
 

Sequence  

A sequence is a function whose domain of definition is the set of natural 

numbers. 

Or it can also be defined as an ordered set. 
 

Notation: 

An infinite sequence is denoted as  

 
1

{ }n
n

s




 or   :ns n  or   1 2 3, , ,...s s s  or simply as  ns , 

  e.g.        i)      1,2,3,n  . 

    ii) 
1 1 1

1, , ,
2 3n

   
   

   
. 

   iii)    1( 1) 1, 1,1, 1,n    . 
 

Subsequence 

It is a sequence whose terms are contained in given sequence. 

A subsequence of 
1

{ }n
n

s




 is usually written as { }
kns


. 

 

Increasing Sequence  

A sequence  ns  is said to be an increasing sequence if 1 1n ns s n    . 
 

Decreasing Sequence 

A sequence  ns  is said to be an decreasing sequence if 1 1n ns s n    . 
 

Monotonic Sequence 

A sequence  ns  is said to be monotonic sequence if it is either increasing or 

decreasing. 

 ns  is monotonically increasing if 1 0n ns s     or  1 1n

n

s

s

  ,  1n  .  

 ns  is monotonically decreasing if 1 0n ns s     or  
1

1n

n

s

s 

 ,  1n  .  

 

Strictly Increasing or Decreasing 

 ns  is called strictly increasing or decreasing according as  

    1n ns s    or  1n ns s      1n  . 
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Bernoulli’s Inequality 

Let  p , 1p    and 0p   then for 2n   we have 

       1 1
n

p np   . 

Proof: 

We shall use mathematical induction to prove this inequality. 

  If n = 2 

L.H.S 2 2(1 ) 1 2p p p     , 

R.H.S 1 2p  , 

. . . .L H S R H S  , 

i.e. condition I of mathematical induction is satisfied. 

Suppose   1 1 .................. ( )
k

p kp i     where  2k   

Now        
1

1 1 1
k k

p p p


     

         1 1p kp       using (i) 

       21 kp p kp     

       21 ( 1)k p kp     

       1 ( 1)k p         ignoring  2 0kp  , 

         
1

1 1 1
k

p k p


     . 

Since the truth for n k  implies the truth for 1n k   therefore condition II of 

mathematical induction is satisfied. Hence we conclude that  1 1
n

p np   .      
 

Example: 

Prove that 
1

1

n

n

   
  

   

  is an increasing sequence. 

Let  
1

1

n

ns
n

 
  
 

    where 1n  . 

   To prove that this sequence is an increasing sequence, we use  
2

1
p

n


 ,   2n   in 

Bernoulli’s inequality to have 

      
2 2

1
1 1

n
n

n n

 
   

 
 

         
1 1 1

1 1 1

n

n n n

   
       

   
 

         

1 1 1 1
1 1 1 1

1 1 1
1 1

n n n n n
n n

n n n n n

   
         

                
          

 

         1n ns s      1n  . 

   This shows that  ns  is increasing sequence.       
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Example: 

Prove that a sequence 

1
1

1

n

n

   
  

   

 is a decreasing sequence.  

    Let   

1
1

1

n

nt
n



 
  
 

 ; 1n  . 

   We use 
2

1

1
p

n



 in Bernoulli’s inequality. 

2 2

1
1 1

1 1

n
n

n n

 
   

  
……….. (i) 

where      
2

2 2

1
1

1 1 1 1

n n n

n n n n

  
     

     
 

                      
2

1 1
1

1 1

n n

n n n

    
      

     
 …………… (ii) 

Now  1

1
1

1 1

n n

n

n
t

n n


   
     

    
  

     
2

1 1
1

1

n

n

n n

    
    

   
   from (ii) 

     
2

1 1
1

1

n n
n

n n

   
    

   
 

   
2

1
1

1

n
n n

n n

  
   

  
    from (i) 

   
1 1

1

n
n

n n

  
   
  

    
2 2

1

1

n n

n n n
 


 

  

1
1

n

n

n
t

n


 

  
 

, 

i.e.  1n nt t  . 

   Hence the given sequence is decreasing sequence.      
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Bounded Sequence 

A sequence  ns  is said to be bounded if there exists a positive real number   

such that  ns n   . 

If S and s are the supremum and infimum of elements forming the bounded 

sequence  ns  we write  sup nS s    and   inf ns s . 

All the elements of the sequence 
ns  such that ns n    lie with in the 

strip  :y y    . But the elements of the unbounded sequence can not be 

contained in any strip of a finite width. 
 

