QUAID-I-AZAM UNIVERSITY DEPARTMENT OF MATHEMATICS

M.Phil .Admission Test Fall 2011

Time:9 0 minutes

Dated:2 2-08-2011
Note:Section lis compulsory,Section II is for Applied Mathematics and Section III is for Pure Mathematics candidates.

Use separate page for each question.

Section I

Q.1. (a) Investigate the limit at $(2,1)$ of $f(x, y)=\frac{\sin ^{-1}(x y-2)}{\tan ^{-1}(3 x y-6)}$.
(b) Evaluate $\int_{c} x y^{2} d x$, on the quarter circle C defined $x=4 \cos t, y=4 \sin t, 0 \leq t \leq \frac{x}{2}$.
Q.2. Determine the radius of convergence for the power series $\sum_{1}^{\infty} \frac{(n!)^{2}}{(2 n)!} x^{n}$.
Q.3. Fill in the blanks
(a) If the radius of curvature of a curve is infinite then it is a \qquad
(b) If the radius of curvature of a curve is constant $\neq 0$ then it is a
(c) If the radius of curvature of a curve is zero then it is a
(d) If the binormal of a curve is constant then it is a \qquad
(e) If the torsion and curvature of a curve are in a constant ratio then it is a \qquad
(f) If the curvature of a curve is identically zero then its torsion is \qquad
(g) Let $\alpha=\alpha(t)$ be a curve and $\left|\frac{d a}{d t}\right|=0$ then it is
(h) The parametrization of a curve is \qquad and \qquad
(i) A surface $x=x(u, v)$ is called regular if $\left|\frac{\partial x}{\partial u} \times \frac{\partial x}{\partial v}\right|$ is \qquad
Q.4. Calculate the Christoffel's Symbols: $\Gamma_{12}^{1}, \Gamma_{12}^{2}, \Gamma_{22}^{1}$ for $(d s)^{2}=(d r)^{2}+r^{2}(d \theta)^{2}$.
Q.5. Find the subspace of \mathbb{R}^{3} spanned by the vectors $\{(1,-2,1),(-2,0,3),(3,-2,-2)\}$.
Q.6 . Show that every convergent sequence in a metric space is bounded.
Q.7 . State Kepler's laws of orbital motion. Prove at least one law for the closed orbits using Newton's equation of motion.
Q.8. Find all the eigenvalues and eigenvectors of

$$
4\left(e^{-x} y^{\prime}\right)^{\prime}+(1+\lambda) e^{-x} y=0 \quad y(0)=0, y(1)=0
$$

Q.9. Solve
$\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{k} \frac{\partial u}{\partial t} ; \quad x>0, t>0 \quad u(0, t)=A, t \geq 0 ; \quad u(x, 0)=0, x>0, u$ and $\frac{\partial u}{\partial x} \rightarrow 0$ when
$x \rightarrow \infty$.
Q. 10 . Use Method iteration to find a real root of the equation $x^{3}+x^{2}-1=0$ on the interval $[0,1]$ by taking $x_{0}=0.75$.
Q. 1 1. Find residue of $f(z)=\frac{1}{2\left(e^{t}-1\right)}$ at $z=0$.
Q.12. Let $X=\{1,2, \ldots, 10\}$ and $\mathfrak{J}=X \cup\{A \subseteq X: 1 \notin A\}$. Show that \mathfrak{I} is a topology on X.ls (X, \mathfrak{J}) separable, T_{1}, T_{2}, compact and connected?
Q. 1 3. Let A, B, C be subgroups of a group G such that $A \subseteq B \cup C$. Show that either $A \subseteq B$ or $A \subseteq C$.

Section II

Q.14. Find the solution of

$$
u(y)=y+\int_{0}^{y} \sin (y-t) u(t) d t
$$

Q. 15 .If $u=-\frac{c y}{r^{2}}, v=\frac{c x}{r^{2}}, w=0$. Find out the equation of streamline.
Q. 16 . Consider electromagnetic phenomena in free space.Write Maxwell equation and prove that electric field \bar{E} satisfies $\nabla^{2} \bar{E}=\mu \in \frac{\partial^{2} E}{\partial \partial^{2}}$.
Q. 1 7. For most earth rocks $\lambda=\mu$.Discuss values of Young's modulus and Poisson's ratio. Write down the stress-strain and the Navier equations in this case.
Q. 18 . Use Picard's method to obtain $y(0.25), y(0.5)$ and $y(1)$ where $\frac{d y}{d x}=\frac{x^{2}}{1+y^{2}}, y(0)=0$.Perform two iterations only.
Q.19. Derive the Lorentz transformations for uniform,rectilinear motion of an observer S with respect to another observer S^{\prime}.
Q. 20 . Find the curve connecting two given points A and B which a particle transverse while going from A to B in shortest possible time, assuming constant gravity. (Brachistochrone problem)

Section III

Q. 2 1. Show that every Hilbert space is strictly convex. The space $C[a, b]$ is not strictly convex.
Q. 2 2. Calculate the Ramsey number $R(3,4)$.
Q. 2 3. Show that a commutative ring with identity R is a field if and only if every ideal of R is prime.
Q. 24 . (i) If $F=\mathbb{Z}_{2}$ and $C=\{0000000,0101010,1110000,1011010,0100101,0001111,1111111\}$

Find linear code and minimum distance for C.
(ii) Define orthogonal code and give an example.
Q. 25 . Show that a continuous function defined on a measurable set is measurable.
Q.26. Show that sum of two submodules of an R-module M is the submodule of M
generated by their union.
Q.27. Let Ω be the space of all functions $f: R^{3} \rightarrow R$ all of whose partial derivatives (of any order) exist everywhere.Let G be the Euclidean group of R^{3}, that is, the set of all transfomations $T_{u, b}: a \rightarrow a u+b, a \in R^{3}$, where $u \in O(3)$ and $b \in R^{3}$. For $g \in G$ and $f \in \Omega$ define f^{8} by $f^{g}(x, y, z):=f(x, y, z) g^{-1}$. Show that the prescription $(f, g) \mapsto f^{8}$ gives an action of G on Ω.

Good Luck

Available at www.MathCity.org

Acknowledgment: We are very thankful to Mr. Abdul Razaq Maken for providing this paper.

