ge a$. Then $\int_a^\infty f \, d\alpha$ converges if, and only if, there exists a constant M > 0 such that

$$\int_{a}^{b} f \, d\alpha \leq M \quad \text{for every} \quad b \geq a.$$

Proof

Let
$$I(b) = \int_{a}^{b} f d\alpha$$
 for $b \ge a$.

First suppose that $\int_a^\infty f \, d\alpha$ is convergent, then $\lim_{b\to +\infty} I(b)$ exists, that is, I(b) is bounded on $[a,+\infty)$.

So there exists a constant M > 0 such that

$$|I(b)| < M$$
 for every $b \ge a$.

As $f(x) \ge 0$ for each $x \ge a$, therefore $\int_a^b f d\alpha \ge 0$.

This gives $I(b) = \int_{a}^{b} f d\alpha \le M$ for every $b \ge a$.

Conversely, suppose that there exists a constant M > 0 such that $\int_a^b f d\alpha \leq M$ for

every $b \ge a$. This give $|I(b)| \le M$ for every $b \ge a$.

That is, I is bounded on $[a, +\infty)$.

Now for $b_2 \ge b_1 > a$, we have

$$I(b_2) = \int_a^{b_2} f \, d\alpha = \int_a^{b_1} f \, d\alpha + \int_{b_1}^{b_2} f \, d\alpha$$

$$\geq \int_a^{b_1} f \, d\alpha = I(b_1), \qquad \therefore \int_{b_1}^{b_2} f \, d\alpha \geq 0 \text{ as } f(x) \geq 0 \text{ for all } x \geq a.$$

This gives I is monotonically increasing on $[a, +\infty)$.

As I is monotonically increasing and bounded on $[a,+\infty)$, therefore $\lim_{b\to\infty} I(b)$ exists, that is, $\int_a^\infty f \,d\alpha$ converges.

> Theorem: (Comparison Test)

Assume that α is monotonically increasing on $[a, +\infty)$ and $f \in R(\alpha; a, b)$ for every $b \ge a$. If $0 \le f(x) \le g(x)$ for every $x \ge a$ and $\int_a^\infty g \, d\alpha$ converges, then $\int_a^\infty f \, d\alpha$ converges and we have

$$\int_{a}^{\infty} f \, d\alpha \leq \int_{a}^{\infty} g \, d\alpha.$$

Proof

Let
$$I_1(b) = \int_a^b f \, d\alpha$$
 and $I_2(b) = \int_a^b g \, d\alpha$, $b \ge a$.

Since $0 \le f(x) \le g(x)$ for every $x \ge a$, therefore

$$I_1(b) \leq I_2(b)$$
(i)

 $I_1(b) \le I_2(b) \ \dots \dots (i)$ Since $\int_a^\infty g \, d\alpha$ converges, there exists a constant M>0 such that

$$\int_{a}^{b} g \, d\alpha \leq M \qquad , \quad b \geq a \quad \dots (ii)$$

From (i) and (ii) we have $I_1(b) \le M$ for every $b \ge a$.

This implies $\lim_{b\to\infty} I_1(b)$ exists and is finite, that is, $\int_{-\infty}^{\infty} f \, d\alpha$ converges.

Also
$$\lim_{b\to\infty} I_1(b) \le \lim_{b\to\infty} I_2(b) \le M$$
,

this gives $\int_{0}^{\infty} f d\alpha \leq \int_{0}^{\infty} g d\alpha.$

> Example

Is the improper integral $\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx$ convergent or divergent?

Solution:

Since $\sin^2 x \le 1$ for all $x \in [1, +\infty)$, therefore $\frac{\sin^2 x}{x^2} \le \frac{1}{x^2}$ for all $x \in [1, +\infty)$.

This gives
$$\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx \le \int_{1}^{\infty} \frac{1}{x^2} dx.$$

Now $\int_{-\infty}^{\infty} \frac{1}{x^2} dx$ is convergent, therefore $\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx$ is convergent.

