Question \# I

Total possible outcomes $=n(S)=1$
(i) Suppose A is the event that sweet is orange flavoured.

Since box only contained orange flavoured sweets
So favourable outcomes $=n(A)=1$
Probability $=P(A)=\frac{n(A)}{n(S)}=\frac{1}{1}=1$
(ii) Let B be the event that the sweet is lemon-flavoured.

Since box only contained orange-flavoured sweet
So favourable outcomes $=n(B)=0$
Probability $=P(B)=\frac{n(B)}{n(S)}=\frac{0}{1}=0$

Question \# 2

Since there are three possibilities that Pakistan wins, loses or the match tied.
Therefore possible outcomes $=n(S)=3$
(i) Let A be the event that Pakistan wins

Favourable outcomes $=n(A)=1$
Required probability $=P(A)=\frac{n(A)}{n(S)}=\frac{1}{3}$
(ii) Let B be the event that India does not lose.

If India does not lose then India may win or the match tied
Therefore favourable outcomes $=n(B)=2$
Required probability $=P(B)=\frac{n(B)}{n(S)}=\frac{2}{3}$

Question \# 3

Total number of balls $=5+3=8$
Therefore possible outcomes $=n(S)=8$
(i) Let A be event that the ball is green

Then favourable outcomes $=n(A)=5$
So probability $=P(A)=\frac{n(A)}{n(S)}=\frac{5}{8}$
(ii) Let B be the event that the ball is red

Then favourable outcomes $=n(B)=3$
So probability $=P(A)=\frac{n(B)}{n(S)}=\frac{3}{8}$

Question \# 4

When a fair coin is tossed three times, the possible outcomes are
HHH, HHT, HTH, THH, HTT, THT, TTH, TTT.
So total possible outcomes $=n(S)=8$
(i) Let A be the event that the coin shows one tail then favourable outcomes are HHT, HTH, THH,

$$
\text { i.e. } n(A)=3
$$

So required probability $=P(A)=\frac{n(A)}{n(S)}=\frac{3}{8}$
(ii) Let B be the event that coin shows at least one head then favourable outcomes are HHH, HHT, HTH, THH, HTT, THT, TTH.

$$
\text { i.e. } \quad n(B)=7
$$

So required probability $=P(B)=\frac{n(B)}{n(S)}=\frac{7}{8}$

Queston \# 5

The possible outcomes are that die show $1,2,3,4,5,6$.
So possible outcomes $=n(S)=6$
(i) Let A be the event that die show 3 or 4 .

Then favourable outcomes $=n(A)=2$
So required probability $=P(A)=\frac{n(A)}{n(S)}=\frac{2}{6}=\frac{1}{3}$
(ii) Let B be the event that top of the die show dots less than 5 then

Favourable outcomes $=n(B)=4$
So required probability $=P(B)=\frac{n(B)}{n(S)}=\frac{4}{6}=\frac{2}{3}$

Question \# 6

Since the box contain 5 slips
So possible outcomes $=n(S)=5$
(i) Let A be the event that the number on the slip are prime numbers 2,3 or 5

Then favourable outcomes $=n(A)=3$
So required probability $=P(A)=\frac{n(A)}{n(S)}=\frac{3}{5}$
(ii) Let B be the event that number on the slips are multiple of 3 then

Favourable outcomes $=n(B)=1$
So probability $=P(B)=\frac{n(B)}{n(S)}=\frac{1}{5}$

Question \# 7

When two dice are rolled, the possible outcomes are

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

This show possible outcomes $=n(S)=36$
(i) Let A be the event that the total of two scores is 5 then favourable outcome are

$$
(1,4),(2,3),(3,2),(4,1)
$$

i.e. favourable outcomes $=n(A)=4$

So required probability $=P(A)=\frac{n(A)}{n(S)}=\frac{4}{36}=\frac{1}{9}$
(ii) Let B be the event that the total of two scores is 7 then favourable outcomes are

$$
(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)
$$

i.e. favourable outcomes $=n(B)=6$

So probability $=P(B)=\frac{n(B)}{n(S)}=\frac{6}{36}=\frac{1}{6}$
(iii) Let C be the event that the total of two score is 11 then
favourable outcomes are $(5,6),(6,5)$ i.e. $n(C)=2$
So probability $=P(B)=\frac{n(B)}{n(S)}=\frac{2}{36}=\frac{1}{18}$

Question \# 8

Total number of balls $=40$ i.e. $n(S)=40$
Black balls $=15, \quad$ Green balls $=5, \quad$ Yellow balls $=40-(15+5)=20$
(i) Let A be the event that the ball is black then $n(A)=15$

So required probability $=P(A)=\frac{n(A)}{n(S)}=\frac{15}{40}=\frac{3}{8}$
(ii) Let B denotes the event that the ball is green then $n(B)=5$

So required probability $=P(B)=\frac{n(B)}{n(S)}=\frac{5}{40}=\frac{1}{8}$
Let C denotes the event that the ball is not green then ball is either black or yellow therefore favourable outcomes $=n(C)=15+20=35$
So required probability $=P(C)=\frac{n(C)}{n(S)}=\frac{35}{40}=\frac{7}{8}$

Question \# 9

Number of students $=30$
Then possible outcomes $=n(S)=30$
(i) Now if A be the event that the monitor is the boy then

Favourable outcomes $=n(A)=18$
So probability $=P(A)=\frac{n(A)}{n(S)}=\frac{18}{30}=\frac{3}{5}$
(ii) Now if B be the event that the monitor is the girl then

Favourable outcomes $=n(B)=12$
So probability $=P(B)=\frac{n(B)}{n(S)}=\frac{12}{30}=\frac{2}{5}$

Question \# 10

When the coin is tossed four times the possible outcomes are

HHHT	HHTH	HTHH	THH
HHTT	HTTH	TTHH	THHT
HTTT	TTTH	TTHT	THTT
TTTT	HHHH	THTH	HTHT

$$
\text { i.e. } n(S)=16
$$

(i) Let A be the event that the top shows all head then
favourable outcome is HHHH i.e. $n(A)=1$
Now probability $=P(A)=\frac{n(A)}{n(S)}=\frac{1}{16}$
(ii) Let B be the event that the top shows 2 head and two tails the favourable outcomes are HHTT, HTTH, TTHH, THHT, THTH, HTHT

$$
\text { i.e. } n(B)=6
$$

Now probability $=P(B)=\frac{n(B)}{n(S)}=\frac{6}{16}=\frac{3}{8}$

