Question \# 1 (i)

PAKPATTAN

Number of letters $=n=9$
Number of P's $=p=2$
Number of A's $=q=3$
Number of T's $=r=2$
Thus the number of worlds formed

$$
\begin{aligned}
& =\frac{n!}{p!\cdot q!\cdot r!}=\frac{9!}{2!\cdot 3!\cdot 2!} \\
& =\frac{362880}{(2)(6)(2)}=15120 \quad \text { Answer }
\end{aligned}
$$

(ii) $\&(i i i)$
(iv) ASSASSINATION

D o yourself as above

Number of letters $=n=13$
Number of A's $=p=3$
Number of S's $=q=4$
Number of I's $=r=2$
Number of N's $=s=2$
So the number of words

$$
\begin{aligned}
& =\frac{n!}{p!\cdot q!\cdot r!\cdot s!}=\frac{13!}{3!\cdot 4!\cdot 2!\cdot 2!} \\
& =\frac{6227020800}{(6)(24)(2)(2)}=10810800
\end{aligned}
$$

Question \# 2

If P is the first letter then words are of the form $\mathrm{P} * * * * *$,
Where five $*$ can be replace with $\mathrm{A}, \mathrm{N}, \mathrm{A}, \mathrm{M}, \mathrm{A}$.
So number of letters $=n=5$
Number of A's $=p=3$
So required permutations $=\frac{5!}{3!}=\frac{120}{6}=20$

Question \# 3

If C be the first letter and K is the last letter then words are of the form $\mathrm{C} * * * * * * \mathrm{~K}$. Where each * can be replaced with A,T,T,A,E,D.

So number of letters $=n=6$
Number of A's $=p=2$
Number of T's $=q=2$
So required permutations $=\frac{n!}{p!\cdot q!}=\frac{6!}{2!\cdot 2!}$

$$
=\frac{720}{(2)(2)}=180
$$

Question \# 4

The number greater than 1000000 are of the following forms.

If numbers are of the form $2 * * * * * *$
Where each $*$ can be filled with $0,2,2,3,4,4$
Then number of digits $=n=6$
Number of 2's $=p=2$
Number of 4 ' $s=q=2$

So number formed $=\frac{n!}{p!\cdot q!}=\frac{6!}{2!\cdot 2!}$

$$
=\frac{720}{(2)(2)}=180
$$

Now if numbers are of the form $3 * * * * * *$
Where each $*$ can be filled with $0,2,2,2,4,4$
Then number of digits $=n=6$
Number of 2 ' $\mathrm{s}=p=3$
Number of 4 's $=q=2$

$$
\begin{aligned}
\text { So number formed } & =\frac{n!}{p!\cdot q!}=\frac{6!}{3!\cdot 2!} \\
& =\frac{720}{(6)(2)}=60
\end{aligned}
$$

Now if numbers are of the form $4 * * * * * *$
Where each $*$ can be filled with $0,2,2,2,3,4$
Then number of digits $=n=6$
Number of 2 ' $s=p=3$
So number formed $=\frac{n!}{p!}=\frac{6!}{3!}$

$$
=\frac{720}{6}=120
$$

So required numbers greater than 1000000

$$
\begin{aligned}
& =180+60+120 \\
& =360
\end{aligned}
$$

$\ddot{\mathbf{y}}$ Alternative

(Submitted by Waqas Ahmad - FAZMIC Sargodha - 2004-06)
No. of digits $=7$
No. of 2's $=3$
No. of 4's $=2$
Permutations of 7 digits number $=\frac{7!}{3!\cdot 2!}$

$$
=\frac{5040}{(6)(2)}=420
$$

Number less than 1,000,000 are of the form $0 * * * * * *$,
Where each $*$ can be replaced with $2,2,3,4,4$.
No. of digits $=6$
No. of 2's $=3$
No. of 4's $=2$
So permutations $=\frac{6!}{3!\cdot 2!}=\frac{720}{(6)(2)}=60$
Hence number greater than $1000000=420-60$

$$
=360
$$

Question \# 5

Total number of digits $=n=6$
Number of 2 ' $s=p=2$
Number of 3 ' $s=q=2$
Number of 4's $=r=2$
So number formed by these 6 digits

$$
\begin{aligned}
& =\frac{n!}{p!q!r!}=\frac{6!}{(2!)(2!)(2!)} \\
& =\frac{720}{(2)(2)(2)}=90
\end{aligned}
$$

FSc-I / Ex 7.3-2

Question \# 6

Total members $=n=11$
Members in first committee $=p=3$
Members in second committee $=q=4$
Members in third committee $=r=2$
Members in fourth committee $=s=2$
So required number of committees

$$
\begin{aligned}
& =\frac{n!}{p!\cdot q!\cdot r!\cdot s!}=\frac{11!}{3!\cdot 4!\cdot 2!\cdot 2!} \\
& \quad=\frac{39916800}{(6)(24)(2)(2)}=69300
\end{aligned}
$$

Question \# 7

Number of D.C.O's $=9$
Let D_{1} and D_{2} be the two D.C.O's insisting to sit together so consider them one.
If $D_{1} D_{2}$ sit together then permutations

$$
={ }^{9} P_{9}=362880
$$

If $D_{2} D_{1}$ sit together then permutations

$$
={ }^{9} P_{9}=362880
$$

So total permutations $=362880+362880$

$$
=725760
$$

Question \# 8

Fixing one officer on a particular seat
We have permutations of remaining 11 officers

$$
={ }^{11} P_{11}=39916800
$$

Question \# 9

9 males can be seated on a round table

$$
={ }^{8} P_{8}=40320
$$

And 5 females can be seated on a round table

$$
={ }^{4} P_{4}=24
$$

So permutations of both $=40320+24$

$$
=967680
$$

Question \# 10

If we fix one man round a table
then their permutations $={ }^{4} P_{4}=24$
Now if women sit between the two men
then their permutations $={ }^{5} P_{5}=120$
So total permutations $=24 \times 120=2880$

Question \# 11

Number of keys $=4$
Fixing one key we have permutation $={ }^{3} P_{3}=6$

Since above figures of arrangement are reflections of each other
Therefore permutations $=\frac{1}{2} \times 6=3$

Question \# 12

Number of beads $=6$
Fixing one bead, we have permutation $={ }^{5} P_{5}$

$$
=120
$$

Since above figures of arrangement are reflections of each other
Therefore permutations $=\frac{1}{2} \times 120=60$

These notes are available online at
http:/ / www.mathcity.org/ fsc
Submit error/mistake at
http:/ / www.mathcity.org/ error

Why $0!=1$

We know that

$$
\begin{aligned}
10! & =10 \cdot 9 \cdot 8 \ldots . .3 \cdot 2 \cdot 1 \\
& =10(10-1)(10-2) \ldots . . .3 \cdot 2 \cdot 1
\end{aligned}
$$

And generally we write

$$
n!=n(n-1)(n-2) \ldots .3 \cdot 2 \cdot 1
$$

Similarly we write

$$
(n-1)!=(n-1)(n-2) \ldots .3 \cdot 2 \cdot 1
$$

So we can write

$$
\begin{aligned}
& \quad n!=n(n-1)! \\
& \Rightarrow \quad \frac{n!}{n}=(n-1)!\quad \div \text { ing by } n \\
& \text { i.e. }(n-1)!=\frac{n!}{n}
\end{aligned}
$$

Putting $n=1$ in above

$$
\begin{aligned}
& (1-1)!=\frac{1!}{1} \\
& \Rightarrow \quad 0!=1 \quad \text { Proved }
\end{aligned}
$$

