AJKPSC 2019 For Lecturer, Assistant Professor, Subject Specialist (Mathematics)

An effort by: Akhtar Abbas

- 1. For $E \subset S$ and $\alpha \in E, \beta \in S$, then β is a lower bound of E if ...
 - A. $\beta \leq \alpha, \forall \alpha \in E$
 - B. $\alpha < \beta$
 - C. $\alpha \neq \beta$
 - D. $\alpha = \beta$

2. If $P \neq 1$ is a prime number, then $x^2 = P$ has solution of numbers.

- A. Rational
- B. Odd
- C. Natural
- D. Irrational

3. Every infinite sequence in a compact metric space X has a subsequence which:

- A. Diverges in X
- B. Converges in X
- C. bounded
- D. not bounded

4. Let
$$f: G \to Y$$
. If $c \in G$ and $\lambda \in Y$, then there exist:

A.
$$f^{-1}(\lambda) = \frac{1}{f'(c)}$$

B. $f'(\lambda) = \frac{1}{f(c)}$

C.
$$f'(c) = \frac{1}{f'(c)}$$

D.
$$f^{-1}(\lambda) = f'(c)$$

- 5. If $x = r \cos \theta$ and $y = r \sin \theta$, then
 - A. $\left(\frac{\partial x}{\partial r}\right)_{\theta} = \cos \theta$
 - B. $\left(\frac{\partial x}{\partial r}\right)_{\theta} = \sin \theta$

C.
$$\left(\frac{\partial x}{\partial r}\right)_{\theta} = \frac{1}{\sec \theta}$$

- D. Both A and C
- 6. $f(x) = \sqrt{x}$ on $[0, \infty)$ is:
 - A. continuous
 - B. zero
 - C. discontinuous
 - D. -1

Abbols

11

7. A function f in Cauchy criterion is Riemann integrable if:

A.
$$\int_{a}^{b} x dx = \int_{\overline{a}}^{b} f dx$$

B.
$$\int_{a}^{b} x dx \ge \int_{\overline{a}}^{\underline{b}} f dx$$

C.
$$\int_{\overline{a}}^{\underline{b}} f dx = \int_{a}^{b} f dx = \int_{\overline{a}}^{b} f dx$$

D. None of these

8. If f is monotonic on [a, b], then it is:

- A. differentiable
- B. not integerable
- C. integrable
- D. both A and C

9. $\int_0^\infty x^{\alpha-1} e^{-x} dx$ converges if:

- A. $\alpha < 0$
- B. $\alpha = 0$
- C. $\alpha > 0$
- D. $\alpha = -1$

10. The series $\sum (xe^{-x})^k$ on [0, 1]:

- A. diverges
- B. converges
- C. Uniformly continuous
- D. None of these

11. $\int_0^\infty \frac{e^{xt} \sin t}{t} dt$ converges uniformly for all:

A. x = 0

- B. x < 0
- C. x > 0
- D. x = 1

12. Function $f: A \to B$ is (on-to) if

- A. Range $f \neq A$
- B. Range f = A
- C. Range $f \neq B$
- D. Range f = B

- 13. Square root of 2 has no
 - A. Irrational number
 - B. Rational number
 - C. Odd number
 - D. Even number

14. An element a of a group G is said to be idempotent:

- A. $a^2 = e$
- B. $a^2 = a$
- C. $a^2 = 0$
- D. $a^2 = a^{-1}$

15. Every permutation can be written as the

- A. Product of transposition
- B. Addition of transposition
- C. Difference of transposition
- D. Both (a) and (b)

