Question \# I

Sample space $=\{1,2,3$, \qquad ,9\} then $n(S)=9$
Since event $A=\{2,4,6,8\}$ then $n(A)=4$
Also event $B=\{1,3,5\}$ then $n(B)=3$
Now $P(A \cup B)=P(A)+P(B)=\frac{n(A)}{n(S)}+\frac{n(B)}{n(S)}=\frac{4}{9}+\frac{3}{9}=\frac{7}{9} \quad$ Answer

Question \# 2

Red marble $=10, \quad$ White marble $=30, \quad$ Black marble $=20$
Total marble $=10+30+20=60$
Therefore $n(S)=60$
Let A be the event that the marble is red then $n(A)=10$
And let B be the event that the marble is white then $n(B)=30$
Since A and B are mutually exclusive event therefore
Probability $=P(A \cup B)=P(A)+P(B)=\frac{n(A)}{n(S)}+\frac{n(B)}{n(S)}=\frac{10}{60}+\frac{30}{60}=\frac{40}{60}=\frac{2}{3}$

Question \# 3

Since sample space is first fifty natural number so $S=\{1,2,3, \ldots, 50\}$
Then $n(S)=50$
Let A be the event that the chosen number is a multiple of 3 then
$A=\{3,6,9$,

$$
, 48\} \text { so } n(A)=16
$$

If B be the event that the chosen number is multiple of 5 then
$B=\{5,10,15$, $, 50\}$ so $n(B)=10$
Now $A \cap B=\{15,30,45\}$ so $n(A \cap B)=3$
Since A and B are not mutually exclusive event therefore
Probability $=P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
\begin{aligned}
& =\frac{n(A)}{n(S)}+\frac{n(B)}{n(S)}-\frac{n(A \cap B)}{n(S)} \\
& =\frac{16}{50}+\frac{10}{50}-\frac{3}{50}=\frac{16+10-3}{50}=\frac{23}{50} \quad \text { Answer }
\end{aligned}
$$

\geq Question \# 4

Total number of cards $=52$,
therefore possible outcomes $=n(S)=52$
Let A be the event that the card is a diamond card.
Since there are 13 diamond card in the deck therefore $n(A)=13$
Now let B the event that the card is an ace card.
Since there are 4 ace cards in the deck therefore $n(B)=4$
Since one diamond card is also an ace card therefore A and B are not mutually exclusive event and $n(A \cap B)=1$
Now probability $=P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
\begin{aligned}
& =\frac{n(A)}{n(S)}+\frac{n(B)}{n(S)}-\frac{n(A \cap B)}{n(S)} \\
& =\frac{13}{52}+\frac{4}{52}-\frac{1}{52}=\frac{13+4-1}{52}=\frac{16}{52}=\frac{4}{13}
\end{aligned}
$$

\geq Question \# 5

When die is thrown twice the possible outcomes are

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

This shows possible outcomes $=n(S)=36$
Let A be the event that the sum is 3
Then the favourable outcomes are $(1,2)$ and $(2,1)$, i.e. $n(A)=2$
Now let B the event that the sum is 11
Then the favourable outcomes are $(5,6)$ and $(6,5)$, i.e. $n(B)=2$
Since A and B are mutually exclusive events therefore
Probability $=P(A \cup B)=P(A)+P(B)=\frac{n(A)}{n(S)}+\frac{n(B)}{n(S)}=\frac{2}{36}+\frac{2}{36}=\frac{4}{36}=\frac{1}{9}$

\geq Question \# 6 Do yourself as above

\geq Question \# 7

When two dice are thrown the possible outcomes are
[See the dice table of Question \# 5]
This shows possible outcomes $=n(S)=36$
Since A be the event that the sum of dots is and odd number
Then favourable outcomes are

$$
\begin{aligned}
& (1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6), \\
& (4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5)
\end{aligned}
$$

i.e. favourable outcomes $=n(A)=18$

Sine B is the event that the least one die has 3 dot on it therefore
favourable outcomes are $(1,3),(2,3),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$, $(4,3),(5,3),(6,3)$ i.e. favourable outcomes $=n(B)=11$
Since A and B have common outcome (2, 3), (3, 2), (3, 4), (3, 6), (4, 3), (6, 3) i.e $n(A \cap B)=6$

Now probability $=P(A U B)=P(A)+P(B)-P(A \cap B)$

$$
\begin{aligned}
& =\frac{n(A)}{n(S)}+\frac{n(B)}{n(S)}-\frac{n(A \cap B)}{n(S)} \\
& =\frac{18}{36}+\frac{11}{36}-\frac{6}{36}=\frac{18+11-6}{36}=\frac{23}{36} \quad \text { Answer }
\end{aligned}
$$

Question \# 8

Number of girls $=10, \quad$ Number of boys $=20$
Total number of students $=10+20=30$
Since half of the girls and half of the boys have blue eyes
Therefore students having blue eyes $=5+10=15$
Let A be event that monitor of the class is a student of blue eyes then $n(A)=15$
Now Let B be the event that the monitor of the class is girl then $n(B)=10$
Since 5 girls have blue eyes therefore A and B are not mutually exclusive
Therefore $n(A \cap B)=5$
Now probability $=P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
\begin{aligned}
& =\frac{n(A)}{n(S)}+\frac{n(B)}{n(S)}-\frac{n(A \cap B)}{n(S)} \\
& =\frac{15}{30}+\frac{10}{30}-\frac{5}{30}=\frac{15+10-5}{30}=\frac{20}{30}=\frac{2}{3} \quad \text { Answer }
\end{aligned}
$$

