Action disabled: source

Exercise 4.1

On the following page we have given the solution of Exercise 4.1 of Mathematics 9 (Science) published by Caravan Book House, Lahore.

We have created this page and it will be updated to add new solutions occasionally. Please stay in touch with this page.

Identify whether the following algebraic expressions are polynomials (Yes or No) (i) $3x^2+\frac{1}{x}-5$

(ii) $3x^3-4x^2-x\sqrt{x}+3$

(iii) $x^2-3x+\sqrt{2}$

(iv) $\frac{3x}{2x-1}+8$

Solution:

(i) $3x^2+\frac{1}{x}-5$
$No (Reason:\frac{1}{x})$
(ii) $3x^3-4x^2-x\sqrt{x}+3$
$No (Reasons \sqrt{x})$
(iii) $x^2-3x+\sqrt{2}$
$Yes$
(iv) $\frac{3x}{2x-1}+8$
$No (Reason:\frac{1}{2x-1})$

State whether each of the following expression is a rational expresion or not.
(i) $\frac{3 \sqrt{x}}{3 \sqrt{x}+5}$

(ii) $\frac{x^3-2x^2+\sqrt{3}}{2+3x-x^2}$

(iii) $\frac{x^2+6x+9}{x^2-9}$

(iv) $\frac{2\sqrt{x}+3}{2\sqrt{x}-3}$

Solution:

(i) $3x^2+\frac{1}{x}-5$
$No (Reason:\frac{1}{x})$
(ii) $3x^3-4x^2-x\sqrt{x}+3$
$No Reasons \sqrt{x}$
(iii) $x^2-3x+\sqrt{2}$
$Yes$
(iv) $\frac{3x}{2x-1}+8$
$No (Reason:\frac{1}{2x-1})$

Reduce the following rational expressions to the lowest forms.

(i) $\frac{120 x^2y^3z^5}{30x^3yz^2}$

(ii) $\frac{8a(x+1)}{2(x^2-1)}$
(iii) $\frac{(x+y)^2-4xy}{(x-y)^2}$
(iv) $\frac{(x^3-y^3)(x^2-2xy+y^2)}{(x-y)(x^2+xy+y^2)}$

(v) $\frac{(x+2)(x^2-1)}{(x+1)(x^2-4)}$
(vi) $\frac{x^2-4x+4}{2x^2-8}$
(vii) $\frac{64x^5-64x}{(8x^2+8)(2x+2)}$
(viii) $\frac{9x^2-(x^2-4)^2}{4+3x-x^2}$

Solution:
(i) $\frac{120 x^2y^3z^5}{30x^3yz^2}$
$\begin{align}\frac{30\times 4 y^(3-1)z^(5-2)}{30x^(3-2)}\\&=\frac{4 y^2 z^3}{x}\end{align}$
Solution:
(ii) $\frac{8 a(x+1)}{2(x^2-1)}$
$\begin{align}\frac{2\times 4a(x+1)}{2(x+1)(x-1)}\\&= \frac{4a}{x-1}\end{align}$
Solution:
(iii) $\frac{(x+y)^2-4xy}{(x-y)^2}$
$\begin{align}\frac{x^2+y^2+2xy-4xy}{x^2-2xy+y^2}\\&= 1\end{align}$
Solution:
(iv) $\frac{(x^3-y^3)(x^2-2xy+y^2)}{(x-y)(x^2+xy+y^2)}$
$\begin{align}\frac{(x^3-y^3)(x^2-2xy+y^2)}{(x^3-y^3)}\\&= x^2-2x+y^2\\&=(x-y)^2\end{align}$
Solution:
(v) $\frac{(x+2)(x^2-1)}{(x+1)(x^2-4)}$
$\begin{align}\frac{(x+2)(x^2-1)}{(x+1)(x^2-2^2)}\\&= \frac{(x+2)(x+1)(x-1)}{(x+1)(x+2)(x-2)}\\&=\frac{x-1}{x-2}\end{align}$
Solution:
(vi) $\frac{x^2-4x+4}{2x^2-8}$
$\begin{align}\frac{x^2-2x-2x+4}{2(x^2-4)}\\&= \frac{x(x-2)-2(x-2)}{2(x^2-4)}\\&=\frac{(x-2)(x-2)}{(x-2)(x+2)}\\&= \frac{x-2}{2(x+2)}\end{align}$
Solution:
(vii) $\frac{64x^5-64x}{(8x^2+8)(2x+2)}$
$\begin{align}\frac{64x(x^4-1)}{8(x^2+1)2(x+1)}\\&= \frac{64x((x^2)^2-1)}{16(x^2+1)(x+1)}\\&=\frac{64x(x^2+1)(x^2-1)}{16(x^2+1)(x+1)}\\&= \frac{64x(x^2+1)(x-1)(x+1)}{16(x^2+1)(x+1)}\\&= 4x(x-1)\end{align}$
Solution:
(viii) $\frac{9x^2-(x^2-4)^2}{4+3x-x^2}$
$\begin{align}\frac{(3x)^2-(x^2-4)^2}{4+3x-x^2}\\&= \frac{(3x-(x^2-4))(3x+(x^2-4))}{4+3x-x^2}\\&= \frac{(3x-x^2+4)(3x+x^2-4)}{4+3x-x^2}\\&= \frac{(x^2+3x-4)(4+3x-x^2)}{4+3x-x^2}\\&= x^2+3x-4)\end{align}$