16. Let $\Phi: G \to G'$ and $\operatorname{Ker} \Phi = \{g \in G : \Phi(g) =$

- A. Normal in G
- B. Abelian
- C. Conjugate
- D. Center of G

17. If H and K are normal subgroup of G and $H \subseteq K$ then $\frac{H}{K}$ and $\frac{G}{H}$ are

- A. Normal
- B. Abelian
- C. Commute
- D. Centralize
- 18. Every group of order p, p a prime number, is?
 - A. Decompossable
 - B. Indecompossable
 - C. Normal
 - D. None or these
- 19. $\operatorname{Hom}(V, V)$ is an algebra over F, then V is:
 - A. Vector Space
 - B. Not Vector Space
 - C. Metric Space
 - D. Both A and C

ppdz

- 20. Every integral domain can be embedded in the field of
 - A. Ideals
 - B. Quotient
 - C. Prime ideals
 - D. None of these

21. A mapping
$$I_A : A \to A$$
 is the identity mapping if:

- A. $I_A = \{(a, a) : a \in A\}$ B. $I_A = \{(a, b) : a, b \in A\}$ C. $I_A = \{a \in A\}$ D. $I_A = \{(a, b) : a \in A\}$
- 22. A function $f: X \to Y$ called surjective if
 - A. $R_f = X$
 - B. $R_f = constant$
 - C. $R_f = R$
 - D. $R_f = Y$
- 23. Every Subgroup of an abelian group A in A is
 - A. Conjugate
 - B. Center
 - C. Normal
 - D. Equivalent

24. If H is subgroup of G and a $\widehat{\mathcal{F}}$, the complex $aH = \{ah : h \in H\}$ is called

- A. Right coset
- B. Coset
- C. Left coset
- D. None of these

25. If $a, b \in G$ (group) then commutator of a and b is denoted by

- A. (a, b)
- B. [a, b]
- C. [a/b]
- D. None of these

26. For abelian group under binary operation + and if for every $\alpha, \beta \in F, v \in V$, we can have

- A. $\alpha\beta(v) = \alpha v$
- B. $(\alpha \beta)v = (\alpha + \beta)b$
- C. vv = v
- D. 1(v) = v

Abbas

27. If $\dim_f V = m$ then $\dim_f(V, F)$

A. m^2 B. m - 1C. m

D. m + 1

28. |z| = 0 for complex number is equal to

- A. $|z| = r^2$ B. $|z| = r = \sqrt{x^2 + y^2}$
- C. |z| = z
- D. none of these

29. If f(z) is a constant number of Cauchy equation

- A. Does not hold
- B. Not Satisfied
- C. Hold
- D. zero

30. For log of a complex number z, we have

- A. $\log z = \log |z|$
- B. $\log z = \log |z| + \iota \theta$
- C. $\log z = |z|$
- D. $\log z = i\theta$