Examples 

(i)  
( 1)n

nu
n

 
  
 

 is a bounded sequence  

(ii)      sinnv nx  is also bounded sequence. Its supremum is 1 and infimum is 1 . 

(iii)  The geometric sequence  1nar  , 1r   is an unbounded above sequence. It is 

bounded below by a. 

(iv) tan
2

n 
 
 

 is an unbounded sequence.   

 

Convergence of the Sequence 

A sequence  ns  of real numbers is said to convergent to limit  ‘s’  as n , if 

for every positive real number 0  , there exists a positive integer 0n , depending 

upon , such that   ns s      0n n  . 
 

Theorem 

A convergent sequence of real number has one and only one limit (i.e. Limit of 

the sequence is unique.) 

Proof: 

   Suppose  ns  converges to two limits  s  and  t, where s t . 

Put 
2

s t



   then there exits two positive integers 1n  and 2n  such that 

ns s      1n n   

and     ns t      2n n  . 

   ns s     and  ns t    hold simultaneously 1 2max( , )n n n  . 

Thus for all  1 2max( , )n n n  we have 

n ns t s s s t      

 

n ns s s t     

2      
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    2
2

s t
s t

  
    

 
 

    s t s t     

   Which is impossible, therefore the limit of the sequence is unique.    
 

Note:  If  ns  converges to s then all of its infinite subsequence converge to s. 
 

Cauchy Sequence 

A sequence  nx  of real number is said to be a Cauchy sequence if for given 

positive real number  ,  a positive integer 
0( )n   such that  

     n mx x     
0,m n n   

 

Theorem 

A Cauchy sequence of real numbers is bounded. 

Proof: 

   Let  ns be a Cauchy sequence. 

Take 1  , then there exits a positive integers 0n  such that 

 1n ms s    0,m n n  . 

Fix 0 1m n   then 

0 01 1n n n ns s s s     

       
0 01 1n n ns s s     

       
0 11 ns     0n n   

              1n   , and 
0 11 ns      ( 0n  changes as   changes) 

   Hence we conclude that  nS is a Cauchy sequence, which is bounded one.   

Note:  

   (i) Convergent sequence is bounded. 

   (ii) The converse of the above theorem does not hold. 

         i.e. every bounded sequence is not Cauchy. 

   Consider the sequence  ns  where ( 1)n

ns   ,  1n  . It is bounded sequence because  

( 1) 1 2n     1n  . 

   But it is not a Cauchy sequence if it is then for 1   we should be able to find a 

positive integer 0n  such that 1n ms s   for all 0,m n n . 

   But with 2 1m k  , 2 2n k   when 02 1k n  , we arrive at  
2 2 2 1( 1) ( 1)n k

n ms s        

   1 1 2 1      is absurd. 

    Hence  ns  is not a Cauchy sequence. Also this sequence is not a convergent 

sequence. (it is an oscillatory sequence). 

…………………………… 
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Divergent Sequence 

A  ns  is said to be divergent if it is not convergent or it is unbounded. 

     e.g.   2n  is divergent, it is unbounded. 

   (ii)  ( 1)n  tends to 1 or -1 according as n is even or odd. It oscillates finitely.  

  (iii)  ( 1)n n  is a divergent sequence. It oscillates infinitely. 

 

  Note:  If two subsequence of a sequence converges to two different limits then the 

sequence itself is a divergent. 
 

Theorem 

If n n ns u t    0n n   and if both the  ns  and  nt  converge to same limits as 

s, then the sequence  nu  also converges to s. 

Proof: 
Since the sequence  ns  and  nt  converge to the same limit s, therefore, for 

given 0    there exists two positive integers 1 2 0,n n n  such that 

ns s      
1n n   

nt s      2n n   

   i.e.   ns s s      1n n   

ns t s      2n n   

 Since we have given 

n n ns u t      0n n   

 n n ns s u t s          0 1 2max( , , )n n n n   

         ns u s         0 1 2max( , , )n n n n   

          i.e.  nu s        0 1 2max( , , )n n n n   

   i.e.   lim n
n

u s


 .           
 

Example 

Show that 
1

lim 1n

n
n


  

Solution 

  Using Bernoulli’s Inequality 

1
1 1 1

n
n

n
n n

 
     

 
  n . 

Also 
2

2
1 1

1 1

n n

n n

    
      

     

  
2 1

1n nn n   , 
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21
1

1 1nn
n

 
    

 
, 

21
1

lim1 lim lim 1n

n n n
n

n  

 
    

 
, 

1

1 lim 1n

n
n


   . 

      i.e.   
1

lim 1n

n
n


 .          

