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Sequence

A sequence is a function whose domain of definition is the set of natural
numbers.

Or it can also be defined as an ordered set.

Notation:
An infinite sequence is denoted as

{s, } or {s,:neN}or {s;s,,s,..} orsimplyas {s },
e.g. |) {n}={1,23..}.

i) {n} }
i) {(-1)" 1}:{1,—1,1,—1,...}.

Subsequence
It is a sequence whose terms are contained in given sequence.
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A subsequence of {s, } is usually written as {s, }.
n=1
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Increasing Sequence
A sequence {s,} is said to be an increasing sequence if s,,, >s, V n>1.

Decreasing Sequence
A sequence {s,} is said to be an decreasing sequence if s, <s, V nx1.

Monotonic Sequence
A sequence {s,} is said to be monotonic sequence if it is either increasing or

decreasing.

: , : — S
{s,} is monotonically increasing if s, —s, =0 or ;‘—“21, VvV nx1l.

{s,} is monotonically decreasing if s, —s,, >0 or —~>1, V n>1.

Strictly Increasing or Decreasing
{s,} is called strictly increasing or decreasing according as

S, >S, or s..<s, Vnxl.

n+1 n+1
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Bernoulli’s Inequality
Let peR, p>-1and p=0 then for n>2 we have

(1+p)" >1+np.
Proof:
We shall use mathematical induction to prove this inequality.
Ifn=2
LHS =1+ p)*=1+2p+ p°,
R.H.S =1+2p,
= LH.S>RH.S,
I.e. condition | of mathematical induction is satisfied.

Suppose (1+ p)k S14KD oo, (i) where k>2

Now (1+p)“" =(1+p)(1+p)
>(1+ p)(1+kp) using (i)
=1+kp+ p+kp®
=1+ (k+1) p +kp?
>1+(k+Dp ignoring kp® >0,

= (1+p)“" >1+(k+1)p.
Since the truth for n=k implies the truth for n=k +1 therefore condition Il of
mathematical induction is satisfied. Hence we conclude that (1+ p)" >1+np. QO

Example:

Prove that {(1+ l) } IS an increasing sequence.
n

Let sn:(1+1j where n>1.
n

To prove that this sequence is an increasing sequence, we use p=—, nx2in
n

Bernoulli’s inequality to have

1Y n
[1—Fj >1—F

- (2]

n n n

n 1-n 1-n n-1 n-1
=[RS s

n n n n-1 n-1
= S, >S, vV nx1.
This shows that {s,} is increasing sequence. Q
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Example:
n+1
Prove that a sequence {(H lj } IS a decreasing sequence.
n
1 n+l
Let tn:(l+—j n>1.
n
We use p=— in Bernoulli’s inequality.
n -
" n
1+ >l+——. I
( 2—1) n’ -1 M
where
1 ? n n
e RE e
n-1 n°- n-1)\n+1
1 n+1 n
= |1+ =l —— | e I
( nz—l( n j (n—lj U
Now t , = 1+ij :(L]
n-1 n-1
1 Y n+1)Y )
= (1+ . ]( D from (ii)
n- -1 n
1y Mnuj
n- -1 n
n Y n+1Y .
> 1+— from (i)
n° -1 n

Le. t,>t..
Hence the given sequence is decreasing sequence.
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Bounded Sequence
A sequence {sn} Is said to be bounded if there exists a positive real number A

such that |s,|<4 V neN.

If S and s are the supremum and infimum of elements forming the bounded
sequence {s |} we write S=sups, and s=infs,.

All the elements of the sequence s, suchthat |s,|<A V neN lie with in the

strip {y: —A<y< ﬂ,} . But the elements of the unbounded sequence can not be
contained in any strip of a finite width.

Examples

n
(i) {v,}={sinnx} is also bounded sequence. Its supremum is 1 and infimum is —1.

@ Au}= {(_1)n} is a bounded sequence

(iii) The geometric sequence {ar“}, r >1 is an unbounded above sequence. It is

bounded below by a.

(iv) {tan %ﬂ} Is an unbounded sequence.

Convergence of the Sequence
A sequence {sn} of real numbers is said to convergent to limit ‘s’ as n—oo, if

for every positive real number ¢ >0, there exists a positive integer n,, depending
upong, suchthat |s,—s|<e V n>n,.