> Review:

- For all $a,b,c \in \mathbb{R}$, $|a-b| < c \Leftrightarrow c-b < a < c+b$ or c-a < b < c+a.
- If $\lim_{x \to \infty} f(x) = m$, then for all real $\varepsilon > 0$, there exists N > 0 such that $|f(x) m| < \varepsilon$ whenever |x| > N.
- If $\int_a^\infty f \, d\alpha$ converges(diverges), then $\int_N^\infty f \, d\alpha$ converges(diverges) if N > a.
- If $\int_{N}^{\infty} f \, d\alpha$ is convergent (divergent), then $\int_{a}^{\infty} f \, d\alpha$ is convergent (divergent) for a < N if f is bounded in [a, N].

> Theorem (Limit Comparison Test)

Assume that α is monotonically increasing on $[a,+\infty)$. Suppose that $f \in R(\alpha;a,b)$ and that $g \in R(\alpha;a,b)$ for every $b \ge a$, where $f(x) \ge 0$ and $g(x) \ge 0$ for $x \ge a$. If

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=1,$$

then $\int_{a}^{\infty} f d\alpha$ and $\int_{a}^{\infty} g d\alpha$ both converge or both diverge.

Proof

Suppose $\lim_{x\to\infty}\frac{f(x)}{g(x)}=1$, then for all real $\varepsilon>0$, we can find some N>0, such that

$$\left| \frac{f(x)}{g(x)} - 1 \right| < \varepsilon \qquad \forall \quad x > N \ge a.$$

$$\Rightarrow 1 - \varepsilon < \frac{f(x)}{g(x)} < 1 + \varepsilon \qquad \forall \quad x > N \ge a.$$

If we choose $\varepsilon = \frac{1}{2}$, then we have

$$\frac{1}{2} < \frac{f(x)}{g(x)} < \frac{3}{2} \qquad \forall \quad x > N \ge a.$$

2 g(x) 2This implies g(x) < 2f(x)(i) and 2f(x) < 3g(x)(ii)

From (i)
$$\int_{N}^{\infty} g \, d\alpha < 2 \int_{N}^{\infty} f \, d\alpha,$$

so if $\int_{a}^{\infty} f d\alpha$ converges, then $\int_{N}^{\infty} f d\alpha$ converges and hence by comparison test we

get
$$\int_{N}^{\infty} g \, d\alpha$$
 is convergent, which implies $\int_{a}^{\infty} g \, d\alpha$ is convergent.

Now if $\int_{a}^{\infty} g \, d\alpha$ diverges, then $\int_{N}^{\infty} g \, d\alpha$ diverges and hence by comparison test we get $\int_{N}^{\infty} f \, d\alpha$ is divergent, which implies $\int_{N}^{\infty} f \, d\alpha$ is divergent.

From (ii), we have $2\int_{N}^{\infty} f d\alpha < 3\int_{N}^{\infty} g d\alpha$,

so if $\int_{a}^{\infty} g \, d\alpha$ converges, then $\int_{N}^{\infty} g \, d\alpha$ converges and hence by comparison test we get $\int_{N}^{\infty} f \, d\alpha$ is convergent, which implies $\int_{a}^{\infty} f \, d\alpha$ is convergent.

Now if $\int_{a}^{\infty} f \, d\alpha$ diverges, then $\int_{N}^{\infty} f \, d\alpha$ diverges and hence by comparison test we get $\int_{N}^{\infty} f \, d\alpha$ is divergent, which implies $\int_{a}^{\infty} f \, d\alpha$ is divergent.

 \Rightarrow The integrals $\int_{a}^{\infty} f d\alpha$ and $\int_{a}^{\infty} g d\alpha$ converge or diverge together.

> Note

The above theorem also holds if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = c$, provided that $c \neq 0$. If c = 0, we can only conclude that convergence of $\int_a^\infty g \, d\alpha$ implies convergence of $\int_a^\infty f \, d\alpha$.

> Example

For every real p, the integral $\int_{1}^{\infty} e^{-x} x^{p} dx$ converges.

This can be seen by comparison of this integral with $\int_{1}^{\infty} \frac{1}{x^2} dx$.

Let
$$f(x) = e^{-x}x^p$$
 and $g(x) = \frac{1}{x^2}$.