…………………….. 

 

Example 

Show that   
2 2 2

1 1 1
lim ............ 0

( 1) ( 2) (2 )n n n n

 
    

  
 

Solution 

 Consider  

2 2 2

1 1 1

( 1) ( 2) (2 )
ns

n n n

 
    

  
 

    and  

2 2(2 )
n

n n
s

n n
   

    
1 1

4
ns

n n
    

   
1 1

lim lim lim
4

n
n n n

s
n n  

     

   0 lim 0n
n

s


    

   lim 0n
n

S


             
 

Theorem 

If the sequence  ns  converges to s then  a positive integer n  

 such that  
1

2
ns s . 

   Proof: 

    We fix  
1

0
2

s    

       a positive integer 1n   such that 

 ns s      for 1n n  

     
1

2
ns s s    
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Now    

1 1

2 2
s s s   

        ns s s      ns s s    

    
1

2
ns s  .            

 

Theorem 

Let a and b be fixed real numbers if  ns  and  nt  converge to s and t 

respectively, then 

(i)    n nas bt  converges to as + bt. 

(ii)   n ns t  converges to st. 

(iii) n

n

s

t

 
 
 

 converges to 
s

t
, provided 0nt n   and 0t  . 

Proof: 

Since  ns  and  nt  converge to s and t respectively, 

ns s     
1n n    

     nt t    
2n n    

  Also 0   such that  ns     1n     (  ns  is bounded ) 

(i) We have  

       n n n nas bt as bt a s s b t t        

          n na s s b t t     

       a b      1 2max( , )n n n   

       1 ,     

where 1 a b     a certain number. 

This implies  n nas bt  converges to as + bt. 

(ii)  n n n n n ns t st s t s t s t st      

          n n ns t t t s s          n n ns t t t s s       

       t     1 2max( , )n n n   

       2 ,   where 2 t     a certain number. 

This implies  n ns t  converges to st. 

(iii) 
1 1 n

n n

t t

t t t t


   

  
1
2

n

n

t t

t t t t


    1 2max( , )n n n    

1

2
nt t  
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321

2
t


  ,    where 

3 21
2

t


    a certain number. 

             This implies  
1

nt

 
 
 

  converges to  
1

t
. 

   Hence 
1n

n
n n

s
s

t t

   
    

   
 converges to  

1 s
s

t t
  .    from (ii)    

 

Theorem 

For each irrational number x, there exists a sequence  nr  of distinct rational 

numbers such that  lim n
n

r x


 . 

Proof: 

   Since x and x + 1 are two different real numbers 

  a rational number 1r  such that 

1 1x r x    

 Similarly  a rational number 2 1r r  such that  

2 1

1
min , 1

2
x r r x x

 
     

 
 

Continuing in this manner we have  

3 2

1
min , 1

3
x r r x x

 
     

 
 

4 3

1
min , 1

4
x r r x x

 
     

 
 

…………………………….......... 

…………………………….......... 

…………………………….......... 

1

1
min , 1n nx r r x x

n


 
     

 
 

   This implies that  a sequence  nr  of the distinct rational number such that 

1 1
nx x r x

n n
     . 

   Since       

  
1 1

lim lim
n n

x x x
n n 

   
      

   
. 

   Therefore      

lim n
n

r x


 .           
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Theorem 

Let a sequence  ns  be a bounded sequence. 

  (i)  If  ns  is monotonically increasing then it converges to its supremum. 

  (ii)  If  ns  is monotonically decreasing then it converges to its infimum. 

Proof 

  Let sup nS s  and inf ns s  

 Take 0   

(i)    Since sup nS s   

  
0ns  such that 

0nS s   

Since  ns  is      (   stands for monotonically increasing ) 

0n nS s s S S           for 0n n  

        nS s S                   for 
0n n  

        ns S          for 
0n n  

        lim n
n

s S


   

(ii) Since inf ns S  

  
1ns  such that 

1ns s    

Since  ns  is  .    (   stands for monotonically decreasing ) 

1n ns s s s s          for 1n n  

       ns s s        for 1n n  

       ns s      for 1n n  

   Thus  lim n
n

s s


             
 

Note 

A monotonic sequence can not oscillate infinitely. 
 

Example: 

Show that 
1

1

n

n

   
  

   

 is bounded sequence. 

