

BISE - Model Paper 2009 unofficial Mathematics II (Objective), Time Allowed: 30 Min. Marks: 20, Available online @ http://www.mathcity.org/fsc

OBJECTIVE

Q. 7: Some possibl correct answer.	le answers to each state	ment are giv	en below. Tick (P) mark the
	a which the variable appears a a) Identity function c) Inverse Function	b) Exp	call an ponential Function Instant Function
ii) If $\frac{x^3 - x}{x^3 + 1}$ t		.,	
	a) Odd Function c) Neither Function	b) Eve d) None of the	en Function ese
iii) $\lim_{x\to 0} \frac{a^x - 1}{x}$	- =		
	a) log a c) log ₁₀ a	b) log₁₀ xd) None of the	ese
iv) If $f(x) = x^{2}$	$\frac{1}{3}$ then $f'(8) =$		
	a) $\frac{1}{2}$	b) $\frac{2}{3}$	
	c) $\frac{1}{3}$	d) 3	
v) If $y = e^{ax}$,	then $\frac{dy}{dx} =$		
	a) $\frac{1}{e^{x}}$	b) ae^x	
	c) e^{ax}	b) ae^{x} d) $\frac{1}{a}e^{ax}$	
vi) If $c \in D_t$	f and $f'(c) = 0$		
	a) Stationary point c) Relative extreme	b) Crit d) None of the	cical Point ese
vii) $\int Secx.dx =$	=		
	a) $\ln \operatorname{Sec} x + \operatorname{Cot} x + c$ c) $\ln \operatorname{Sec} x + \operatorname{Tan} x + c$		b) $\ln \text{Tan}x + \text{Cosec}x + c$ d) $\ln \text{Sin}x + \text{Cot}x + c$
viii) $\int x \ln x dx$	<i>x</i> =		
	a) $x^{2}[\ln x - x] + c$	b) $\frac{1}{2}[x^2 \ln x +$	$-\frac{x^2}{2}]+c$
	c) $\frac{1}{2}x^2[\ln x - \frac{1}{2}] + c$	d) None of the	ese
ix) $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}} =$			
	a) $\frac{p}{6}$	b) $\frac{p}{4}$	
	c) $\frac{p}{3}$	d) $\frac{p}{2}$	

x) If $y = 0$ the	a) Origin c) <i>x</i> -axis	 b) y-axis d) 4th quadrant
xi) IF (2,4), $(4, 6) \& (3, 5)$ are the ve	ertices of a triangle then its centroid is
	a) $\left(\frac{10}{4}, \frac{14}{3}\right)$	 b) (3,5) d) (3,4)
	c) $\left(\frac{8}{3}, \frac{11}{3}\right)$	d) (3,4)
xii) If $b = 0$	then $ax + by + c = 0$ shows the	at line is
	a) Parallel to <i>x</i>-axisc) Perpendicular to <i>y</i>-axis	b) Parallel to y-axisd) None of these
xiii) The line	es represented by $ax^2 + 2hxy + ax^2 + ax^$	$-by^{2}=0$
,		b) $h^2 - ab > 0$
	c) $h^2 - ab = 0$	d) $h^2 + ab = 0$
xiv) To find t	he optional solution evaluate t a) All points of feasible region c) Origin only	
xv) If C (h ,	k) is the centre and r is the ra a) $(x + h)^2 + (y + k)^2 = r^2$ c) $(x - h) + (y - k) = r$	dius of a circle then equation of the circle is b) $(x - h)^2 + (y - k)^2 = r^2$ d) $(x + h) + (y + k) = r$
xvi) The dired	ctrix of the parabola $y^2 = 8x$ a) $x+2=0$ c) $y+2=0$	is b) $x - 2 = 0$ d) $y - 2 = 0$
xvii) If equat	tion of ellipse is $\frac{x^2}{a} + \frac{y^2}{b} = 1$	
	tion of ellipse is $\frac{x^2}{a} + \frac{y^2}{b} = 1$ a) (0,0) c) (b,a)	b) (a , b) d) (-a , -b)
	quation of hyperbola is $\frac{x^2}{a}$	$\frac{h^2}{h} = 1$ then vertices are
	a) $(+a, 0)$ c) $(0, \pm b)$	b) (+b , 0) d) (0, ± a)
xix) If the an		es of a vector then $\cos \alpha$, $\cos \beta$, $\cos \gamma$ are called
	a) Components c) Both (a) & (b)	b) Direction cosinesd) None of these
xx) If <i>a</i> & <i>b</i>	are two non-zero vectors then	$a \times b =$
, <u></u>	a) <u><i>ab</i></u>	b) ab
	·	

If you have a question or query you can ask at http://forum.mathcity.org

BISE - Model Paper 2009 unofficial

Mathematics Paper-II, Time Allowed: 2.30 Hours Max. Marks: 80, Available online @ http://www.mathcity.org/fsc