Now
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{e^{-x}x^p}{\frac{1}{x^2}}$$

$$\Rightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} e^{-x} x^{p+2} = \lim_{x \to \infty} \frac{x^{p+2}}{e^x} = 0.$$
 (find this limit yourself)

Since $\int_{1}^{\infty} \frac{1}{x^2} dx$ is convergent, therefore the given integral $\int_{1}^{\infty} e^{-x} x^p dx$ is also convergent.

> Remark

It is easy to show that if $\int_{a}^{\infty} f d\alpha$ and $\int_{a}^{\infty} g d\alpha$ are convergent, then

- $\int_{a}^{\infty} (f \pm g) d\alpha$ is convergent.
- $\int_{a}^{\infty} cf \, d\alpha$, where c is some constant, is convergent.

> Note

An improper integral $\int_{a}^{\infty} f \, d\alpha$ is said to converge absolutely if $\int_{a}^{\infty} |f| \, d\alpha$ converges.

It is said to be convergent conditionally if $\int_{a}^{\infty} f d\alpha$ converges but $\int_{a}^{\infty} |f| d\alpha$ diverges.

> Theorem

Assume α is monotonically increasing on $[a,+\infty)$. If $f \in R(\alpha;a,b)$ for every $b \ge a$ and if $\int_{-\infty}^{\infty} |f| d\alpha$ converges, then $\int_{-\infty}^{\infty} f d\alpha$ also converges.

Or: An absolutely convergent integral is convergent.

Proof

If
$$x \ge a$$
, $\pm f(x) \le |f(x)|$
 $\Rightarrow |f(x)| - f(x) \ge 0 \Rightarrow 0 \le |f(x)| - f(x) \le 2|f(x)|$
 $\Rightarrow \int_{a}^{\infty} (|f| - f) d\alpha$ converges.

Now difference of $\int_{a}^{\infty} |f| d\alpha$ and $\int_{a}^{\infty} (|f| - f) d\alpha$ is convergent,

that is, $\int_{a}^{\infty} f d\alpha$ is convergent.

> Remark

Every absolutely convergent integral is convergent.

> Review

- If $\lim_{x \to \infty} f(x) = m$, then for all real $\varepsilon > 0$, there exists real N > 0 such that $|f(x) m| < \varepsilon$ whenever |x| > N.
- A sequence $\{a_n\}$ is said to be convergent if there exist a number l such that for all $\varepsilon > 0$, there exists an integer n_0 (depending on ε) such that

$$|a_n - l| < \varepsilon$$
 whenever $n > n_0$.

A number l is called limit of the sequence and we write $\lim_{n\to\infty} a_n = l$.

A sequence $\{a_n\}$ is said to be Cauchy if there

A sequence of real numbers is Cauchy if and only if it is convergent.

> Theorem (Cauchy condition for infinite integrals)

Assume that $f \in R(\alpha; a, b)$ for every $b \ge a$. Then the integral $\int_a^\infty f \, d\alpha$ converges if, and only if, for every $\varepsilon > 0$ there exists a B > 0 such that c > b > B implies

$$\left|\int_{b}^{c} f \ d\alpha\right| < \varepsilon$$

Proof

Let $\int_{a}^{\infty} f \, d\alpha$ be convergent, that is $\lim_{b \to \infty} \int_{a}^{b} f \, d\alpha = \int_{a}^{\infty} f \, d\alpha$. $\frac{\times}{B} = \int_{a}^{\infty} \frac{1}{B} d\alpha$.

$$\left| \int_{a}^{b} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| < \frac{\varepsilon}{2} \quad \text{for every} \quad b > B \dots (i)$$

Also for c > b > B,

Then $\exists B > 0$ such that

$$\left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| < \frac{\varepsilon}{2} \, \dots \dots \dots \dots \dots (ii)$$

As we know $\int_{a}^{c} f d\alpha = \int_{a}^{b} f d\alpha + \int_{b}^{c} f d\alpha$, this gives

$$\left| \int_{b}^{c} f \, d\alpha \right| = \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right|$$

$$= \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha + \int_{a}^{\infty} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right|$$

$$\leq \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| + \left| \int_{a}^{\infty} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\Rightarrow \left| \int_{b}^{c} f \, d\alpha \right| < \varepsilon \quad \text{when} \quad c > b > B.$$

Conversely, assume that the Cauchy condition holds.