Theorem
A convergent sequence of real number has one and only one limit (i.e. Limit of
the sequence is unique.)
Proof:
Suppose {sn} converges to two limits s and t, where s=t.

|s—t] : L
Put £=—— then there exits two positive integers n, and n, such that

s, —s|<e vV n>n,
and s, —t|<¢ v n>n,.
= |s,—s|<e and |s, —t|<e& hold simultaneously v n>max(n,n,).
Thus for all n>max(n;,n,) we have
|s—t|=|s—s,+s, —t]

<|s, —s|+|s, —t]
<&+e=2¢
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= |s-t|< Z[M}
2

= [s—t|<|s—t]
Which is impossible, therefore the limit of the sequence is unique. a
Note: If {sn} converges to s then all of its infinite subsequence converge to s.

Cauchy Sequence
A sequence {xn} of real number is said to be a Cauchy sequence if for given

positive real number &, 3 a positive integer n,(&) such that
| X, —x, |<& vV m,n>n,

Theorem
A Cauchy sequence of real numbers is bounded.
Proof:
Let {s, } be a Cauchy sequence.

Take ¢ =1, then there exits a positive integers n, such that

s, =S| <1 v m,n>n,.
Fix m=n, +1 then
‘ Sn‘ = Sn - Sn0+1 + Sn0+1
< S _Sno+1 + Sn0+1
<1l+|s, vV n>n,
<A vV n>1,and 2=1+|s, ,| (n, changesas ¢ changes)
Hence we conclude that {Sn} Is a Cauchy sequence, which is bounded one. a

Note:
(i) Convergent sequence is bounded.
(i1) The converse of the above theorem does not hold.
I.e. every bounded sequence is not Cauchy.

Consider the sequence {s,} where s, =(-1)", n>1. Itis bounded sequence because
|(-D)"|=1<2 V n>1.

But it is not a Cauchy sequence if it is then for £ =1 we should be able to find a
positive integer n, such that s, —s,|<1 forall m,n>n,.

But with m=2k +1, n=2k +2 when 2k +1>n,, we arrive at

‘ s, — Sm‘ :‘ (_1)2n+2 . (_1)2k+1
=[1+1|=2<1 s absurd.

Hence {sn} Is not a Cauchy sequence. Also this sequence is not a convergent

sequence. (it is an oscillatory sequence).
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Divergent Sequence
A {sn} Is said to be divergent if it is not convergent or it is unbounded.

e.g. {n?} isdivergent, it is unbounded.
(i) {(—1)”} tends to 1 or -1 according as n is even or odd. It oscillates finitely.

(iii) {(—1)“n} Is a divergent sequence. It oscillates infinitely.

Note: If two subsequence of a sequence converges to two different limits then the
sequence itself is a divergent.

Theorem
If s, <u,<t, V nxn, and if boththe {s } and {t,} converge to same limits as

s, then the sequence {u, } also converges to s.

Proof:
Since the sequence {s,} and {t,} converge to the same limit s, therefore, for

given ¢ >0 there exists two positive integers n, n, > n, such that

|s,—s|<e v n>n
It,—s|<e vV n>n,
I.e. S—e<S,<S+¢& VvV n>n

S—e<t <s+¢ V n>n,
Since we have given

S, <u, <t v n>n,
. S—&<s, <U, <t <s+¢ Vv n>max(ny,n,n,)
= S—&<U,<S+¢ Vv n>max(n,,n,n,)
ie. |u,—s|<e V¥V n>max(n,n,n,)
ie. limu, =s. Q

n—o0

Example
1

Show that limn" =1

n—oo

Solution
Using Bernoulli’s Inequality

1Y n
14— | >1+—>-/n>1 v n.
( j Jn

Also



Sequences and Series

1 1 2
= 1<n"<|1+— |,
( Jﬁj

1 1V
= liml1<limn" <Iim(1+—j )
Jn

Nn—oo N—oo N—o
1
= 1<limn" <1.

