# AJKPSC 2019 <br> For Lecturer, Assistant Professor, Subject Specialist (Mathematics) 

An effort by: Akhtar Abbas

1. For $E \subset S$ and $\alpha \in E, \beta \in S$, then $\beta$ is a lower bound of $E$ if $\ldots$
A. $\beta \leq \alpha, \forall \alpha \in E$
B. $\alpha<\beta$
C. $\alpha \neq \beta$
D. $\alpha=\beta$
2. If $P \neq 1$ is a prime number, then $x^{2}=P$ has solution of numbers.
A. Rational
B. Odd
C. Natural
D. Irrational
3. Every infinite sequence in a compact metric space $X$ has a subsequence which:
A. Diverges in $X$
B. Converges in $X$
C. bounded
D. not bounded
4. Let $f: G \rightarrow Y$. If $c \in G$ and $\nmid \in Y$, then there exist:
A. $f^{-1}(\lambda)=\frac{1}{f^{\prime}(c)}$
B. $f^{\prime}(\lambda)=\frac{1}{f(c)}$
C. $f^{\prime}(c)=\frac{1}{f^{\prime}(c)}$
D. $f^{-1}(\lambda)=f^{\prime}(c)$
5. If $x=r \cos \theta$ and $y=r \sin \theta$, then
A. $\left(\frac{\partial x}{\partial r}\right)_{\theta}=\cos \theta$
B. $\left(\frac{\partial x}{\partial r}\right)_{\theta}=\sin \theta$
C. $\left(\frac{\partial x}{\partial r}\right)_{\theta}=\frac{1}{\sec \theta}$
D. Both A and C
6. $f(x)=\sqrt{x}$ on $[0, \infty)$ is:
A. continuous
B. zero
C. discontinuous
D. -1
7. A function $f$ in Cauchy criterion is Riemann integrable if:
A. $\int_{a}^{b} x d x=\int_{\bar{a}}^{b} f d x$
B. $\int_{a}^{b} x d x \geq \int_{\bar{a}}^{b} f d x$
C. $\int_{a}^{b} f d x=\int_{a}^{b} f d x=\int_{\bar{a}}^{b} f d x$
D. None of these
8. If $f$ is monotonic on $[a, b]$, then it is:
A. differentiable
B. not integerable
C. integrable
D. both A and C
9. $\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x$ converges if:
A. $\alpha<0$
B. $\alpha=0$
C. $\alpha>0$
D. $\alpha=-1$
10. The series $\sum\left(x e^{-x}\right)^{k}$ on $[0,1]$ :
A. diverges
B. converges
C. Uniformly continuous
D. None of these
11. $\int_{0}^{\infty} \frac{e^{x t} \sin t}{t} d t$ converges uniformly for all:
A. $x=0$
B. $x<0$
C. $x>0$
D. $x=1$
12. Function $f: A \rightarrow B$ is (on-to) if
A. Range $f \neq A$
B. Range $f=A$
C. Range $f \neq B$
D. Range $f=B$
13. Square root of 2 has no
A. Irrational number
B. Rational number
C. Odd number
D. Even number
14. An element $a$ of a group $G$ is said to be idempotent:
A. $a^{2}=e$
B. $a^{2}=a$