Define
$$a_n = \int_a^{a+n} f d\alpha$$
 if $n = 1, 2, \dots$

Consider n,m such that a+n,a+m>b>B, then

$$\begin{aligned} |a_{n} - a_{m}| &= \left| \int_{a}^{a+n} f \, d\alpha - \int_{a}^{a+m} f \, d\alpha \right| = \left| \int_{a}^{b} f \, d\alpha + \int_{b}^{a+n} f \, d\alpha - \int_{a}^{b} f \, d\alpha - \int_{b}^{a+m} f \, d\alpha \right| \\ &= \left| \int_{b}^{a+n} f \, d\alpha - \int_{b}^{a+m} f \, d\alpha \right| \le \left| \int_{b}^{a+n} f \, d\alpha \right| + \left| \int_{b}^{a+m} f \, d\alpha \right| < \varepsilon + \varepsilon = 2\varepsilon \end{aligned}$$

This gives, the sequence $\{a_n\}$ is a Cauchy sequence \Rightarrow it is convergent.

Let $\lim_{n\to\infty} a_n = A$. Then for given $\varepsilon > 0$, choose B so that

$$\left| a_n - A \right| < \frac{\varepsilon}{2}$$
 whenever $a + n \ge B$.
$$\frac{a+N}{a} \xrightarrow{B} \stackrel{\times}{b} \stackrel{\times}{c}$$

Also for $\varepsilon > 0$, we can have (by Cauchy condition)

$$\left| \int_{b}^{c} f \, d\alpha \right| < \frac{\varepsilon}{2} \quad \text{if} \quad c > b > B.$$

Choose an integer N such that a + N > B.

Then, if b > a + N, we have

$$\left| \int_{a}^{b} f \, d\alpha - A \right| = \left| \int_{a}^{a+N} f \, d\alpha - A + \int_{a+N}^{b} f \, d\alpha \right|$$

$$\leq \left| a_{N} - A \right| + \left| \int_{a+N}^{b} f \, d\alpha \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\Rightarrow \int_{a}^{\infty} f \, d\alpha = A$$

This completes the proof.

> Remarks

It follows from the above theorem that convergence of $\int_a^{\infty} f \, d\alpha$ implies $\lim_{b\to\infty} \int_b^{b+\varepsilon} f \, d\alpha = 0$ for every fixed $\varepsilon > 0$.

However, this does not imply that $f(x) \to 0$ as $x \to \infty$.

IMPROPER INTEGRAL OF THE SECOND KIND

> Definition

Let f be defined on the half open interval (a,b] (having point of infinite discontinuity at a) and assume that $f \in R(\alpha; x, b)$ for every $x \in (a, b]$. Define a function I on (a,b] as follows:

$$I(x) = \int_{x}^{b} f \, d\alpha \quad \text{if} \quad x \in (a, b]$$

 $I(x) = \int_{x}^{b} f \, d\alpha \quad \text{if} \quad x \in (a,b]$ If $\lim_{x \to a+} I(x)$ exists then the integral $\int_{a+}^{b} f \, d\alpha$ is said to be convergent. Otherwise,

 $\int_{a+}^{b} f \, d\alpha$ is said to be divergent. If $\lim_{x \to a+} I(x) = A$, the number A is called the value of

the integral and we write $\int_{a}^{b} f d\alpha = A$.

Similarly, if f is defined on [a,b) (having point of infinite discontinuity at b) and $f \in R(\alpha; a, x) \quad \forall \ x \in [a, b) \text{ then define } I(x) = \int_{a}^{x} f \, d\alpha \text{ if } x \in [a, b). \text{ If } \lim_{x \to b^{-}} I(x)$ exists (finite) then we say $\int_{-\infty}^{b} f d\alpha$ is convergent.

> Note

The tests developed to check the behaviour of the improper integrals of Ist kind are applicable to improper integrals of IInd kind after making necessary modifications.