31. For a complex number z, $\frac{d}{dz}(\cos^{-1}z)$

A.
$$\frac{-1}{\sqrt{1-z^2}}$$

B.
$$\frac{1}{\sqrt{1-z^2}}$$

C.
$$\frac{1}{\sqrt{1+z^2}}$$

D.
$$\frac{-1}{\sqrt{1+z^2}}$$

32. A series $\sum U_n$ is said to be absolutely convergent if

- A. $\sum |U_n|$ is convergent
- B. $\sum U_n$ is convergent

C.
$$\sum |U_n| = 0$$

D. None of these

Available at www.mathcity.org

33. The residue of $f(x) = \tan k(z)$ is

- A. 0
- B. -1
- C. π
- D. 1

34. A function which has poles as its only singularities in the finite part of plane is called

Abbas

- A. Meromorphic
- B. Analytic
- C. Entire
- D. Non integral

35. Transformation of the form W = AZ + B is called linear if

- A. A = 0
- B. B = 0
- C. $A \neq 0$
- D. A = 1

36. $e^{\frac{\pi}{2}i} =$

- A. -1
- B. *i*
- C. 0
- D. 2

37. Complex number has two parts namely

- A. Real
- B. Imaginary
- C. None of these
- D. Both A and B

38. The angle of rotation by the transformation $W = \frac{1}{z}$ at the point z = 1 is

0.1

- A. 0
- B. $-\pi$
- C. π
- D. -1

39. For the space curve C, number of family of evaluates are

- A. Finite
- B. 2
- C. Infinite
- D. One

40. Each characteristic touches the

- A. Edge of regression
- B. Circle
- C. Sphere
- D. Straight line

41. A surface is developable iff its specific curvature at all points is

- A. One
- B. Zero
- C. -1
- D. None of these

42. If \hat{i}, \hat{j} and \hat{k} are unit vectors along X, Y and Z respectively, then

- A. $\hat{i} \times \hat{j} = \hat{k}$
- B. $\hat{j} \times \hat{k} = \hat{i}$
- C. $\hat{i} \times \hat{i} = \hat{0}$
- D. All A, B and C
- 43. The necessary condition for three points with position vectors $\vec{a}, \vec{b}, \vec{c}$ is
 - A. $p\vec{a} + q\vec{b} r\vec{c} = \vec{0}$
 - B. $\vec{a} + q\vec{b} + r\vec{c} = \vec{0}$
 - C. $p\vec{a} + q\vec{b} = \vec{0}$
 - D. None of these
- 44. The altitude of a triangle are
 - A. Concurrent
 - B. Go to vertices
 - C. Parallel
 - D. Perpendicular
- 45. There is bisection of diagonals in
 - A. Triangle
 - B. Parallelogram
 - C. Square
 - D. Both b and c

46. If ψ is a scalar point function, then the notation $\psi(x, y, z) = c(\text{constant})$ represents:

- A. circle
- B. straight line
- C. surface
- D. vector

47. The formation $\frac{\partial \psi}{\partial x}\hat{i} + \frac{\partial \psi}{\partial y}\hat{j} + \frac{\partial \psi}{\partial z}\hat{k}$ is called the:

- A. Grade ψ
- B. $Div\psi$
- C. $Curl\psi$
- D. None of these

48. Unit tangential \vec{T} of the curve $\vec{r}(t) = \cos t\hat{i} + \sin t + t\vec{k}$ is:

- A. $\frac{1}{2}(\hat{j} \times \hat{k})$
- B. $-\frac{1}{2}(\hat{i}+\hat{j})$
- C. $\frac{1}{2}(-\hat{j}+\hat{k})$
- D. $\vec{i} + \hat{j} + \hat{k}$)

49. $\{e'_1, e'_2, e'_3\}$ denotes unit basis

- A. Orthonormal
- **B.** Parallel
- C. Tangent
- D. Both A and C
- 50. e_3 (tangential vector) is given by: tar
 - A. $\frac{\nabla u_3}{|\nabla u_3|}$
 - B. $\frac{\nabla u_2}{|\nabla u_2|}$
 - C. $\frac{\nabla u_1}{|\nabla u_1|}$

D.
$$\left(\frac{\nabla u_1}{\nabla u_3}\right)$$

51. For relation cylindrical coordinates (r, ϕ, z) and Cartesian Coordiates (x, y, z) is given

Abbas

A.
$$y = rcos\phi$$

B. y = z

- C. $y = rsin\phi$
- D. None of these

52. Gauss's Divergence theorem is given by?

A.
$$\int_{S} \vec{A} \cdot \vec{ds} = \int_{V} \nabla \cdot \vec{A} dv$$

B.
$$\int_{S} \vec{A} \cdot \vec{ds} = \int_{R} \nabla \cdot \vec{A} ds$$

- C. $\int_{S} \vec{A} \cdot \vec{ds} = \int_{V} \nabla \times \vec{A} dv$
- D. None of these

53. Tensor equation under coordinate transformation is

- A. Invariant
- B. Not same
- C. Zero
- D. Both B and C

54. If A_iB_i is scalar and A_i arbitrary vector then B_i is a?

- A. Scalar
- B. Zero
- C. Vector
- D. 1
- 55. The Moment of inertia of a thin uniform rod of length "l" and mass "M" about one of its end isppor
 - A. $\frac{1}{4}Ml^2$
 - B. $\frac{1}{2}Ml^2$
 - C. $\frac{1}{3}Ml^2$
 - D. Zero