Consider  
1

1

n

ns
n

   
   

   

 

As shown earlier it is an increasing sequence  

Take 

2

2

1
1

2

n

ns
n

 
  
 

,  then  2

1
1

2

n

ns
n

 
  
 

, 

    
2

1 2

2 1

n

n

n

ns

 
   

 
      

2

1 1
1

2 1

n

n
ns

 
   

 
 

Using Bernoulli’s Inequality we have  
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2

1 1
1 1

2 1 2 2
n

n n

n ns
     


   

1
1 1

2 1 2 1

n
n

n n
  

 

 
 
 

 

   2 2ns    1,2,3,n   

   2 4ns    1,2,3,n   

   
2 4n ns s         1,2,3,n   

Which show that the sequence  ns  is bounded one. 

Hence  ns  is a convergent sequence the number to which it converges is its 

supremum, which is denoted by  ‘e’  and 2 3e  .       
 

Recurrence Relation 

A sequence is said to be defined recursively or by recurrence relation if the 

general term is given as a relation of its preceding and succeeding terms in the 

sequence together with some initial condition. 
 

Example: 

Let 1 0t   and let  nt  be defined by   
1

1
2n

n

t
t

    for 1n  .  

    (i) Show that  nt  is decreasing sequence. 

   (ii) It is bounded below. 

  (iii) Find the limit of the sequence. 

Let 1 0t   and let  nt  be defined by   1

1
2n

n

t
t

    ;  1n   

  0nt     1n   

Also   1

1
2n n n

n

t t t
t

     

   
2 2 1n n

n

t t

t

 
  

 
2

1
0n

n

t

t


  . 

            1n nt t       1n  . 

This implies that nt  is monotonically decreasing. 

   Since  1nt   1n  , 

  nt  is bounded below     nt  is convergent. 

Let us suppose  lim n
n

t t


 . 

     Then     1lim limn n
n n

t t
 

  
1

lim 2 lim n
n n

n

t
t 

 
   

 
 

         
1

2 t
t

         
2 1t

t
t


       22 1t t      2 2 1 0t t     

              
2

1 0t       1t  .         
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Theorem 

Every Cauchy sequence of real numbers has a convergent subsequence. 

Proof: 

Suppose  ns  is a Cauchy sequence. 

Let 0   then  a positive integer 
0 1n   such that 

1 2k kn n k
s s




     1, , 1,2,3,.........k kn n k   

Put           
1 0 2 1 1k kk n n n n n nb s s s s s s


        

        
1 0 2 1 1k kk n n n n n nb s s s s s s


         

                    
1 0 2 1 1k kn n n n n ns s s s s s


        

     
22 2 2k

  
     

     
2

1 1 1

2 2 2k

 

    
 

  

     
 1 1

2 2

1
2

1 1
1

1 2

k

k
 
       
    
 

 

   kb    1k   

        kb  is convergent 

0kk n nb s s      
0kn k ns b s   , 

   where 
0ns  is a certain fix number therefore  

kns  which is a subsequence of  ns is 

convergent.              

 

Theorem (Cauchy’s General Principle for Convergence) 

A sequence of real number is convergent if and only if it is a Cauchy sequence. 

Proof: 

Necessary Condition   

 Let  ns  be a convergent sequence, which converges to s . 

  Then for given 0    a positive integer 0n , such that 

 
2ns s


     0n n   

  Now for 0n m n   

 n m n ms s s s s s      

      n ms s s s     

      
2 2

 
    . 

Which shows that  ns  is a Cauchy sequence. 
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Sufficient Condition  

Let us suppose that  ns  is a Cauchy sequence then for 0  ,  a positive 

integer 
1m  such that  

2
n ms s


   

1,n m m   ……….. (i) 

   Since  ns  is a Cauchy sequence  

   therefore it has a subsequence  
kns  converging to s (say). 

  a positive integer 
2m  such that  

2kns s


    2n m   ……….. (ii) 

   Now  

k kn n n ns s s s s s      

  
k kn n ns s s s     

  
2 2

 
     1 2max( , )n m m  , 

   this shows that  ns  is a convergent sequence.       
 

 

Example 

Prove that 
1 1 1

1 ...............
2 3 n

 
    

 
 is divergent sequence. 

Let  nt  be defined by 

1 1 1
1 ...............

2 3
nt

n
     . 

For  ,m n , n m  we have 

1 1 1
.............

1 2
n mt t

m m n
    

 
 

   
1

( )n m
n

    =  1
m

n
 . 

In particular if 2n m  then  

1

2
n mt t  . 

This implies that  nt  is not a Cauchy sequence therefore it is divergent.    
 

