Mathcity.oro

Question \# I

Since $P(A)=\frac{5}{7}$
And $P(B)=\frac{7}{9}$
Then the probability that both will alive 15 year is
$P(A \cap B)=P(A) \cdot P(B)=\frac{5}{7} \cdot \frac{7}{9}=\frac{5}{9} \quad$ Answer

Question \# 2

When a die is rolled then possible outcomes are

$$
1,2,3,4,5,6
$$

This shows that possible outcomes $=n(S)=6$
Since E_{1} is the event that the dots on the die are even then favourable outcomes are $2,4,6$
this shows $n\left(E_{1}\right)=3$
so probability $=P\left(E_{1}\right)=\frac{n\left(E_{1}\right)}{n(S)}=\frac{3}{6}=\frac{1}{2}$
Now since E_{2} is the event that the dot appear are more than four then favourable outcomes are 5 and 6 . This show $n\left(E_{2}\right)=2$
So probability $=P\left(E_{2}\right)=\frac{n\left(E_{2}\right)}{n(S)}=\frac{2}{6}=\frac{1}{3}$
Since E_{1} and E_{2} are not mutually exclusive
And the possible common outcome is 6 i.e. $n\left(E_{1} \cap E_{2}\right)=1$
So probability $P\left(E_{1} \cap E_{2}\right)=\frac{n\left(E_{1} \cap E_{2}\right)}{n(S)}=\frac{1}{6}$
Now $P\left(E_{1}\right) \cdot P\left(E_{2}\right)=\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6}$
Form (i) and (ii)

$$
P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right) \quad \text { Proved. }
$$

Question \# 3

When two coins are tossed then possible outcomes are
HH, HT, TH, TT
i.e. $n(S)=4$

Let A be the event of getting two heads then favourable outcome is HH .
so $n(A)=1$
Now probability $=P(A)=\frac{n(A)}{n(S)}=\frac{1}{4} \quad$ Answer

Question \# 4

When the two coins are tossed then possible outcomes are
HH, HT, TH, TT
This shows $n(S)=4$
Let A be the event that head appear in the first toss then
favourable outcomes are HT, HH, i.e. $n(A)=2$

Let B be the event that same face appear on the second toss then
favourable outcomes are HH, TT. i.e. $n(B)=2$
Now probability $=P(A \cap B)=P(A) \cdot P(B)$

$$
=\frac{n(A)}{n(S)} \cdot \frac{n(B)}{n(S)}=\frac{2}{4} \cdot \frac{2}{4}=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} \quad \text { Answer }
$$

Question \# 5

Since there are 52 cards in the deck therefore $n(S)=52$
Let A be the event that first card is an ace then $n(A)=4$
And let B be the event that the second card is also an ace then $n(B)=4$
Now probability $=P(A \cap B)=P(A) \cdot P(B)$

$$
=\frac{n(A)}{n(S)} \cdot \frac{n(B)}{n(S)}=\frac{4}{52} \cdot \frac{4}{52}=\frac{1}{169} \quad \text { Answer }
$$

Question \# 6

Since there are 52 cards in the deck therefore $n(S)=52$
(i) Let A be the event that the first card is king then $n(A)=4$
and let B be the event that the second card is queen then $n(B)=4$
Now probability $=P(A \cap B)=P(A) \cdot P(B)$

$$
=\frac{n(A)}{n(S)} \cdot \frac{n(B)}{n(S)}=\frac{4}{52} \cdot \frac{4}{52}=\frac{1}{169} \quad \text { Answer }
$$

(ii) Let C be the event that first card is faced card.

Since there are 12 faced card in the deck therefore $n(C)=12$
and let D be the event that the second card is also faced card then $n(D)=12$
Now probability $=P(A \cap B)=P(A) \cdot P(B)$

$$
=\frac{n(A)}{n(S)} \cdot \frac{n(B)}{n(S)}=\frac{12}{52} \cdot \frac{12}{52}=\frac{3}{13} \cdot \frac{3}{13}=\frac{9}{169} \quad \text { Answer }
$$

Question \# 7

When the two dice are thrown the possible outcomes are

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

Which shows that $n(S)=36$
Let A be the event that the sum of dots in first throw is 7 then
favourable outcomes are $(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)$ i.e. $n(A)=6$
Let B be the event that the sum of dots in second throw is 11 then favourable outcomes are $(5,6),(6,5)$ i.e. $n(B)=2$
Now probability $=P(A \cap B)=P(A) \cdot P(B)$

$$
=\frac{n(A)}{n(S)} \cdot \frac{n(B)}{n(S)}=\frac{6}{36} \cdot \frac{2}{36}=\frac{1}{6} \cdot \frac{1}{18}=\frac{1}{108} \text { Answer }
$$

Question \# 8

When the two dice are thrown the possible outcomes are

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

Which shows that $n(S)=36$
Let A be the event that the sum of dots in first throw is 7 then
favourable outcomes are $(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)$ i.e. $n(A)=6$
Let B be the event that the sum of dots in second throw is also 7 then
similarly favourable outcomes $=n(B)=6$
Now probability $=P(A \cap B)=P(A) \cdot P(B)$

$$
=\frac{n(A)}{n(S)} \cdot \frac{n(B)}{n(S)}=\frac{6}{36} \cdot \frac{6}{36}=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \quad \text { Answer }
$$

Question \# 9

When the die is thrown twice then the top may shows $1,2,3,4,5,6$
This shows possible outcomes $=n(S)=6$
Let A be the event that the number of the dots is prime then
favourable outcomes are $2,3,5$, i.e. $n(A)=3$
Let B be the event that the number of dots in second throw is less than 5 then
favourable outcomes are $1,2,3,4$ i.e. $n(B)=4$
Now probability $=P(A \cap B)=P(A) \cdot P(B)$

$$
=\frac{n(A)}{n(S)} \cdot \frac{n(B)}{n(S)}=\frac{3}{6} \cdot \frac{4}{6}=\frac{1}{2} \cdot \frac{2}{3}=\frac{1}{3} \quad \text { Answer }
$$

Question \# 10

Since number of red balls $=8$
Number of white ball =5
Number of black ball $=7$
Therefore total number of balls $=8+5+7=20$ i.e. $n(S)=20$
Let A be the event that the first ball is red then $n(A)=8$
Let B be the event that the second ball is white then $n(B)=5$
Let C be the event that the third ball is black then $n(C)=7$
Now probability $=P(A \cap B \cap C)=P(A) \cdot P(B) \cdot P(C)$

$$
\begin{aligned}
& =\frac{n(A)}{n(S)} \cdot \frac{n(B)}{n(S)} \cdot \frac{n(C)}{n(S)} \\
& =\frac{8}{20} \cdot \frac{5}{20} \cdot \frac{7}{20}=\frac{2}{5} \cdot \frac{1}{4} \cdot \frac{7}{20}=\frac{14}{400}=\frac{7}{200} \quad \text { Answer }
\end{aligned}
$$

