MathCity.org Merging man and maths

MGQs - Unit # 5: F.Sc Part 2 CALCULUS AND ANALYTIC GEOMETRY, MATHEMATICS 12

Available online at http://www.mathcity.org, Version: 1.0.0

Unit 5: Linear Inequalities & Linear Programming

1.	Optimize means a quantity under certain constraints:	8.	The solution set of $x < 4$ is
			a) $-\infty < x < 4$
	a) minimize		b) $-\infty > x > 4$
	b) maximize		c) $-\infty < x < 2$
	c) maximize or minimize		d) $-\infty > x < 2$
	d) none of the above		
2.	Which of them is associated equations?	9.	Corner point is also called
	a) $ax - by = c$		a) code
	b) $ax + by = c$		b) curve
	c) ax + by = -c		c) vertex
	d) none of the above		d) none of the above
3.	There are feasible solutions in the feasible region.	10.	The solution set of $x > 10$ is
			a) $10 > x > \infty$
	a) infinite		b) $10 < x < -\infty$
	b) finite		c) $10 > x > -\infty$
	c) defined		d) $10 < x < \infty$
	d) none of above		,
5.	Inequalities have symbols.	11.	3x + 4 > 0 is
	a) 2		a) equation
	b) 3		b) identity
	c) 4		c) inequality
	d) 1		d) none of these
_			d) hole of these
б.	The graph of linear equation $2x + 3y = 10$	12.	$3x + 4 \ge 0 \text{ is}$
	a) // line		a) equation
	b) curve		b) inequality
	c) zig zag		c) identity
	d) straight line		d) none of these
7.	Non negative constraints are called variables.	13.	3x + 4 < 0 is
			a) inequality
	a) non – decision		b) equation
	b) decision		c) not inequality
	c) constant		d) identity
	d) none of the above		,

- 14. $3x + 4 \le 0$ is
 - a) not inequality
 - b) equation
 - c) identity
 - d) inequality
- 15. 3x + 4 = 0 is
 - a) not inequality
 - b) equation
 - c) identity
 - d) inequality
- 16. An expression involving any of the symbols <, >, \le or \ge is called
 - a) equation
 - b) inequality
 - c) linear equation
 - d) identity
- 17. 2x + 3x > 4 is linear inequality in
 - a) one variable
 - b) two variables
 - c) three variables
 - d) none of these
- 18. ax + by < c is linear inequality in
 - a) four variables
 - b) three variables
 - c) two variables
 - d) one variable
- 19. The real numbers which satisfy an inequality form its
 - a) solution
 - b) coefficient
 - c) domain
 - d) range
- 20. x = 0 is in the solution of the inequality
 - a) x > 0
 - b) 3x + 4 < 0
 - c) 2x 3 < 0
 - d) x 2 < 0
- 21. x = 0 is in the solution of the inequality

- a) x + 1 < 0
- b) 2x + 3 < 0
- c) 2x 3 < 0
- d) 3 + x < 0
- 22. x = 1 is in the solution of the inequality
 - a) x + 1 < 0
 - b) 2x 4 < 0
 - c) 2x-4>0
 - d) x + 3 < 0
- 23. x = 1 is in the solution of the inequality
 - a) x + 1 > 0
 - b) x 2 > 0
 - c) 3x-1<0
 - d) x + 2 < 0
- 24. x = -1 is in the solution of inequality
 - a) x + 5 < 0
 - b) $2x + 3 \le 0$
 - c) x > 0
 - d) 2x + 3 > 0
- 25. $x = \underline{\hspace{1cm}}$ is in the solution of 2x + 3 < 0
 - a) 0
 - b) 1
 - c) 1
 - d) 2
- 26. x = is in the solution of $2x + 3 \ge 0$
 - a) 1
 - b) -2
 - c) -3
 - d) -4
- 27. x =____ is in the solution of 2x 3 < 0
 - a) 2
 - b) -2
 - c) 3
 - d) 4
- 28. $x = \underline{\hspace{1cm}}$ is in the solution of 2x 5 > 0
 - a) 0
 - b) 2
 - c) -2
 - d) 3

- 29. The points (x, y) which satisfy a linear inequality in two variables x and y form its
 - a) domain
 - b) range
 - c) solution
 - d) none of these
- 30. The solution set of the inequality ax + by < c is
 - a) straight line
 - b) half plane
 - c) parabola
 - d) none of these
- 31. (0, 0) is in the solution of the inequality
 - a) 3x + 4y > 3
 - b) x 2y < 2
 - c) x + 2y > 2
 - d) 2x 3y > 5
- 32. (1, 1) is in the solution of the inequality
 - a) 3x + 4y > 3
 - b) 2x + 3y < 2
 - c) 4x 3y > 5
 - d) 2x 3y > 2
- 33. (1, 0) is in the solution of inequality
 - a) 3x + 2y > 8
 - b) 2x 3y < 4
 - c) 2x + 3y > 3
 - d) x 2y < -5
- 34. (0, 1) is in the solution of the inequality
 - a) 3x + 2y > 8
 - b) 2x 3y < 4
 - c) 2x + 3y > 5
 - d) x 2y < -5

- 35. (0, 1) is in the solution of inequality
 - a) x 2y > 0
 - b) x y < 2
 - c) 3x + 2y > 5
 - d) 3x 2y < 2
- 36. (0,0) is in the solution of the inequality.
 - a) x + y > 3
 - b) x y > 2
 - c) 3x + 2y > 5
 - d) 3x 2y < 2
- 37. (1, 2) is in the solution of the inequality
 - a) 2x + y > 8
 - b) $2x + y \le 6$
 - c) 2x y > 1
 - d) 2x + 3y < 2
- 38. The point _____ is in the solution of the inequality 2x 3y < 5
 - a) (1, 1)
 - b) (2, 2)
 - c) (0, 1)
 - d) (0, 2)
- 39. The point _____ is in the solution of the inequality 2x 3y > 5
 - a) (1, -1)
 - b) (2, 2)
 - c) (2, -2)
 - d) (3, 3)
- 40. The point _____ is in the solution of the inequality 4x 3y < 2
 - a) (0, 1)
 - b) (2, 1)
 - c) (0,0)
 - d) (3,0)

Written by NAUMAN IDREES (nomi255@yahoo.com) FSc (Session: 2007-09) ICMS College System Hayatabad, Peshawar