N—oo
1

ie. limn"=1.
Example
Show that lim| —— >+ 1 S e, + 12 =0
ol (N+1)°  (nN+2) (2n)
Solution
Consider
1 1 1
S, = 5+ s+t -
(n+1)° (n+2) (2n)
and
n s <1
(2n)® " oon?
1
= — <S5, <=
4n n
.1 ) 1
= lim— < lims, < lim=
n—>oo4n n—oo n—w

= 0 < lims, <0

N—oo

— limS, =0

nN—o0

Theorem
If the sequence {s,} converges to s then 3 a positive integer n

such that |sn|>%s.
Proof:
We fix g=%\5\>o
= 3 apositive integer n, such that

|s,—s|<¢ for n>n,

= |s,-s|<=]s|
" 2
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Now
2sl=Is|-=ls]
2 2

<|s|-[s,—s| <|s+(s,—3)|
1
= =[s|<|s,|.

2

Theorem

Let a and b be fixed real numbers if {s } and {t,} converge tosandt

respectively, then
(i) {as,+bt,} convergesto as + bt.

(ii) {s,t,} converges to st.

(i) {:—”} converges to % provided t, #0 ¥V nand t=0.

Proof:
Since {s,} and {t,} converge to s and t respectively,

o |s,—s|<e ¥V n>neN
It —t|<e vV n>n,eN
Also 3 A>0suchthat |s <A V n>1 (- {s,} is bounded )
(i) We have
|(as, +bt,)—(as+bt)|=|a(s, —s)+b(t,~ )]
<|a(s,—s)|+|b(t, 1)
<|ale+|ble vV n>max(n,n,)
=g,
where ¢ =|a|e+|b|e a certain number.
This implies {as, +bt,} converges to as + bt.
(i) |[s,t,—st| =]s,t, —s,t+s,t—st]

= s, (t, —t)+t(sn—s)‘ <|s,|-

(t=t)[+[t]-|(s, =)

< Ae+lt|e vV n>max(n,n,)
=&, where &, =A&+|t|e acertain number.
This implies {s,t,} converges to st.

o[ et

(iii) T i
|t —t] £ 1

= < v n>max(n,n,) ot > St

ARRETR o 2
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& )

= =&, where &, = a certain number.
112 1
31t 3t

|2

This implies {ti} converges to %

n

Slols L 1_s i
Hence {t—} _{sn tn} converges to s T =T (from (ii) ) Q

n

Theorem

For each irrational number x, there exists a sequence {r,} of distinct rational

numbers such that limr, =x.

n—o0

Proof:
Since x and x + 1 are two different real numbers
.+ 3 arational number r; such that

X<r<x+1
Similarly 3 a rational number r, = r; such that

: 1
X<r,<min rl,x+§ <X+1
Continuing in this manner we have

: 1
x<r3<m|n[r2,x+§)<x+1

) 1
x<r4<m|n(r3,x+zj<x+1

: 1
X<r <min rn_l,x+ﬁ <X+1
This implies that 3 a sequence {r,} of the distinct rational number such that

1 1
X—=<X<I <X+=.
n n

) 1 ) 1
lim| x—=|=lim| Xx+= |=X.
n—oo n Nn—o0 n

limr, =x.

n—o0

Since

Therefore
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Theorem
Let a sequence {s,} be a bounded sequence.

(i) If {sn} Is monotonically increasing then it converges to its supremum.
(i) If {sn} Is monotonically decreasing then it converges to its infimum.

Proof
Let S=sups, and s=infs,
Take >0
(i)  Since S=sups,
- 3s, suchthat S—e<s,

Since {Sn} is T ( T stands for monotonically increasing )
S S—e<s, <5, <S<S+e forn>n,

= S—&<5,<S+¢ for n>n,

= |s,—S|<e for n>n,

= lims =S

(i)  Since s=infS,
-3 s, suchthats, <s+e¢

Since {s,} is V. (4 stands for monotonically decreasing )
L S—g<s<s, <s, <s+e forn>n
= S—&£<S,<S+¢ for n>n,
= |s,—s|<e¢ for n>n,
Thus M‘OS“ =S Q
Note

A monotonic sequence can not oscillate infinitely.
Example:

n

Consider {s,} = {(H %)n}

As shown earlier it is an increasing sequence

2n n
Take 32nz(1+ij , then /s, :(1+ij ,

2n 2n

Show that {(1+ Ej } Is bounded sequence.

