# MODEL PAPER \*\* MATHEMATICS" Intermediate Part-II Examination, 2008 & Onward

| Roll No.   |  |
|------------|--|
| In Figures |  |
| In Words   |  |

|       |                                                                | OBJE                             | CTIVE                               | vvorus               |  |  |
|-------|----------------------------------------------------------------|----------------------------------|-------------------------------------|----------------------|--|--|
| Tin   | e: 30 Minutes                                                  | 3202                             | CALVE WAR                           | Marks: 20            |  |  |
| Not   | Jour                                                           | Roll No. in the s                | pace provided. Over                 | er-writing. Cutting. |  |  |
| Q.N   |                                                                | on has four possib               |                                     | the correct answer   |  |  |
| (i)   | The perimeter p of                                             | a square as a function           | of its area A is                    |                      |  |  |
|       | (a) $p = \sqrt{A}$                                             | (b) $p = 2\sqrt{A}$              | (c) $p = 3\sqrt{A}$                 | (d) $p = 4\sqrt{A}$  |  |  |
| (ii)  | The graph of $\frac{x^2}{25}$ +                                | $\frac{y^2}{16} = 1$ is          | to uther energh.                    |                      |  |  |
|       | (a) circle                                                     | (b) parabola                     | (c) ellipse                         | (d) hyperbola        |  |  |
| (iii) | If $f'(c) = 0$ then f has relative maximum value at $x = c$ if |                                  |                                     |                      |  |  |
|       |                                                                | (b) $f''(c) < 0$                 | (c) $f''(c) = 0$                    | (d) None of these    |  |  |
| (iv)  | The order of $x^3 \frac{d^2y}{dx^2}$                           | $\frac{dy}{dx} - 5y = 0$ is      |                                     |                      |  |  |
|       | (a) 1                                                          | (b) 2                            | (c) 3                               | (d) 4                |  |  |
| (v)   | If $f(x) = \sin x$ , them $f'(\cos^{-1}x) =$                   |                                  |                                     |                      |  |  |
|       | (a) x                                                          | (b) -x                           | (c) cosx                            | (d) sinx             |  |  |
| (vi)  | $\int \frac{dx}{ax+b} =$                                       |                                  |                                     |                      |  |  |
|       | (a) a $\ln  ax + b  + c$                                       | (b) $\frac{1}{a}\ln ax + b  + c$ | $(c) - \frac{1}{a} \ln ax + b  + c$ | (d) None of these    |  |  |
| vii)  | $\int a^x dx = \dots$                                          |                                  |                                     |                      |  |  |
|       | (a) $a^x + c$                                                  | (b) $\frac{a^s}{\ln a}$          | (c) a <sup>x</sup> lna + c          | (d) None of these    |  |  |
| viii) | $\int \cot x  dx = \dots$                                      |                                  |                                     |                      |  |  |
|       | (a) ln  cosecx  + c                                            | (b) $\ln  \sin x  + c$           | (c) ln cos x  + c                   | (d) None of these    |  |  |
| ix)   | $\int_0^1 \frac{dx}{1+x^2} = \dots$                            |                                  |                                     |                      |  |  |
|       | (a) $\frac{\pi}{6}$                                            | (b) $\frac{\pi}{3}$              | (c) $\frac{\pi}{4}$                 | (d) $\frac{\pi}{2}$  |  |  |
| x)    | If $f(tx, ty) = t^n f(x, y)$                                   | rec.                             |                                     |                      |  |  |
| 9     | (a) n-1                                                        | 4.1.                             |                                     | (d) None of these    |  |  |

(xi)