> Example

 $f(x) = x^{-p}$ is defined on (0,b] and $f \in R(x,b)$ for every $x \in (0,b]$.

$$I(x) = \int_{x}^{b} x^{-p} dx \quad \text{if} \quad x \in (0,b]$$

$$= \int_{0+}^{b} x^{-p} dx = \lim_{\varepsilon \to 0} \int_{0+\varepsilon}^{b} x^{-p} dx = \lim_{\varepsilon \to 0} \left| \frac{x^{1-p}}{1-p} \right|_{\varepsilon}^{b} = \lim_{\varepsilon \to 0} \frac{b^{1-p} - \varepsilon^{1-p}}{1-p} \quad , \quad (p \neq 1)$$

$$= \begin{bmatrix} \text{finite} & , & p < 1 \\ \text{infinite} & , & p > 1 \end{bmatrix}$$

When p=1, we get $\int_{\varepsilon}^{b} \frac{1}{x} dx = \log b - \log \varepsilon \to \infty$ as $\varepsilon \to 0$.

$$\Rightarrow \int_{0+}^{b} x^{-1} dx \text{ also diverges.}$$

Hence the integral converges when p < 1 and diverges when $p \ge 1$.

> Note

If the two integrals $\int_{a+}^{c} f \, d\alpha$ and $\int_{c}^{b-} f \, d\alpha$ both converge, we write $\int_{a+}^{b-} f \, d\alpha = \int_{c}^{c} f \, d\alpha + \int_{c}^{b-} f \, d\alpha$

$$\int_{a+}^{b-} f \, d\alpha = \int_{a+}^{c} f \, d\alpha + \int_{c}^{b-} f \, d\alpha$$

The definition can be extended to cover the case of any finite number of sums. We can also consider mixed combinations such as

$$\int_{a+}^{b} f \, d\alpha + \int_{b}^{\infty} f \, d\alpha \quad \text{which can be written as} \quad \int_{a+}^{\infty} f \, d\alpha.$$

> Assignment

Consider $\Gamma(p) = \int_{-\infty}^{\infty} e^{-x} x^{p-1} dx$, (p > 0). Evaluate the convergence of this improper integral.

> A Useful Comparison Integral

$$\int_{a}^{b} \frac{dx}{(x-a)^{n}}$$

We have, if $n \neq 1$,

$$\int_{a+\varepsilon}^{b} \frac{dx}{(x-a)^{n}} = \left| \frac{1}{(1-n)(x-a)^{n-1}} \right|_{a+\varepsilon}^{b}$$
$$= \frac{1}{(1-n)} \left(\frac{1}{(b-a)^{n-1}} - \frac{1}{\varepsilon^{n-1}} \right)$$

Which tends to $\frac{1}{(1-n)(b-a)^{n-1}}$ or $+\infty$ according as n < 1 or n > 1, as $\varepsilon \to 0$.

Again, if n=1,

$$\int_{a+\varepsilon}^{b} \frac{dx}{x-a} = \log(b-a) - \log \varepsilon \to +\infty \quad \text{as} \quad \varepsilon \to 0.$$

Hence the improper integral $\int_{-\infty}^{b} \frac{dx}{(x-a)^n}$ converges iff n < 1.

> Question

Examine the convergence of

(i)
$$\int_{0}^{1} \frac{dx}{x^{\frac{1}{3}} (1+x^{2})}$$
 (ii) $\int_{0}^{1} \frac{dx}{x^{2} (1+x)^{2}}$ (iii) $\int_{0}^{1} \frac{dx}{x^{\frac{1}{2}} (1-x)^{\frac{1}{3}}}$

Solution

(i)
$$\int_{0}^{1} \frac{dx}{x^{\frac{1}{3}} (1+x^{2})}$$

Here '0' is the only point of infinite discontinuity of the integrand. We have

$$f(x) = \frac{1}{x^{\frac{1}{3}} (1 + x^2)}$$

Take
$$g(x) = \frac{1}{x^{1/3}}$$

Then
$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{1 + x^2} = 1$$

$$\Rightarrow \int_0^1 f(x) dx$$
 and $\int_0^1 g(x) dx$ have identical behaviours.

$$\therefore \int_{0}^{1} \frac{dx}{x^{\frac{1}{3}}} \text{ converges } \therefore \int_{0}^{1} \frac{dx}{x^{\frac{1}{3}} (1+x^{2})} \text{ also converges.}$$

(ii)
$$\int_{0}^{1} \frac{dx}{x^{2}(1+x)^{2}}$$

Here '0' is the only point of infinite discontinuity of the given integrand. We have

$$f(x) = \frac{1}{x^2 (1+x)^2}$$

Take
$$g(x) = \frac{1}{x^2}$$

Then
$$\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{1}{(1+x)^2} = 1$$

$$\Rightarrow \int_0^1 f(x) dx$$
 and $\int_0^1 g(x) dx$ behave alike.