_ 1 _Kzn)“ _ 1 _(1_ 1 j
A/SZn 2n+1 Jszh 2n+1

Using Bernoulli’s Inequality we have
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n
= i > 1- n > 1—1 = 1 (1— j >1-
,/szh 2n+1 2n 2 2n+1 2n+1
= S < 2 vV n=123,...
=5, < 4 Y n=123,...
= 5, <S,, <4 vV n=123,.

Which show that the sequence {s, } is bounded one.

Hence {sn} IS a convergent sequence the number to which it converges is its
supremum, which is denoted by ‘e’ and 2<e<3.

Recurrence Relation

A sequence is said to be defined recursively or by recurrence relation if the
general term is given as a relation of its preceding and succeeding terms in the
sequence together with some initial condition.

Example:

Let t, >0 and let {t,} be defined by t >2—tl for n>1.

n

n+1

(i) Show that {tn} IS decreasing sequence.

(i1) It is bounded below.
(iii) Find the limit of the sequence.

Let t, >0 and let {t,} be defined by t L

>2—— : nx1
t

n

n+1

=1t >0 Y n>1

1
Also t -t =t —2+—

n
n

2 1\
:tn—tZtn+1 _ (tnt y 0

=t >1t, vV nx1l.
This implies that t, is monotonically decreasing.
Since t,>1 V nx1,
= t, is bounded below = t, is convergent.

Let us suppose limt, =t.

n—o0

nN—o0 n—o0 N—o0 nN—o0

Then limt  =limt, = Iim(Z—tljzlimtn

= 2—%=t = %ﬂ = 2t-1=t> = t°-2t+1=0

= (t—l)Z:O = t=1. a
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Theorem

Every Cauchy sequence of real numbers has a convergent subsequence.
Proof:

Suppose {s,} is a Cauchy sequence.
Let £ >0 then 3 a positive integer n, >1 such that

<§ v n,n_, k=123,.....

S, —S

Nk M1

Put bk=(3n1—5n)+(5n snl)+ + snk—snkfl)
= [Bl=| (s =, )+ (5, =3 )+ 4 (s, -0 )
s‘(snl—sno) +‘(Sn —snl)‘+ +((s,, =5
& & &
<o toEtet o
= 1+i+ + 1)
2 22
= %(1_2%) =5(1—ikj
1-1 2
= |b|<e vV k>1
= {b} is convergent
: bk:Snk_SnO snk:bk+sn0,

where s, is a certain fix number therefore {snk} which is a subsequence of {s, } is
convergent. Q

Theorem (Cauchy’s General Principle for Convergence)

A sequence of real number is convergent if and only if it is a Cauchy sequence.
Proof:

Necessary Condition
Let {sn} be a convergent sequence, which converges to s.

Then for given £ >0 3 a positive integer n,, such that

&

s, —s]| < 5 ¥ n>n,
Now for n>m>n,
S, —Sn| =[S, =S+, —5]

<|s,—s|+|s,—5]
<fif ¢,
2 2
Which shows that {s,} is a Cauchy sequence.

-12 -
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Sufficient Condition
Let us suppose that {sn} Is a Cauchy sequence then for £ >0, 3 a positive

integer m, such that

|sn—sm|<gVn,m>m1 ........... (i)
Since {sn} Is a Cauchy sequence

therefore it has a subsequence {snk} converging to s (say).

= 3 apositive integer m, such that
&

S, —S <E vn>m, .......... (i)
Now
s, —s|= sn—snk+snk—s‘
<|s, =S, |+ snk—s‘
<§+§:g vV n>max(m,m,),
this shows that {s,} is a convergent sequence. Q
Example
1 1 1) . ..
Prove that 1+§+§+ ............... + = ¢ Is divergent sequence.
n
Let {t,} be defined by
t, :1+1+1+ ............... +1.
2 3 n
For m,neN, n>m we have
It —t,|= S A
m+1 m+2 n
> (n—m)l = 1—m.
n n

In particular if n=2m then
1
It —t,|>=.
2

This implies that {tn} is not a Cauchy sequence therefore it is divergent.

- 13 -
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Theorem (nested intervals)
Suppose that {I } is a sequence of the closed interval such that I =[a,.b,],

l,.<1, V nx1 and (b,—a,) >0 as n—oo then (1, contains one and only one
point.