C. $a^{2}=0$
D. $a^{2}=a^{-1}$
15. Every permutation can be written as the
A. Product of transposition
B. Addition of transposition
C. Difference of transposition
D. Both (a) and (b)
16. Let $\Phi: G \rightarrow G^{\prime}$ and $\operatorname{Ker} \Phi=\left\{g \in G: \Phi(g)=\epsilon^{\prime}\right\}$ is:
A. Normal in $G$
B. Abelian
C. Conjugate
D. Center of $G$
17. If $H$ and $K$ are normal subgroup of $G$ and $H \subseteq K$ then $\frac{H}{K}$ and $\frac{G}{H}$ are
A. Normal
B. Abelian
C. Commute
D. Centralize
18. Every group of order $p, p$ a prime number, is?
A. Decompossable
B. Indecompossable
C. Normal
D. None or these
19. $\operatorname{Hom}(V, V)$ is an algebra over $F$, then $V$ is:
A. Vector Space
B. Not Vector Space
C. Metric Space
D. Both A and C
20. Every integral domain can be embedded in the field of
A. Ideals
B. Quotient
C. Prime ideals
D. None of these
21. A mapping $I_{A}: A \rightarrow A$ is the identity mapping if:
A. $I_{A}=\{(a, a): a \in A\}$
B. $I_{A}=\{(a, b): a, b \in A\}$
C. $I_{A}=\{a \in A\}$
D. $I_{A}=\{(a, b): a \in A\}$
22. A function $f: X \rightarrow Y$ called surjective if
A. $R_{f}=X$
B. $R_{f}=$ constant
C. $R_{f}=R$
D. $R_{f}=Y$
23. Every Subgroup of an abelian group $A$ in $A$ is
A. Conjugate
B. Center
C. Normal
D. Equivalent
24. If $H$ is subgroup of $G$ and $a \in G$, the complex $a H=\{a h: h \in H\}$ is called
A. Right coset
B. Coset
C. Left coset
D. None of these
25. If $a, b \in G$ (group) then commutator of $a$ and $b$ is denoted by
A. $(a, b)$
B. $[a, b]$
C. $[a / b]$
D. None of these
26. For abelian group under binary operation + and if for every $\alpha, \beta \in F, v \in V$, we can have
A. $\alpha \beta(v)=\alpha v$
B. $(\alpha-\beta) v=(\alpha+\beta) b$
C. $v v=v$
D. $1(v)=v$
27. If $\operatorname{dim}_{f} V=m$ then $\operatorname{dim}_{f}(V, F)$
A. $m^{2}$
B. $m-1$
C. $m$
D. $m+1$
28. $|z|=0$ for complex number is equal to
A. $|z|=r^{2}$
B. $|z|=r=\sqrt{x^{2}+y^{2}}$
C. $|z|=z$
D. none of these
29. If $f(z)$ is a constant number of Cauchy equation
A. Does not hold
B. Not Satisfied
C. Hold
D. zero
30. For $\log$ of a complex number $z$, we have
A. $\log z=\log |z|$
B. $\log z=\log |z|+\iota \theta$
C. $\log z=|z|$
D. $\log z=i \theta$
31. For a complex number