But n = 2 being greater than 1, the integral $\int_0^1 g(x) dx$ does not converge. Hence the given integral also does not converge.

(iii)
$$\int_{0}^{1} \frac{dx}{x^{\frac{1}{2}} (1-x)^{\frac{1}{3}}}$$

Here '0' and '1' are the two points of infinite discontinuity of the integrand. We have

$$f(x) = \frac{1}{x^{\frac{1}{2}} (1-x)^{\frac{1}{3}}}$$

We take any number between 0 and 1, say $\frac{1}{2}$, and examine the convergence of

the improper integrals $\int_{0}^{\frac{1}{2}} f(x) dx$ and $\int_{\frac{1}{2}}^{1} f(x) dx$.

To examine the convergence of $\int_{0}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx$, we take $g(x) = \frac{1}{x^{\frac{1}{2}}}$

Then

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{(1-x)^{\frac{1}{3}}} = 1$$

$$\therefore \int_{0}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}} dx \text{ converges } \therefore \int_{0}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx \text{ is convergent.}$$

To examine the convergence of $\int_{1/2}^{1} \frac{1}{x^{1/2}(1-x)^{1/3}} dx$, we take $g(x) = \frac{1}{(1-x)^{1/3}}$

Then

$$\lim_{x \to 1} \frac{f(x)}{g(x)} = \lim_{x \to 1} \frac{1}{\frac{1}{x^{2}}} = 1$$

$$\therefore \int_{\frac{1}{2}}^{1} \frac{1}{(1-x)^{\frac{1}{3}}} dx \text{ converges } \therefore \int_{\frac{1}{2}}^{1} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx \text{ is convergent.}$$

Hence $\int_0^1 f(x) dx$ converges.

> Question

Show that $\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ exists iff m, n are both positive.

Solution

The integral is proper if $m \ge 1$ and $n \ge 1$.

The number '0' is a point of infinite discontinuity if m < 1 and the number '1' is a point of infinite discontinuity if n < 1.

Let m < 1 and n < 1.

We take any number, say $\frac{1}{2}$, between 0 & 1 and examine the convergence of the

improper integrals
$$\int_{0}^{\frac{1}{2}} x^{m-1} (1-x)^{n-1} dx$$
 and $\int_{\frac{1}{2}}^{1} x^{m-1} (1-x)^{n-1} dx$ at '0' and '1'

respectively.

Convergence at 0:

We write

$$f(x) = x^{m-1}(1-x)^{n-1} = \frac{(1-x)^{n-1}}{x^{1-m}}$$
 and take $g(x) = \frac{1}{x^{1-m}}$

Then
$$\frac{f(x)}{g(x)} \to 1$$
 as $x \to 0$

As
$$\int_{0}^{\frac{1}{2}} \frac{1}{x^{1-m}} dx$$
 is convergent at 0 iff $1-m < 1$ i.e. $m > 0$

We deduce that the integral $\int_{0}^{\frac{1}{2}} x^{m-1} (1-x)^{n-1} dx$ is convergent at 0, iff m is +ive.

Convergence at 1:

We write
$$f(x) = x^{m-1} (1-x)^{n-1} = \frac{x^{m-1}}{(1-x)^{1-n}}$$
 and take $g(x) = \frac{1}{(1-x)^{1-n}}$

Then
$$\frac{f(x)}{g(x)} \to 1$$
 as $x \to 1$

As
$$\int_{1/2}^{1} \frac{1}{(1-x)^{1-n}} dx$$
 is convergent, iff $1-n < 1$ i.e. $n > 0$.

We deduce that the integral $\int_{\frac{1}{2}}^{1} x^{m-1} (1-x)^{n-1} dx$ converges iff n > 0.

Thus $\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ exists for positive values of m, n only.

It is a function which depends upon m & n and is defined for all positive values of m & n. It is called Beta function.

