Ch 13: Inverse Trigonometry Functions

  • Find the value of $cos^{-1}(\frac{1}{2})$ — BISE Gujrawala(2015)
  • Prove that $2tan^{-1}(\frac{1}{3})+tan^{-1}(\frac{1}{7})=\frac{\pi}{4}$ — BISE Gujrawala(2015), FBISE(2016)
  • Prove that $sin^{-1}(\frac{1}{\sqrt{5}})+cot^{-1}(3)=\frac{\pi}{4}$— BISE Sargodha(2015), BISE Sargodha(2016), BISE Gujrawala(2017)
  • Prove that $cos^{-1}(-x)=\pi-cos^{-1}x$— BISE Gujrawala(2017), FBISE(2017)
  • Show that $cos^{-1}(\frac{12}{13})=sin^{-1}(\frac{5}{13})$— BISE Sargodha(2015)
  • Show that $cos(sin^{-1}x)=\sqrt{1-x^2}$— BISE Sargodha(2016)
  • Find the value of $tan(cos^{-1}\frac{\sqrt{3}}{2})$— BISE Sargodha(2017)
  • Prove that $cos^{-1}A+cos^{-1}B=cos^{-1}(AB-\sqrt{(1-A^2)(1-B^2)})$— BISE Sargodha(2017)
  • Prove that $tan^{-1}\frac{3}{4}+tan^{-1}\frac{3}{5}-tan^{-1}\frac{8}{19}=\frac{\pi}{4}$— BISE Lahore(2017)
  • Without using calculator show that $cos^{-1}\frac{4}{3}$— BISE Lahore(2017)
  • fsc-part1-ptb/important-questions/ch13-inverse-trigonometry-functions
  • Last modified: 8 months ago
  • by M. Izhar