A. $\frac{-1}{\sqrt{1-z^{2}}}$
B. $\frac{1}{\sqrt{1-z^{2}}}$
C. $\frac{1}{\sqrt{1+z^{2}}}$
D. $\frac{-1}{\sqrt{1+z^{2}}}$
32. A series $\sum U_{n}$ is said to be absolutely convergent if
A. $\sum\left|U_{n}\right|$ is convergent
B. $\sum U_{n}$ is convergent
C. $\sum\left|U_{n}\right|=0$
D. None of these

## Available at www.mathcity.org

33. The residue of $f(x)=\tan k(z)$ is
A. 0
B. -1
C. $\pi$
D. 1
34. A function which has poles as its only singularities in the finite part of plane is called
A. Meromorphic
B. Analytic
C. Entire
D. Non integral
35. Transformation of the form $W=A Z+B$ is called linear if
A. $A=0$
B. $B=0$
C. $A \neq 0$
D. $A=1$
36. $e^{\frac{\pi}{2} i}=$
A. -1
B. $i$
C. 0
D. 2
37. Complex number has two parts namely
A. Real
B. Imaginary
C. None of these
D. Both A and B
38. The angle of rotation by the transformation $W=\frac{1}{z}$ at the point $z=1$ is
A. 0
B. $-\pi$
C. $\pi$
D. -1
39. For the space curve C, number of family of evaluates are
A. Finite
B. 2
C. Infinite
D. One
40. Each characteristic touches the
A. Edge of regression
B. Circle
C. Sphere
D. Straight line
41. A surface is developable iff its specific curvature at all points is
A. One
B. Zero
C. -1
D. None of these
42. If $\hat{i}, \hat{j}$ and $\hat{k}$ are unit vectors along $X, Y$ and $Z$ respectively, then
A. $\hat{i} \times \hat{j}=\hat{k}$
B. $\hat{j} \times \hat{k}=\hat{i}$
C. $\hat{i} \times \hat{i}=\hat{0}$
D. All A, B and C
43. The necessary condition for three points with position vectors $\vec{a}, \vec{b}, \vec{c}$ is
A. $p \vec{a}+q \vec{b}-r \vec{c}=\overrightarrow{0}$
B. $\vec{a}+q \vec{b}+r \vec{c}=\overrightarrow{0}$
C. $p \vec{a}+q \vec{b}=\overrightarrow{0}$
D. None of these
44. The altitude of a triangle are
A. Concurrent
B. Go to vertices
C. Parallel
D. Perpendicular
45. There is bisection of diagonals in
A. Triangle
B. Parallelogram
C. Square
D. Both b and c
46. If $\psi$ is a scalar point function, then the notation $\psi(x, y, z)=c$ (constant) represents:
A. circle
B. straight line
C. surface
D. vector
47. The formation $\frac{\partial \psi}{\partial x} \hat{i}+\frac{\partial \psi}{\partial y} \hat{j}+\frac{\partial \psi}{\partial z} \hat{k}$ is called the:
A. Grade $\psi$
B. $\operatorname{Div} \psi$
C. $\operatorname{Curl} \psi$
D. None of these
48. Unit tangential $\vec{T}$ of the curve $\vec{r}(t)=\cos t \hat{i}+\sin t+t \vec{k}$ is:
A. $\frac{1}{2}(\hat{j} \times \hat{k})$
B. $-\frac{1}{2}(\hat{i}+\hat{j})$
C. $\frac{1}{2}(-\hat{j}+\hat{k})$
D. $\vec{i}+\hat{j}+\hat{k})$
49. $\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$ denotes unit basis
A. Orthonormal
B. Parallel
C. Tangent
D. Both A and C
50. $e_{3}$ (tangential vector) is given by:
A. $\frac{\nabla u_{3}}{\left|\nabla u_{3}\right|}$
B. $\frac{\nabla u_{2}}{\left|\nabla u_{2}\right|}$
C. $\frac{\nabla u_{1}}{\left|\nabla u_{1}\right|}$
D. $\left(\frac{\nabla u}{\nabla u_{3}}\right)$