Section – I

Note: All questions are to be attempted on answer book. **Q # 1: Write any TWENTY-FIVE short answers of the following questions:** Evaluate $\lim_{x \to 0} \frac{\sqrt{x+a} - \sqrt{a}}{x}$ (i) If f(x) = -2x + 8, find $f^{-1}(x)$ (ii) If $f(x) = \frac{x-1}{x-4}$, $x \neq 4$, then find domain of $f^{-1}(x)$ (iii) What is differentiation? (iv) Find $\frac{dy}{dx}$ if $y = \cos h (2x)$ (v) What is the geometrical interpretation of a derivative? (vi) Find the extreme values of $f(x) = x^2 - x - 2$ (vii) Find $\frac{dy}{dx}$ if $y = Sin^{-1}\left(\frac{x}{a}\right)$ (viii) What is integration? (ix) Evaluate $\int \frac{x^2 - 1}{x^2 + 1} dx$ (x) Evaluate $\int \ln x dx$ (xi) Evaluate $\int Tan^2 x dx$ (xii) Evaluate $\int Sec^4 x dx$ (xiii) Evaluate $\int \frac{1}{e^x + e^{-x}} dx$ (xiv) Evaluate $\int \frac{dx}{\sqrt{x+a} + \sqrt{x}}$ (xv) Solve the differential equation x.dy + y.dx = 0(xvi) Evaluate $\int |x-3| dx$ (xvii) Find the area bounded by Cosine function from $x = -\frac{p}{2}$ to $x = \frac{p}{2}$ (xviii) Define inclination and slope of a line. (xix) Find h such that points A(-1, h), B(3, 2) and C(7, 3) are collinear. $(\mathbf{x}\mathbf{x})$ Find the measure of the angle between the lines represented by $x^2 - xy - 6y^2 = 0$ (xxi) Find the distance of the point (6, -1) from the line 6x - 4y + 9 = 0. (xxii) What is an objective function? (xxiii) (xxiv) What is an inequality? What is a feasible region? (xxv) Find the slope of the tangent to parabola $y^2 = 4ax$ at the point $(at^2, 2at)$ (xxvi) Find the Centre and foci of the ellipse $\frac{x^2}{0} + \frac{y^2}{16} = 1$ (xxvii) Check the position of the point (5, 6) w. r. t. the circle $2x^2 + 2y^2 + 12x - 8y + 1 = 0$ (xxviii) What are the characteristics of the general equation of a circle? (xxix) Find the equ. of hyperbola if foci are $(\pm 5, 0)$ and vertex is (3, 0). (XXX) Transform the equation $x^2 + 6x - 8y + 17 = 0$ referred to O'(-3,0) as origin, axes (xxxi) remaining parallel to the old axes. Prove that the length of latus rectum of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{2b^2}{a}$ (xxxii) What is a position vector? (xxxiii)

(xxxiv) If the vectors $2\underline{i} + 4\underline{j} - 7\underline{k}$ and $2\underline{i} + 6\underline{j} + x\underline{k}$ are perpendicular to each other, find the value of x. (xxxv) If $\underline{a} + \underline{b} + \underline{c} = \underline{0}$, prove that $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$ (xxxvi) Find the values of α so that $\underline{u} = a\underline{i} + \underline{j}$, $\underline{v} = \underline{i} + \underline{j} + 3\underline{k}$ and $\underline{w} = 2\underline{i} + \underline{j} - \underline{k}$ are coplanar. (xxxvii) Find the direction cosines of the vector $\underline{v} = 2\underline{i} - \underline{j} + 2\underline{k}$

Section - II

Note: Attempt any THREE questions.

Q # 2 (a) If θ is measured in radians, prove that $\lim_{x \to 0} \frac{Sinq}{q} = 1$ (**b**) Show that $x^2 \frac{dy^2}{dx^2} + x \frac{dy}{dx} + y = 0$. If $y = a \operatorname{Cos}(\ln x) + b\operatorname{Sin}(\ln x)$ **Q # 3 (a)** Evaluate $\int \sqrt{a^2 + x^2} dx$ (b) Find the area bounded by the curve $y = x^3 - 4x$ and the x-axis. **Q** # 4 (a) Find the equation of a st. line through the intersection of the lines x - y - 4 = 0 and 7x + y + 20 = 0 and perpendicular to the line 6x + y - 14 = 0(b) Find the maximum and minimum values of f(x, y) = 4x + 5y under the constraints $2x - 3y \le 6$, $2x + y \ge 2$ $2x + 3y \le 12$, $x \ge 0$, $y \ge 0$. and Q # 5 (a) Define parabola and derive the equation of parabola in standard form. (**b**) Analyze the equation. $4x^2 + 9y^2 = 36$ Q # 6 (a) Show that the line segment joining the mid. Pts. of the sides of a quadrilateral taken in order from a parallelogram. (b) Find the volume of the tetrahedron with vertices A(0,1,2), B(3,2,1), C(1,2,1) & D(5,5,6).

This Paper is available online at http://www.MathCity.org

If you have a question or query you can ask at http://forum.mathcity.org