56. The circular area of uniform disc of radius a is

- A. πa^3
- B. $\frac{1}{2}\pi a^2$
- C. πa^2
- D. $\pi^2 a^2$

57. Volume of ellipsoid with a, b and c itercepts on X-axis, Y-axis and Z-axis is?

- A. a^2bc
- B. ab^2c
- C. abc^2
- D. *abc*
- 58. Members of τ (topology) are called
 - A. Open sets
 - B. Compliment sets
 - C. Empty sets
 - D. Subsets

bbas

- 59. The ordered pair (X, τ) is called
 - A. Topological space
 - B. Cartesian prduct
 - C. Metric space
 - D. None of these

60. $\{X, \phi\}$ is a topology on X and is called ... topology.

- A. Indiscrete
- B. Discrete
- C. Complete
- D. None of these

61. Let (X, τ) be a topological space and $A \subseteq X$, then

- A. $A^{\circ} \subseteq A$
- B. $A^{\circ} = A$
- C. $A \neq A^{\circ}$
- D. $A^{\circ} = A'$

62. In a topological space (X, τ) , Ext(A) is a (an)

- A. Open set
- B. Closed set
- C. Empty set
- D. Subset

63. If A is both open and closed subset of (X, τ) , then A has empty

- A. Frontier
- B. Closed set
- C. Open set
- D. Subset
- 64. Let A be a subset of (X, τ) , then $\overline{A} =$
 - A. $A \cap A^d$
 - B. $A A^d$
 - C. $A \cup A^d$
 - D. $A \{Open \ set\}$

65. A space (X, τ) is separable if there is a subset A of X which is countable and

A. A = XB. $\overline{A} \neq X$ C. $\overline{A} = X$ D. $\overline{A} = \phi$

- 66. Every finite subset of topological space is
 - A. Complete
 - B. Compact
 - C. Sequentially compact
 - D. None of these

67. A topological space (X, τ) is a T_1 space iff every singleton subset of X is

ntar

- A. Open
- B. Closed
- C. Base
- D. Sub-base
- 68. Every countably compact metric space is
 - A. Bounded
 - B. Totally Bounded
 - C. Subspace
 - D. None of these
- 69. Every Tychonoff space is
 - A. Housroff
 - B. Complete
 - C. Normal
 - D. $T_0 space$
- 70. \mathbb{R} (real nos.) is a
 - A. $T_0 space$
 - B. $T_1 space$
 - C. Connected space
 - D. $T_2 space$
- 71. A topological space x in which there does not exist a continuous mapping of X onto the two points discrete space $\{0, 1\}$ is called

Abbas

- A. $T_0 space$
- B. $T_1 Space$
- C. Connected
- D. $T_2 space$

Available at www.mathcity.org

Abbas

- 72. Every finite topological space is
 - A. Normal space
 - B. Compact space
 - C. $T_0 space$
 - D. $T_1 space$
- 73. A set is said to be countable if it is
 - A. Finite
 - B. xRx, $\forall x \in A$
 - C. xRx = 1
 - D. Both a and b

74. If $A = \{1, 3, 5, 7, ...\}$ and $B = \{2, 4, 6, 8...\}$ then "A * B" is

- A. Countable
- B. Uncountable
- C. Number
- D. Denumberable
- 75. Every algebra is a
 - A. Group
 - B. Ring
 - C. Subring
 - D. Metric

76. Sum and Scalar multiple a > 0 of a measure is:

- A. Measure
- B. Infinite
- C. Finite
- D. None of these

77. For a subset E of \mathbb{R} and $\epsilon > 0$, there is an open set $O \supseteq E$ with

ar

- A. $F \supseteq E$
- B. f/E = O
- C. $F \subseteq F$
- D. $F \cap E = \Phi$

78. If E_1 and E_2 are two measurable sets then

A. $m(E_1 \cup E_2) + m(E_1 \cap E_2) = 0$

- B. $m(E_1 \cap E_2) + m(E_1 \cup E_2) = m(E_1) + m(E_2)$
- C. $m(E_1 \cup E_2) = m(E_1 \cap E_2)$
- D. None of these