51. For relation cylindrical coordinates $(r, \phi, z)$ and Cartesian Coordiates $(x, y, z)$ is given
A. $y=r \cos \phi$
B. $y=z$
C. $y=r \sin \phi$
D. None of these
52. Gauss's Divergence theorem is given by?
A. $\int_{S} \vec{A} \cdot \overrightarrow{d s}=\int_{V} \nabla \cdot \vec{A} d v$
B. $\int_{S} \vec{A} \cdot \overrightarrow{d s}=\int_{R} \nabla \cdot \vec{A} d s$
C. $\int_{S} \vec{A} \cdot \overrightarrow{d s}=\int_{V} \nabla \times \vec{A} d v$
D. None of these
53. Tensor equation under coordinate transformation is
A. Invariant
B. Not same
C. Zero
D. Both B and C
54. If $A_{i} B_{i}$ is scalar and $A_{i}$ arbitrary vector then $B_{i}$ is a?
A. Scalar
B. Zero
C. Vector
D. 1
55. The Moment of inertia of a thin uniform rod of length " $l$ " and mass " $M$ " about one of its end is
A. $\frac{1}{4} M l^{2}$
B. $\frac{1}{2} M l^{2}$
C. $\frac{1}{3} M l^{2}$
D. Zero
56. The circular area of uniform disc of radius $a$
A. $\pi a^{3}$
B. $\frac{1}{2} \pi a^{2}$
C. $\pi a^{2}$
D. $\pi^{2} a^{2}$
57. Volume of ellipsoid with $a, b$ and $c$ itercepts on X-axis, Y-axis and Z-axis is?
A. $a^{2} b c$
B. $a b^{2} c$
C. $a b c^{2}$
D. $a b c$
58. Members of $\tau$ (topology) are called
A. Open sets
B. Compliment sets
C. Empty sets
D. Subsets
59. The ordered pair $(X, \tau)$ is called
A. Topological space
B. Cartesian prduct
C. Metric space
D. None of these
60. $\{X, \phi\}$ is a topology on $X$ and is called ... topology.
A. Indiscrete
B. Discrete
C. Complete
D. None of these
61. Let $(X, \tau)$ be a topological space and $A \subseteq X$, then
A. $A^{\circ} \subseteq A$
B. $A^{\circ}=A$
C. $A \neq A^{\circ}$
D. $A^{\circ}=A^{\prime}$
62. In a topological space $(X, \tau), \operatorname{Ext}(A)$ is a(an)
A. Open set
B. Closed set
C. Empty set
D. Subset
63. If $A$ is both open and closed subset of $(X, \tau)$, then $A$ has empty
A. Frontier
B. Closed set
C. Open set
D. Subset
64. Let $A$ be a subset of $(X, \tau)$, then $\bar{A}=$
A. $A \cap A^{d}$
B. $A-A^{d}$
C. $A \cup A^{d}$
D. $A-\{$ Open set $\}$
65. A space $(X, \tau)$ is separable if there is a subset $A$ of $X$ which is countable and
A. $A=X$
B. $\bar{A} \neq X$
C. $\bar{A}=X$
D. $\bar{A}=\phi$
66. Every finite subset of topological space is
A. Complete
B. Compact
C. Sequentiallly compact
D. None of these
67. A topological space $(X, \tau)$ is a $T_{1}$ space iff every singleton subset of $X$ is
A. Open
B. Closed
C. Base
D. Sub-base
68. Every countably compact metric space is
A. Bounded
B. Totally Bounded
C. Subspace
D. None of these
69. Every Tychonoff space is
A. Housroff
B. Complete
C. Normal
D. $T_{0}-$ space
70. $\mathbb{R}$ (real nos.) is a
A. $T_{0}-$ space
B. $T_{1}-$ space
C. Connected space
D. $T_{2}-$ space
71. A topological space $x$ in which there does not exist a continuous mapping of X onto the two points discrete space $\{0,1\}$ is called
A. $T_{0}-$ space
B. $T_{1}-$ Space
C. Connected
D. $T_{2}-$ space

