Question \# I (i)

$$
{ }^{20} P_{3}=\frac{20!}{(20-3)!}=\frac{20!}{17!}=\frac{20 \cdot 19 \cdot 18 \cdot 17!}{17!}=20 \cdot 19 \cdot 18=6840
$$

$$
\begin{gather*}
{ }^{16} P_{4}=\frac{16!}{(16-4)!}=\frac{16!}{12!}=\frac{16 \cdot 15 \cdot 14 \cdot 13 \cdot 12!}{12!}=16 \cdot 15 \cdot 14 \cdot 13=43680 \tag{ii}\\
\text { Others do yourself }
\end{gather*}
$$

Question \# 2 (i)

$$
\begin{aligned}
{ }^{n} P_{2}=30 & \Rightarrow \frac{n!}{(n-2)!}=30 \\
\Rightarrow n(n-1)=30 & \Rightarrow n(n-1)=6 \cdot 5
\end{aligned}
$$

(ii)

$$
\begin{aligned}
{ }^{11} P_{n}=11 \cdot 10 \cdot 9 & \Rightarrow \frac{11 \cdot 10 \cdot 9 \cdot 8!}{(11-n)!}=11 \cdot 10 \cdot 9 \\
\Rightarrow & \frac{8!}{(11-n)!}=1
\end{aligned} \quad \Rightarrow 8!=(11-n)!\Rightarrow 8=11-n \Rightarrow n=11-8 \Rightarrow n=3
$$

(iii)

$$
\begin{aligned}
& { }^{n} P_{4}:{ }^{n-1} P_{3}=9: 1 \quad \Rightarrow \frac{{ }^{n} P_{4}}{{ }^{n-1} P_{3}}=\frac{9}{1} \Rightarrow{ }^{n} P_{4}={ }^{n-1} P_{3} \\
& \Rightarrow \frac{n!}{(n-4)!}=9 \frac{(n-1)!}{(n-1-3)!} \Rightarrow \frac{n(n-1)!}{(n-4)!}=9 \frac{(n-1)!}{(n-4)!} \Rightarrow n=9
\end{aligned}
$$

Question \# 3 (i)

$$
\text { R.H.S }=n \cdot{ }^{n-1} P_{r-1}=n \cdot \frac{(n-1)!}{(n-1-(r-1))}=\frac{n(n-1)!}{(n-1-r+1)}=\frac{n!}{(n-r)}={ }^{n} P_{r}=\text { L.H.S }
$$

$$
\begin{align*}
\text { R.H.S } & ={ }^{n-1} P_{r}+r \cdot{ }^{n-1} P_{r-1}=\frac{(n-1)!}{(n-1-r)!}+r \cdot \frac{(n-1)!}{(n-1-r+1)!} \tag{ii}\\
& =\frac{(n-1)!}{(n-r-1)!}+r \cdot \frac{(n-1)!}{(n-r)!} \quad=\frac{(n-1)!}{(n-r-1)!}+r \cdot \frac{(n-1)!}{(n-r)(n-r-1)!} \\
& =\frac{(n-1)!}{(n-r-1)!}\left(1+r \cdot \frac{1}{(n-r)}\right)=\frac{(n-1)!}{(n-r-1)!}\left(\frac{n-r+r}{(n-r)}\right) \\
& =\frac{(n-1)!}{(n-r-1)!}\left(\frac{n}{(n-r)}\right) \quad=\frac{n(n-1)!}{(n-r)(n-r-1)!} \\
& =\frac{n!}{(n-r)!}={ }^{n} P_{r}=\text { L.H.S }
\end{align*}
$$

Question \# 4

Total number of flags $=n=6$
Number of signal using one flag $={ }^{6} P_{1}=6$
Number of signal using two flag $={ }^{6} P_{2}=30$
Number of signal using three flag $={ }^{6} P_{3}=120$

Number of signal using four flag $={ }^{6} P_{4}=360$
Number of signal using five flag $={ }^{6} P_{5}=720$
Number of signal using six flag $={ }^{6} P_{6}=720$
Total number of signals $=6+30+120+360+720+720=1956$

Question \# 6 (i)

Since number of letters in PLANE $=n=5$
Therefore total words form $={ }^{5} P_{5}=120$
(ii)

Since number of letters in OBJECT $=n=6$
Therefore total words forms $={ }^{6} P_{6}=720$
(iii)

Since number of letters in FASTING $=n=7$
Therefore total words forms $={ }^{7} P_{7}=5040$

