MGQs - Unit # 7: F.Sc Part 2

CALCULUS AND ANALYTIC GEOMETRY, MATHEMATICS 12 Available online at http://www.mathcity.org, Version: 1.0.0

Unit 7: Vectors

- 1) The triangle law for vector addition is equivalent to the
 - A) Commutative law
 - B) Associative law
 - C) Parallelogram law
 - D) First law
- 2) The position vector of a point P(x, y, z) is denoted by
 - A) \overrightarrow{PQ}
 - B) \overrightarrow{OP}
 - C) \overline{P}
 - D) \overrightarrow{AP}
- If $Cos\alpha$, $Cos\beta$, $Cos\gamma$ are the directions 3) Cosines of a vector then

 - A) $\cos\alpha + \cos\beta + \cos\chi = 1$ B) $\cos^2\alpha + \cos^2\beta + \cos^2\chi = 0$ C) $\cos^2\alpha + \cos^2\beta + \cos^2\chi = 1$

 - D) $\cos \alpha + \cos \beta + \cos \chi = 0$
- 4) The numbers proportional to the direction cosines of a vector are called
 - A) Vector numbers
 - B) Scalar numbers
 - C) Direction numbers
 - D) Rational numbers
- 5) Two or more vectors are said to be collinear if they are
 - A) perpendicular to the same line
 - B) parallel to the same line
 - C) intersecting the same line
 - D) not parallel to the same line

- 6) Two or more vectors are said to be coplanar if they
 - A) are perpendicular to the same plane
 - B) are not parallel to the same plane
 - C) lie in the same plane
 - D) do not lie in the same plane
- The component of $\overline{a} = 3i + 4j$ in the 7) direction of z-axis is
 - A) 3
 - B) 4
 - C) 0
 - D) 7
- 8) the unit vector in the direction of the vector a = i + j + k is
- 9) The vectors $\bar{a} = i + 2j + 3k$ and $\bar{b} = 2i + 4j + 6k$ are
 - A) Perpendicular
 - B) Parallel
 - C) Not parallel
 - D) None of these

- 10) The join of the mid points of the consecutive sides of any quadrilateral is
 - A) a square
 - B) a rectangle
 - C) a parallelogram
 - D) none of these
- 11) If A (1, 2, 3) and B (3, 4, 5) are two points then the mid pint of \overline{AB} is
 - A) (4, 3, 5)
 - B) (4, 6, 8)
 - (4, 5, 6)
 - D) (2, 3, 4)
- 12) The direction Cosines of \bar{i} are
 - A) 0, 0, 1
 - B) 0, 1, 0
 - C) 1, 0, 0
 - D) 1, 1, 0
- 13) The direction cosines of the vector $\overline{a} = \overline{i} + \overline{j}$ are
 - A) 1, 1, 0
 - B) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 1$
 - C) $1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
 - D) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0$
- 14) The Norm of the vector $\overline{a} = \overline{i} \overline{j}$ is
 - A) 0
 - B) 2
 - C) $\sqrt{2}$
 - D) 1
- 15) If $\bar{a} = 3i + j k$ and $\bar{b} = 1i 4j + 4k$ are parallel then the value of λ is
 - A) 4
 - B) 8
 - C) 12
 - D) -12

Products of Vectors

- 1) If \overline{a} is a unit vector then the value of $\overline{a}\overline{b}$ is
 - A) 1
 - B) $|\overline{a}|\cos q$
 - C) $|\overline{b}|\cos q$
 - D) 0
- 2) The projection of \bar{a} in the direction of \bar{b} is
 - A) $|\bar{b}| \cos q$
 - B) ab $Cos\theta$
 - C) ab
 - D) $|a| \cos q$
- 3) If $\overline{a} = i + j$ and $\overline{b} = i + k$ are two vectors then inner product of \overline{a} and \overline{b} are
 - A) 1
 - \overrightarrow{B}) -1
 - C) 0
 - D) 2
- 4) The inner product of \bar{i} and \bar{j} is
 - A) 1
 - B) -1
 - C) 0
 - D) 2
- 5) If $l_1l_2 + m_1m_2 + n_1n_2 = 0$ then the angle between the two vectors is
 - A) 45°
 - B) 60°
 - C) 90°
 - D) 180°

- If the right bisectors of the two sides of a triangle pass through the origin then the right bisector of the third side will pass through the point
 - A) (1, 1)
 - B) (1, 2)
 - C) (1,3)
 - D) (0,0)
- 7) The equation 2x + 3y + 6z = 35 represents
 - A) a line
 - B) a circle
 - C) a plane
 - D) a parabola
- If \bar{a} is the position vector of a given point 8) (1, 2, 3) and \overline{c} is the position vector of any point (x, y, z) such that $\left| \overline{c} - \overline{a} \right| = 2$ then the locus of \overline{c} describes
 - A) a circle
 - B) an ellipse
 - C) a plane
 - D) a sphere
- 9) the equation $(x-1)^2 + (y-3)^2 + (z-5)^2 = 25$ represents
 - A) a circle
 - B) a sphere
 - C) a plane
 - D) an ellipse
- 10) The coordinates of the center of the sphere $x^2 + y^2 + z^2 = 9$ is
 - A) (0,0)
 - B) (3, 3, 0)
 - (0,0,0)
 - D) (0, 0, 3)

- If \overline{a} is the position vector of a given point 11) (1, 1, 1) and \overline{c} is the position vector of any point (x, y, z) such that $|\overline{c} - \overline{a}| . \overline{a} = 0$ then the locus of \overline{c} describes.
 - A) a sphere
 - B) a circle
 - C) an ellipse
 - D) a plane
- 12) The distance from the origin to the plane
 - A) 7
 - B) 0
 - **C**) 1
 - D) 2
- 13) The contact in which the point coordinates are all positive is called
 - A) 1st octant
 - B) 2nd octant C) 4th octant

 - D) 8th octant
- 14) The point (3, 5, 8) lies in the
 - A) 3rd octant B) 5th octant

 - C) 8th octant
 - D) 1st octant
- The three coordinate's planes divide all 15) space into
 - A) 3 cells
 - B) 4 cells
 - C) 8 cells
 - D) 6 cells
- If a = i + 2j + k, $\overline{b} = 3i + j k$ and 16 c = i + 2j + k are the co-terminus edges of a parallelepiped then its volume is
 - A) 0
 - B) 8
 - C) 27
 - D) 1

- 17) If $\overline{a} = i + 2j + 3k$, $\overline{b} = 2i + 4j + 6k$ and $\overline{c} = 3i j + k$ then the value of $\overline{a} \cdot \overline{b} \times \overline{c}$ is
 - A) 28
 - B) 26
 - C) 0
 - D) 24

- 18) If volume of a parallelepiped with \overline{a} , \overline{b} , \overline{c} as co-terminus edges is 24 the volume of the tetrahedron with the same edges is
 - A) 48
 - B) 12
 - C) 6
 - D) 4

Written by NAUMAN IDREES (nomi255@yahoo.com) FSc (Session: 2007-09) ICMS College System Hayatabad, Peshawar