 
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Theorem (nested intervals) 

Suppose that   nI  is a sequence of the closed interval such that  ,n n nI a b  , 

1n nI I   1n  , and   0n nb a   as n  then 
nI  contains one and only one 

point. 

Proof: 

   Since 
1n nI I   

 
1 2 3 1 1 3 2 1n n n na a a a a b b b b b             

    na  is increasing sequence, bounded above by 
1b  and bounded below by 

1a . 

And  nb  is decreasing sequence bounded below by 
1a  and bounded above by 

1b . 

        na  and  nb  both are convergent. 

Suppose  na  converges to a  and  nb  converges to  b. 

  But   n n n na b a a a b b b        

n n n na a a b b b       0    as   n . 

  a b  

and      n na a b     1n  .          
 

Theorem (Bolzano-Weierstrass theorem) 

Every bounded sequence has a convergent subsequence. 

Proof: 

   Let  ns  be a bounded sequence. 

Take  1 inf na s   and  1 sup nb s  

Then  1 1na s b    1n  . 

   Now bisect interval  1 1,a b  such that at least one of the two sub-intervals contains 

infinite numbers of terms of the sequence. 

   Denote this sub-interval by  2 2,a b . 

   If both the sub-intervals contain infinite number of terms of the sequence then 

choose the one on the right hand. 

   Then clearly  1 2 2 1a a b b   . 

Suppose there exist a subinterval   ,k ka b   such that  

1 2 2 1k ka a a b b b        

      1 1

1

2
k k k

b a b a     

   Bisect the interval  ,k ka b  in the same manner and choose  1 1,k ka b   to have  

1 2 1 1 2 1k k k ka a a a b b b b           

   and     1 1 1 11

1

2
k k k

b a b a  
    

   This implies that we obtain a sequence of interval  ,n na b  such that 
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1 1

1
( ) 0

2
n n n

b a b a      as  n . 

     we have a unique point  s  such that  

 ,n ns a b   

there are infinitely many terms of the sequence whose length is  0   that contain  s. 

For 1   there are infinitely many values of n such that  

1ns s   

   Let 
1n  be one of such value then 

1
1ns s   

  Again choose 
2 1n n  such that 

2

1

2
ns s   

   Continuing in this manner we find a sequence  
kns  for each positive integer k such 

that   1k kn n    and 

1
kns s

k
    1,2,3,............k   

  Hence there is a subsequence  
kns  which converges to s.      

 

Limit Inferior of the sequence 

Suppose  ns  is bounded below then we define limit inferior of  ns  as follow 

     lim inf limn k
n n

s u
 

 ,   where    inf :k nu s n k   

   If ns  is not bounded below then  

     lim inf n
n

s


  . 

 

 

Limit Superior of the sequence 

Suppose  ns  is bounded above then we define limit superior of  ns  as follow 

    lim sup limn k
n n

s v
 

 ,  where   inf :k nv s n k   

   If ns  is not bounded above then we have  

     lim sup n
n

s


  . 

 

Note:   
(i)  A bounded sequence has unique limit inferior and superior  

(ii) Let  ns  contains all the rational numbers, then every real number is a 

subsequencial limit then limit superior of ns  is   and limit inferior of ns  is   

(iii)  Let  
1

( 1) 1n

ns
n

 
   

 
 

then limit superior of ns  is 1 and limit inferior of ns  is 1 . 
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(iv)  Let 
1

1 cosns n
n


 

  
 

.  

     Then  inf :k nu s n k   

                  
1 1 1

1 cos , 1 cos( 1) , 1 cos( 2) ,................
1 2

inf k k k
k k k

      
 

      
       

      
 

                 

1
1 cos

1
1 cos( 1)

1

k if k is odd
k

k if k is even
k





 
    

    
 

 

 lim inf lim 1n k
n n

s u
 

     

Also     sup :k nv s n k   

                

1
1 cos( 1)

1

1
1 cos

k if k is odd
k

k if k is even
k





 
     

   
 

 

 lim inf lim 1n k
n n

s v
 

             
 

 

 

Theorem 

  If  ns  is a convergent sequence then  

       lim lim inf lim supn n n
n n n

s s s
  

   

Proof: 

    Let lim n
n

s s


  then for a real number 0  ,  a positive integer 0n  such that 

ns s        0n n   ……….. (i) 

           i.e.      ns s s      0n n   

  If      sup :k nv s n k   

Then   ns v s       0k n   

lim n
k

s v s 


       0k n   …………. (ii) 

from (i) and (ii) we have 

 lim sup n
k

s s


  

We can have the same result for limit inferior of  ns  by taking 

 inf :k nu s n k   .       
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