> Question

Show that the following improper integrals are convergent.

(i)
$$\int_{1}^{\infty} \sin^2 \frac{1}{x} dx$$
 (ii) $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$ (iii) $\int_{0}^{1} \frac{x \log x}{(1+x)^2} dx$ (iv) $\int_{0}^{1} \log x \cdot \log(1+x) dx$

Solution

(i) Let
$$f(x) = \sin^2 \frac{1}{x}$$
 and $g(x) = \frac{1}{x^2}$

then
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{\sin^2 \frac{1}{x}}{\frac{1}{x^2}} = \lim_{y \to 0} \left(\frac{\sin y}{y}\right)^2 = 1$$

 $\Rightarrow \int_{-\infty}^{\infty} f(x) dx$ and $\int_{-\infty}^{\infty} \frac{1}{x^2} dx$ behave alike.

$$\therefore \int_{1}^{\infty} \frac{1}{x^2} dx \text{ is convergent } \therefore \int_{1}^{\infty} \sin^2 \frac{1}{x} dx \text{ is also convergent.}$$

$$(ii) \quad \int\limits_{1}^{\infty} \frac{\sin^2 x}{x^2} \, dx$$

Take
$$f(x) = \frac{\sin^2 x}{x^2}$$
 and $g(x) = \frac{1}{x^2}$
 $\sin^2 x \le 1 \implies \frac{\sin^2 x}{x^2} \le \frac{1}{x^2} \quad \forall \quad x \in (1, \infty)$

and
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
 converges $\therefore \int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$ converges.

> Note

$$\int_{0}^{1} \frac{\sin^{2} x}{x^{2}} dx$$
 is a proper integral because $\lim_{x \to 0} \frac{\sin^{2} x}{x^{2}} = 1$ so that '0' is not a point of

infinite discontinuity. Therefore $\int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx$ is convergent.

(iii)
$$\int_{0}^{1} \frac{x \log x}{(1+x)^{2}} dx$$

$$\therefore \log x < x , x \in (0,1)$$

$$\therefore x \log x < x^{2}$$

$$\Rightarrow \frac{x \log x}{(1+x)^{2}} < \frac{x^{2}}{(1+x)^{2}}$$
Now
$$\int_{0}^{1} \frac{x^{2}}{(1+x)^{2}} dx \text{ is a proper integral.}$$

$$\therefore \int_{0}^{1} \frac{x \log x}{(1+x)^{2}} dx \text{ is convergent.}$$

$$(iv) \int_{0}^{1} \log x \cdot \log(1+x) \ dx$$

$$\therefore \int_{0}^{1} x(x+1) dx \text{ is a proper integral } \therefore \int_{0}^{1} \log x \cdot \log(1+x) dx \text{ is convergent.}$$

> Note

- (i) $\int_{0}^{a} \frac{1}{x^{p}} dx$ diverges when $p \ge 1$ and converges when p < 1.
- (ii) $\int_{a}^{\infty} \frac{1}{x^{p}} dx$ converges iff p > 1.

> Questions

Examine the convergence of

(i)
$$\int_{1}^{\infty} \frac{x}{(1+x)^3} dx$$
 (ii) $\int_{1}^{\infty} \frac{1}{(1+x)\sqrt{x}} dx$ (iii) $\int_{1}^{\infty} \frac{dx}{x^{\frac{1}{3}}(1+x)^{\frac{1}{2}}}$

Solution

(i) Let
$$f(x) = \frac{x}{(1+x)^3}$$
 and take $g(x) = \frac{1}{x^2}$.

As
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^3}{(1+x)^3} = 1$$

Therefore the two integrals $\int_{1}^{\infty} \frac{x}{(1+x)^3} dx$ and $\int_{1}^{\infty} \frac{1}{x^2} dx$ have identical behaviour for convergence at ∞ .

$$\therefore \int_{1}^{\infty} \frac{1}{x^2} dx \text{ is convergent} \quad \therefore \int_{1}^{\infty} \frac{x}{(1+x)^3} dx \text{ is convergent.}$$

(ii) Let
$$f(x) = \frac{1}{(1+x)\sqrt{x}}$$
 and take $g(x) = \frac{1}{x\sqrt{x}} = \frac{1}{x^{\frac{3}{2}}}$

We have
$$\lim_{x\to\infty} \frac{f(x)}{g(x)} = \lim_{x\to\infty} \frac{x}{1+x} = 1$$

and $\int_{1}^{\infty} \frac{1}{x^{\frac{3}{2}}} dx$ is convergent. Thus $\int_{1}^{\infty} \frac{1}{(1+x)\sqrt{x}} dx$ is convergent.