The distance of the point (-2, 3) from Y-axis is

|         | (a) -2                                                                                                      | (b) 2                                       | (c) 3                                       | (d) -3                                     |  |  |
|---------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|--|--|
| (xii)   | The point of concurrency of medians of a triangle is called.                                                |                                             |                                             |                                            |  |  |
|         | (a) in centre                                                                                               | (b) circumcentre                            |                                             | (d) centroid                               |  |  |
|         | er far                                                                                                      |                                             |                                             |                                            |  |  |
| (xiii)  | (1, 2) is the solution of<br>(a) $x + y > 0$ (b) $x + y < 0$ (c) $x + y = 0$ (d) $x - y = 1$                |                                             |                                             |                                            |  |  |
|         | (a) $x + y > 0$                                                                                             | (b) $x + y < 0$                             | (c) x + y = 0                               | $(\mathbf{d}) \mathbf{x} - \mathbf{y} = 1$ |  |  |
| (xiv)   | The equation $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$ represents a circle of                                |                                             |                                             |                                            |  |  |
| 00 mi   | (a) $a = b, h \neq 0$                                                                                       | (b) $a = b$ , $h = 0$                       | (c) $a \neq b$ , $h = 0$                    | (d) $a \neq b$ , $h \neq 0$                |  |  |
| (xv)    | A point on the parabola which is closest to the focus is                                                    |                                             |                                             |                                            |  |  |
|         | (a) vertex                                                                                                  | (b) directrix                               | (c) focus                                   | (d) origin                                 |  |  |
| (xvi)   | iligan percura (2.487                                                                                       |                                             |                                             |                                            |  |  |
|         | (a) $x^2 + y^2 = a^2$                                                                                       | (b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ | (c) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ | (d) None of these                          |  |  |
| (xvii)  | In hyperbola                                                                                                | <b>国内</b>                                   | avit to a                                   |                                            |  |  |
|         | (a) e = 1                                                                                                   | (b) e < 1                                   | (c) e > 1                                   | (d) e = 0                                  |  |  |
| (xviii) | The line through the                                                                                        | e vertex and the focus                      | s is called                                 |                                            |  |  |
|         | (a) axis of parabola                                                                                        | (I.) I-tus mature (I.)                      |                                             | of parabola                                |  |  |
|         | (c) chord of parabola (d) None of these                                                                     |                                             | and our unit (a) 1911                       |                                            |  |  |
| (xix)   | Which of the following is not a unit vector?                                                                |                                             |                                             |                                            |  |  |
|         | (a) [1, 1, 1]                                                                                               | (b) [1, 0, 0]                               |                                             | (d) [0, 0, 1]                              |  |  |
| (xx)    | If $\underline{a}$ and $\underline{b}$ have same direction then $\underline{a} \cdot \underline{b} = \dots$ |                                             |                                             |                                            |  |  |
|         | (a) ab                                                                                                      | (b) -ab                                     |                                             | (d) None of these                          |  |  |
|         |                                                                                                             |                                             | filest de                                   | manth or tile 1 ks/14/11 []                |  |  |
|         |                                                                                                             |                                             | 200                                         |                                            |  |  |

## MODEL PAPER "MATHEMATICS"

#### Intermediate Part-II Examination, 2008 & Onward

#### **SUBJECTIVE**

Time: 2:30 Hours Marks: 80

Note: Attempt any TWENTY FIVE (25) questions from Section-I and any THREE questions from Section-II.

#### **SECTION-I**

Q.No.1. Write short answers to any TWENTY FIVE of the following questions.  $25 \times 2 = 50$ 

(i) Evalvate 
$$\lim_{x \to 0} \frac{\sqrt{x+a} - \sqrt{a}}{x}$$

(ii) If 
$$f(x) = -2x + 8$$
, find  $f^{-1}(x)$ 

(iii) If 
$$f(x) = \frac{x-1}{x-4}$$
,  $x \ne 4$ , then find domain of  $f^{-1}(x)$ 

(iv) What is differentiation?

(v) Find 
$$\frac{dy}{dx}$$
 if  $y = \cosh(2x)$ 

- (vi) What is the geometrical interpretation of a derivative?
- (vii) Find the extreme values of  $f(x) = x^2 x 2$

(viii) Find 
$$\frac{dy}{dx}$$
 if  $y = \sin^{-1} \left( \frac{x}{a} \right)$ 

(ix) What is the integration?