Proof:
Since |, 1,

La<a, < <...<a <a <b <b ,<...<b,<b, <b
{an} Is increasing sequence, bounded above by b, and bounded below by a, .
And {bn} Is decreasing sequence bounded below by a, and bounded above by b, .
= {a,} and {b,} both are convergent.
Suppose {a,} convergesto a and {b,} convergesto b.
But |a—b|=|a-a,+a,—b,+b, —b]
<|a,-a|+|a,—b,|+|b,—b] >0 as n—owo.
= a=b
and a,<a<b, V nxl. Q

Theorem (Bolzano-Weierstrass theorem)
Every bounded sequence has a convergent subsequence.
Proof:
Let {s,} be a bounded sequence.
Take a =infs and b =sups,
Then a <s,<b V nx>1.
Now bisect interval [a,,b,| such that at least one of the two sub-intervals contains

infinite numbers of terms of the sequence.
Denote this sub-interval by [a,,b,].

If both the sub-intervals contain infinite number of terms of the sequence then
choose the one on the right hand.
Then clearly a <a, <b, <hb.

Suppose there exist a subinterval [a,,b, | such that
a<a <..<a <b <...<b,<b

1
= (b-a)=2(n-a)
Bisect the interval [a,,b, | in the same manner and choose [a,,,,b,,,] to have

a<a<..<a <a,<b,<b <.<b <b

1
and B — :F(bl_ai)

This implies that we obtain a sequence of interval [a,,b, | such that
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1
b, —a, :E(bl—al)—m as n—oo.
— we have a unique point s such that
s=M[a,.b,]
there are infinitely many terms of the sequence whose length is & > 0 that contain s.
For & =1 there are infinitely many values of n such that
|s,—s| <1
Let n, be one of such value then
‘Snl —S‘ <1
Again choose n, > n, such that

1
S, —s‘ < =
? 2
Continuing in this manner we find a sequence {snk} for each positive integer k such
that n <n,, and

snk—s‘ < % vV k=123,..........

Hence there is a subsequence {snk} which converges to s. a

Limit Inferior of the sequence
Suppose {s,} is bounded below then we define limit inferior of {s } as follow
lim(inf s,)=limu,, where u, =inf{s :n>k}

n—o0 N—o0

If s, is not bounded below then
lim(infs,)=—o0.

Limit Superior of the sequence
Suppose {sn} Is bounded above then we define limit superior of {sn} as follow

lim(sups,)=limv,, where v, =inf{s :n>k}

N—o0 n—o0

If s, is not bounded above then we have
lim(sups, ) =+.

nN—o0

Note:
(i) A bounded sequence has unique limit inferior and superior

(i) Let {s,} contains all the rational numbers, then every real number is a
subsequencial limit then limit superior of s_ is +co and limit inferior of s is —oo

(iii) Let {s,}=(-1)" (1+ %)

then limit superior of s, is 1 and limit inferior of s, is —1.

n
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(iv) Lets, = (1+ EJcos nr.
n

Then u, =inf{s, :n>k}

=inf (1+1Jcoskﬂ,(l+ijcos(k +1)7r,(1+ 1 jcos(k F2) Ty,
k k+1 k+2
(1+%Jcosk7r if k is odd
- 1 .
(1+—jcos(k +)7x if kis even
k+1
= lim(infs,)=Ilimu, =-1
Also v, =sup{s,:n>k}
(1+ijcos(k iz if kis odd
_ k+1
(1+%]cos kz if kis even
= lim(infs,)=limy, =1 a
Theorem
If {s,} is a convergent sequence then
lims, = lim(infs,) = lim(sups,)
Proof:
Let lims, =s then for a real number ¢ >0, 3 a positive integer n, such that
|s,—s|<e Vnzng ... (i)
I.e. S—£<S,<S+¢ vV nxn,
If v, =sup{s,:n>k}
Then S—&e<V, <S+¢ VvV k>n,
= s—eg<limv. <s+¢ VKkzn, coooenee (i)

k—o0
from (i) and (ii) we have
s=Ilim sup{s,}

k—o0

We can have the same result for limit inferior of {sn} by taking
u, =inf{s,:n>k}. a

SO0
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