## Available at www.mathcity.org

72. Every finite topological space is
A. Normal space
B. Compact space
C. $T_{0}-$ space
D. $T_{1}-$ space
73. A set is said to be countable if it is
A. Finite
B. $x R x, \forall x \in A$
C. $x R x=1$
D. Both a and b
74. If $A=\{1,3,5,7, \ldots\}$ and $B=\{2,4,6,8 \ldots\}$ then $" A * B$ " is
A. Countable
B. Uncountable
C. Number
D. Denumberable
75. Every algebra is a
A. Group
B. Ring
C. Subring
D. Metric
76. Sum and Scalar multiple $a>0$ of a measure is:
A. Measure
B. Infinite
C. Finite
D. None of these
77. For a subset $E$ of $\mathbb{R}$ and $\epsilon>0$, there is an open set $O \supseteq E$ with
A. $F \supseteq E$
B. $f / E=O$
C. $F \subseteq F$
D. $F \cap E=\Phi$
78. If $E_{1}$ and $E_{2}$ are two measurable sets then
A. $m\left(E_{1} \cup E_{2}\right)+m\left(E_{1} \cap E_{2}\right)=0$
B. $m\left(E_{1} \cap E_{2}\right)+m\left(E_{1} \cup E_{2}\right)=m\left(E_{1}\right)+m\left(E_{2}\right)$
C. $m\left(E_{1} \cup E_{2}\right)=m\left(E_{1} \cap E_{2}\right)$
D. None of these
79. The partial differential equation governing various partial phenomena in nature is the equation
A. Laplace
B. Linear
C. Nonlinear
D. Homogenous
80. $U_{x x}+U_{y y}=0$ is differential equation
A. Non- Homogenous
B. Homogenous
C. Linear
D. Non-Linear
81. The differential form of Lagrange identity is
A. $(\phi L \chi-\chi L \phi)=\rho\left(\phi \chi^{\prime}-\chi \phi^{\prime}\right)$
B. $\phi L \chi-\chi L \phi=0$
C. $\phi L \chi-\chi L \phi=\rho \phi \chi$
D. $\phi L \chi-\chi L \phi=1$
82. The Fourier transforms operator and its inverse are?
A. Linear
B. Non-Linear
C. Constant
D. Zero
83. The solid surface of revolution of given curve which for a given surface area has max value is?
A. Square
B. Rectangle
C. Sphere
D. Triangle
84. The value of common integral $\int_{-a}^{a} \frac{\sin x}{x} d x=$
A. $\pi$
B. 0
C. -1
D. 1
85. Every equation $f(x)=0$ of degree $n$ has only
A. 1 root
B. 2 roots
C. 0 roots
D. $n$ roots
86. If $f(x)=0$ is divisible by $x-a$, then $x=a$ is always a root?
A. Real
B. Imaginary
C. Complex
D. None of these
87. The method in which we can find the value of $x$ in terms of function of $x$ is known as simple?
A. Iterative method
B. Simpson method
C. Short method
D. None of these
88. Forward difference operator is denoted by
A. $\nabla$
B. $\Delta$
C. $\simeq$
D. $\approx$
89. Backward difference operator is denoted by
A. $\nabla$
B. $\Delta^{2}$
C. $\Delta$
D. $\simeq$
90. Highest suffix-lowest suffix fwill given the diff-eq?
A. Degree
B. Order
C. Mode
D. None of these
91. For difference equation $f(x)=$ constant to find y particular solution we shall substitute
A. $y_{n}=1$
B. $y_{n}=-1$
C. $y_{n}=c$
D. $y_{n}=0$
92. $y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)$ is formula
A. R.K
B. Euler
C. Differential
D. None of these
93. Condition of the matrix $A$ is defined as
A. $\|A\|$
B. $\left\|A^{-1}\right\|$
C. $\|A\|\left\|\mid A^{-1}\right\|$
D. Zero
94. For shift operator $E$ and forward operator $\Delta: \frac{\Delta}{E^{2}} e^{a x}=$
A. $e^{a(n-h)}$
B. $e^{a(n+h)}$
C. $e^{a^{2}(n+h)}+e^{a^{2}(n+2 h)}$
D. None of these
95. For forward and backward operator $\Delta \nabla=$
A. $(1+\Delta) \nabla$
B. $\nabla^{2}$
C. $\Delta-\nabla$
D. $\delta$
96. For forward and backward operator $\delta^{2}=$
A. $\Delta \nabla$
B. $\Delta-\nabla$
C. $\nabla^{2}$
D. Both A and B
97. For forward and backwardoperator $(1+\Delta)(1-\nabla)=$
A. 1
B. -1
C. 0
D. 2
98. $E^{-\frac{1}{2}}=$
A. $\mu \delta$
B. $\mu-\delta$
C. $\frac{\mu}{\delta}$
D. $\pm 1$
99. For central difference operator $\delta$, it can be written as $\Delta(\Delta+1)^{-\frac{1}{2}}=$
A. $\delta$
B. $\nabla$
C. $\nabla^{2}$
D. $\Delta$
100. According to trapezoidal rule for $n=1$ we can write as $\int_{x_{0}}^{x_{1}} y d x=$
A. $\frac{h}{2}\left(y_{0}-y_{1}\right)$
B. $\frac{h}{2}\left(y_{0}+y_{1}\right)$
C. $\frac{h}{3}\left(y_{0}-y_{1}\right)$
D. 0

Akhtar Abbas
Lecturer in Mathematics
University of Jhang
0332-6297570

## Available at www.mathcity.org