(x) Evaluate 
$$\int \frac{x^2 - 1}{x^2 + 1} dx$$

- (xi) Evaluate Inxdx
- (xii) Evaluate  $\int \tan^2 x \, dx$
- (xiii) Evaluate ssec4 x dx

(xiv) Evaluate 
$$\int \frac{1}{e^x + e^{-x}} dx$$

(xv) Evaluate 
$$\int \frac{dx}{\sqrt{x+a} + \sqrt{x}}$$

- (xvi) Solve the differential equ. xdy + ydx = 0
- (xvii) Evaluate  $\int_{0}^{x} |x-3| dx$
- (xviii) Find the area bocended by cos function from  $x = -\frac{\pi}{2}$  to  $x = \frac{\pi}{2}$
- (xix) Define inclination and slope of a line.
- (xx) Find h such that points A (-1, h), B(3,2) and C (7, 3) are collinear.
- (xxi) Find the measure of the angle between the lines represented by  $x^2 xy 6y^2 = 0$
- (xxii) Find the distance of the point (6, -1) from the line 6x 4y + 9 = 0
- (xxiii) What is an objective function?

- (xxiv) What is an inequality?
- What is a feasible region? (XXV)
- (xxvi) Find the slope of the tangent to parabola  $y^2 = 4ax$  at the point  $(at^2, 2at)$
- (xxvii) Find the centre and foci of the ellipse  $\frac{x^2}{9} + \frac{y^2}{16} = 1$
- (xxviii) Check the position of the point (5, 6) w.r.t. the circle  $2x^2 + 2y^2 + 12x - 8y + 1 = 0$
- What are the characteristics of the general equation of a circle? (xxix)
- Find the equ. of hyperbola if foci are (±5, 0) and vertex is (3, 0) (xxx)
- Transform the equation  $x^2 + 6x 8y + 17 = 0$  referred to 0' (-3, 1) as origin, axes (xxxi) remaining parallel to the old axes.
- Prove that the length of latus rectum of the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  is  $\frac{2b^2}{a}$ (xxxii)
- (xxxiii) What is a position vector?
- (xxxiv) If the vectors  $2\underline{i} + 4\underline{i} 7\underline{k}$  and  $2\underline{i} + 6\underline{i} + x\underline{k}$  are perpendicular to each other, find the value of x.
- (xxxv) If  $\underline{a} + \underline{b} + \underline{c} = \underline{0}$ , prove that  $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$
- (xxxvi) Find the value of  $\infty$  so that  $\underline{\mathbf{u}} = \alpha \underline{\mathbf{i}} + \underline{\mathbf{j}}$ ,  $\underline{\mathbf{v}} = \underline{\mathbf{i}} + \underline{\mathbf{j}} + 3\underline{\mathbf{k}}$  and  $\underline{\mathbf{w}} = 2\underline{\mathbf{i}} + \underline{\mathbf{j}} \underline{\mathbf{k}}$  are coplaner
- (xxxvii) Find the direction cosines of the vector  $\underline{\mathbf{v}} = 2\underline{\mathbf{i}} \underline{\mathbf{j}} + 2\underline{\mathbf{k}}$

### SECTION-II

Note: Attempt any THREE questions.

 $10 \times 3 = 30$ 

- Q.2(a) If  $\theta$  is measured in readians, prove that  $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ 
  - Show that  $x^2 \frac{dy^2}{dx^2} + x \frac{dy}{dx} + y = 0$  if  $y = a \cos(\ln x) + b \sin(\ln x)$ (b)
- Q.3(a) Evalate  $\int \sqrt{a^2 + x^2} dx$ 
  - Find the area bounded by the curve  $y = x^3 4x$  and the X-axis (b)
- Q.4(a) Find the equation of a st line through the intersection of the lines x-y-4=0 and 7x+y+20=0 and perpendicular to the line 6x+y-14=0
  - Find the maximum and minimum values of f(x, y) = 4x + 5y under the (b) constraints  $2x - 3y \le 6$ ,  $2x + y \ge 2$  and  $2x + 3y \le 12$ ,  $x \ge 0$ ,  $y \ge 0$ .
- Define parabola and derive the equ. of parabola in standard form. Q.5(a)
  - Analyze the equ.  $4x^2 + 9y^2 = 36$ (b)
- Show that the line segment joining the mid. Pts. Of the sides of a Q.6(a) quadrilateral taken in order form a parallelogram.
  - Find the volume of the tetrahedron with vertices (b) A(0, 1, 2), B(3, 2, 1), C(1, 2, 1) & D(5, 5, 6)