- 79. The partial differential equation governing various partial phenomena in nature is the equation
 - A. Laplace
 - B. Linear
 - C. Nonlinear
 - D. Homogenous
- 80. $U_{xx} + U_{yy} = 0$ is differential equation
 - A. Non- Homogenous
 - B. Homogenous
 - C. Linear
 - D. Non-Linear
- 81. The differential form of Lagrange identity is
 - A. $(\phi L\chi \chi L\phi) = \rho(\phi\chi' \chi\phi')$
 - B. $\phi L \chi \chi L \phi = 0$
 - C. $\phi L \chi \chi L \phi = \rho \phi \chi$
 - D. $\phi L \chi \chi L \phi = 1$
- 82. The Fourier transforms operator and its inverse are?
 - A. Linear
 - B. Non-Linear
 - C. Constant
 - D. Zero

83. The solid surface of revolution of given curve which for a given surface area has max value is?

nat

- A. Square
- B. Rectangle
- C. Sphere
- D. Triangle

84. The value of common integral $\int_{-a}^{a} \frac{\sin x}{x} dx =$

- A. π
- B. 0
- C. -1
- D. 1

85. Every equation f(x) = 0 of degree n has only

- A. 1 root
- B. 2 roots
- C. 0 roots
- D. n roots

86. If f(x) = 0 is divisible by x - a, then x = a is always a root?

- A. Real
- B. Imaginary
- C. Complex
- D. None of these

87. The method in which we can find the value of x in terms of function of x is known as simple?

- A. Iterative method
- B. Simpson method
- C. Short method
- D. None of these

88. Forward difference operator is denoted by

- A. ∇
- B. Δ
- C. \simeq
- D. \approx

Abbas 89. Backward difference operator is denoted by

- A. ∇
- B. Δ^2
- C. Δ

D. \simeq

90. Highest suffix-lowest suffix will given the diff-eq?

- A. Degree
- B. Order
- C. Mode
- D. None of these

91. For difference equation f(x) = constant to find y particular solution we shall substitute

A.
$$y_n = 1$$

B. $y_n = -1$
C. $y_n = c$

D.
$$y_n = 0$$

92. $y_{n+1} = y_n + hf(x_n, y_n)$ is formula

A. R.K

- B. Euler
- C. Differential
- D. None of these

93. Condition of the matrix A is defined as

A. ||A||B. $||A^{-1}||$ C. $||A||||A^{-1}||$ D. Zero

94. For shift operator E and forward operator Δ : $\frac{\Delta}{E^2}e^{ax} =$

- A. $e^{a(n-h)}$
- B. $e^{a(n+h)}$
- C. $e^{a^2(n+h)} + e^{a^2(n+2h)}$
- D. None of these

95. For forward and backward operator $\Delta \nabla =$

Abbos A. $(1 + \Delta)\nabla$ B. ∇^2 C. $\Delta - \nabla$ D. δ 96. For forward and backward operator $\delta^2 {=}$ A. $\Delta \nabla$ B. $\Delta - \nabla$ C. ∇^2 D. Both A and B 97. For forward and backward operator $(1 + \Delta)(1 - \nabla) =$ A. 1 B. -1 C. 0 D. 2 98. $E^{-\frac{1}{2}} =$ A. $\mu\delta$ B. $\mu - \delta$ C. $\frac{\mu}{\delta}$ D. ± 1 99. For central difference operator δ , it can be written as $\Delta(\Delta + 1)^{-\frac{1}{2}} =$

> A. δ B. ∇

- C. ∇^2
- D. Δ

100. According to trapezoidal rule for n = 1 we can write as $\int_{x_0}^{x_1} y dx =$

A. $\frac{h}{2}(y_0 - y_1)$ B. $\frac{h}{2}(y_0 + y_1)$ C. $\frac{h}{3}(y_0 - y_1)$ D. 0

> Akhtar Abbas Lecturer in Mathematics University of Jhang 0332-6297570

Available at www.mathcity.org

.sty.