Question 14 & 15, Exercise 2.2

Solutions of Questions 14 & 15 of Exercise 2.2 of Unit 02: Matrices and Determinants. This is unit of A Textbook of Mathematics for Grade XI is published by Khyber Pakhtunkhwa Textbook Board (KPTB or KPTBB) Peshawar, Pakistan.

Question 14

Show that inverse of square matrix exists. Then it is unique.

Solution

Question 15

Let $A=\begin{bmatrix}0 & 2 & 2 \\-1 & 3 & 2 \\1 & 0 & 5\end{bmatrix}$. Find $A^{-1}$.

Solution

Given $$A=\left[ \begin{matrix} 0 & 2 & 2 \\ -1 & 3 & 2 \\ 1 & 0 & 5 \\ \end{matrix} \right]$$ We have to find $A^{-1}$and we know that $$A^{-1}=\dfrac{Adj\,\,A}{|A|}$$ $$Adj\,\,A={{\left[ \begin{matrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \\ \end{matrix} \right]}^{t}}$$ $$A_{11}=(-1)^{1+1}\left| \begin{matrix} 3 & 2 \\ 0 & 5 \\ \end{matrix} \right|$$ $$A_{11}=15$$ $$A_{12}=(-1)^{1+2}\left| \begin{matrix} -1 & 2 \\ 1 & 5 \\ \end{matrix} \right|$$ $$A_{12}=7$$ $$A_{13}=(-1)^{1+3}\left| \begin{matrix} -1 & 3 \\ 1 & 0 \\ \end{matrix} \right|$$ $$A_{13}=-3$$ $$A_{21}=(-1)^{2+1}\left| \begin{matrix} 2 & 2 \\ 0 & 5 \\ \end{matrix} \right|$$ $$A_{21}=-10$$ $$A_{22}=(-1)^{2+2}\left| \begin{matrix} 0 & 2 \\ 1 & 5 \\ \end{matrix} \right|$$ $$A_{22}=-2$$ $$A_{23}=(-1)^{2+3}\left| \begin{matrix} 0 & 2 \\ 1 & 0 \\ \end{matrix} \right|$$ $$A_{23}=2$$ $$A_{31}=(-1)^{3+1}\left| \begin{matrix} 2 & 2 \\ 3 & 2 \\ \end{matrix} \right|$$ $$A_{31}=-2$$ $$A_{32}=(-1)^{3+2}\left| \begin{matrix} 0 & 2 \\ -1 & 2 \\ \end{matrix} \right|$$ $$A_{32}=-2$$ $$A_{33}=(-1)^{3+3}\left| \begin{matrix} 0 & 2 \\ -1 & 3 \\ \end{matrix} \right|$$ $$A_{33}=2$$ $$Adj\,\,A=\left[ \begin{matrix} 15 & -10 & -2 \\ 7 & -2 & -2 \\ -3 & 2 & 2 \\ \end{matrix} \right]$$ $$|A|=0-2(-5-2)+2(-3)$$ $$=14-6$$ $$|A|=8$$ $$A^{-1}=\dfrac{1}{8}\left[ \begin{matrix} 15 & -10 & -2 \\ 7 & -2 & -2 \\ -3 & 2 & 2 \\ \end{matrix} \right]$$ $$A^{-1}=\left[ \begin{matrix} \dfrac{15}{8} & \dfrac{-10}{8} & -\dfrac{2}{8} \\ \dfrac{7}{4} & -\dfrac{2}{4} & -\dfrac{2}{4} \\ -\dfrac{3}{4} & \dfrac{2}{4} & \dfrac{2}{4} \\ \end{matrix} \right]$$

Go To

< Question 13 Question 16 & 17 >