Question \# 7

Number of digits $=n=5$
So numbers forms taken 3 digits at a time $={ }^{5} P_{3}=60$

Question \# 8

Number greater than 23000 can be formed as
Number of numbers of the form $23 * * *={ }^{3} P_{3}=6$
Number of numbers of the form $25 * * *={ }^{3} P_{3}=6$
Number of numbers of the form $26 * * *={ }^{3} P_{3}=6$
Number of numbers of the form $3 * * * *={ }^{4} P_{4}=24$
Number of numbers of the form $5 * * * *={ }^{4} P_{4}=24$
Number of numbers of the form $6 * * * *={ }^{4} P_{4}=24$
Thus the total number formed $=6+6+6+24+24+24=90$

- Alternative (Submitted by Waqas Ahmad - FAZMIC Sargodha - 2004-06)

Permutation of 5 digits numbers $={ }^{5} P_{5}=120$
Numbers less than 23000 are of the form $1 * * * *$
Then permutations $={ }^{4} P_{4}=24$
If number less than 23000 are of the form $21 * * *$
Then permutations $={ }^{3} P_{3}=6$
Thus number greater than 23000 formed $=120-24-6=90$

Question \# 9

Total number of digits $=5$
(i) If we take 28 as a single digit then number of numbers $={ }^{4} P_{4}=24$

If we take 82 as a single digit then number of numbers $={ }^{4} P_{4}=24$
So the total numbers when 2 and 8 are next to each other $=24+24=48$
(ii) Number of total permutation $={ }^{5} P_{5}=120$
thus number of numbers when 2 and 8 are not next to each other $=120-48=72$

Question \# 10

Since number of permutation of 6 digits $={ }^{6} P_{6}=720$
But 0 at extreme left is meaning less
so number of permutation when 0 is at extreme left $={ }^{5} P_{5}=120$

Thus the number formed by 6 digits $=720-120=600$
Now if we fix 0 at ten place then number formed $={ }^{5} P_{5}=120$

Question \# 11

Number of digits $=5$
For multiple of 5 we must have 5 at extreme right so number formes $={ }^{4} P_{4}=24$

Question \# 12

Total numbers of books $=8$
Total number of permutation $={ }^{8} P_{8}=40320$
Let E_{1} and E_{2} denotes two English books then
Number of permutation when $E_{1} E_{2}$ place together $={ }^{7} P_{7}=5040$
Number of permutation when $E_{2} E_{1}$ place together $={ }^{7} P_{7}=5040$
So total permutation when E_{1} and E_{2} together $=5040+5040=10080$
Required permutation when English books are not together $=40320-10080$

$$
=30240
$$

Question \# 13

Let E_{1}, E_{2}, E_{3} be the book on English and $U_{1}, U_{2}, U_{3}, U_{4}, U_{5}$ be the book on Urdu Then the permutation when
books are arranged as $E_{1}, E_{2}, E_{3}, U_{1}, U_{2}, U_{3}, U_{4}, U_{5}={ }^{3} P_{3} \times{ }^{5} P_{5}=6 \times 120=720$
books are arranged as $U_{1}, U_{2}, U_{3}, U_{4}, U_{5}, E_{1}, E_{2}, E_{3}={ }^{5} P_{5} \times{ }^{3} P_{3}=120 \times 6=720$
so total permutation when books of same subject are together $=720+720$

$$
=1440
$$

Question \# 14

Let the five boys be $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ and the four girls are $G_{1}, G_{2}, G_{3}, G_{4}$ then there seats plane is $B_{1}, G_{1}, B_{2}, G_{2}, B_{3}, G_{3}, B_{4}, G_{4}, B_{5}$

Then the permutations $={ }^{5} P_{1} \times{ }^{4} P_{1} \times{ }^{4} P_{1} \times{ }^{3} P_{1} \times{ }^{3} P_{1} \times{ }^{2} P_{1} \times{ }^{2} P_{1} \times{ }^{1} P_{1} \times{ }^{1} P_{1}$

$$
=5 \times 4 \times 4 \times 3 \times 3 \times 2 \times 2 \times 1 \times 1=2880
$$

Book: Exercise 7.2
 Text Book of Algebra and Trigonometry Class XI Punjab Textbook Board, Lahore.

Made by: Atiq ur Rehman (Atiq@MathCity.org)
Available online at http://www.MathCity.org in PDF Format
(Picture format to view online).
Page setup used: Legal ($8^{\prime \prime} 1 / 2 \times 14^{\prime \prime}$).
Printed: April 21, 2014.