(iii) Let
$$f(x) = \frac{1}{x^{\frac{1}{3}} (1+x)^{\frac{1}{2}}}$$

we take
$$g(x) = \frac{1}{x^{\frac{1}{3}} \cdot x^{\frac{1}{2}}} = \frac{1}{x^{\frac{5}{6}}}$$

We have $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 1$ and $\int_{1}^{\infty} \frac{1}{x^{\frac{5}{6}}} dx$ is divergent $\therefore \int_{1}^{\infty} f(x) dx$ is divergent.

> Question

Show that $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ is convergent.

Solution

We have

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \lim_{a \to \infty} \left[\int_{-a}^{0} \frac{1}{1+x^2} dx + \int_{0}^{a} \frac{1}{1+x^2} dx \right]$$

$$= \lim_{a \to \infty} \left[\int_{0}^{a} \frac{1}{1+x^2} dx + \int_{0}^{a} \frac{1}{1+x^2} dx \right] = 2 \lim_{a \to \infty} \left[\int_{0}^{a} \frac{1}{1+x^2} dx \right]$$

$$= 2 \lim_{a \to \infty} \left| \tan^{-1} x \right|_{0}^{a} = 2 \left(\frac{\pi}{2} \right) = \pi$$

therefore the integral is convergent.

> Question

Show that $\int_{0}^{\infty} \frac{\tan^{-1} x}{1 + x^2} dx$ is convergent.

Solution

$$\therefore (1+x^2) \cdot \frac{\tan^{-1} x}{(1+x^2)} = \tan^{-1} x \to \frac{\pi}{2} \quad \text{as} \quad x \to \infty \qquad \qquad \text{Here } f(x) = \frac{\tan^{-1} x}{1+x^2} \\
\int_0^\infty \frac{\tan^{-1} x}{1+x^2} dx \quad \& \quad \int_0^\infty \frac{1}{1+x^2} dx \quad \text{behave alike.} \qquad \qquad \text{and} \quad g(x) = \frac{1}{1+x^2} \\
\frac{1}{1+x^2} = \frac{1}{1+x^2} + \frac{1}$$

 $\therefore \int_{0}^{\infty} \frac{1}{1+x^2} dx$ is convergent \therefore A given integral is convergent.

> Question

Show that $\int_{0}^{\infty} e^{-x} \cos x \, dx$ is absolutely convergent.

Solution

$$\therefore \left| e^{-x} \cos x \right| < e^{-x} \quad \text{and} \quad \int_{0}^{\infty} e^{-x} \, dx = 1$$

: the given integral is absolutely convergent. (Comparison test)

> Question

Show that
$$\int_{0}^{1} \frac{e^{-x}}{\sqrt{1-x^{4}}} dx$$
 is convergent.

Solution

$$e^{-x} < 1$$
 and $1 + x^2 > 1$ for all $x \in (0,1)$.

$$\frac{e^{-x}}{\sqrt{1-x^4}} < \frac{1}{\sqrt{(1-x^2)(1+x^2)}} < \frac{1}{\sqrt{1-x^2}}$$
Also
$$\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx = \lim_{\varepsilon \to 0} \int_{0}^{1-\varepsilon} \frac{1}{\sqrt{1-x^2}} dx$$

$$= \lim_{\varepsilon \to 0} \sin^{-1}(1-\varepsilon) = \frac{\pi}{2}$$

$$\Rightarrow \int_{0}^{1} \frac{e^{-x}}{\sqrt{1-x^{4}}} dx \text{ is convergent. (by comparison test)}$$

References:

- 1. Tom M. Apostol, Mathematical Analysis, 2nd Edition, 1974.
- 2. S.C. Malik and Savita Arora, Mathematical Analysis, 2nd Edition, 1992.

