Exercise 6.3 (Solutions)

Merging man and maths

mathcity.org

TEXTBOOK OF ALGEBRA AND TRIGONOMETRY FOR CLASS XI Available online @ http://www.mathcity.org, Version: 1.0.0

Question # 1 (i) $3\sqrt{5}$ and $5\sqrt{5}$			
Here $a = 3\sqrt{5}$ and $b = 5\sqrt{5}$, so			
A.M. $= \frac{a+b}{2} = \frac{3\sqrt{5}+5\sqrt{5}}{2} = \frac{8\sqrt{5}}{2} = 4\sqrt{5}$			
(ii) Same as (i) and (ii)			
(iii) $1 - x + x^2$ and $1 + x + x^2$			
Here $a = 1 - x + x^2$ and $b = 1 + x + x^2$			
A.M. $= \frac{a+b}{2} = \frac{1-x+x^2+1+x+x^2}{2} = \frac{2+2x^2}{2} = 1+x^2$			

Question # 2 Since 5, 8 are two A.Ms between *a* and *b*.

Therefore a, 5, 8, b are in A.P. Here $a_1 = a$ and d = 8 - 5 = 3Now $a_2 = a_1 + d \implies 5 = a + 3 \implies 5 - 3 = a \implies \boxed{a = 2}$ Also $a_4 = a_1 + 3d \implies b = 2 + 3(3) \implies \boxed{b = 11}$

Question # 3 Let A_1, A_2, A_3, A_4, A_5 and A_6 are six A.Ms between 2 and 5.

Then 2,
$$A_1$$
, A_2 , A_3 , A_4 , A_5 , A_6 , 5 are in A.P.
Here $a_1 = 2$ and $a_8 = 5$
 $\Rightarrow a_1 + 7d = 5 \Rightarrow 2 + 7d = 5$
 $\Rightarrow 7d = 5 - 2 \Rightarrow 7d = 3 \Rightarrow d = \frac{3}{7}$
So $A_1 = a_2 = a_1 + d = 2 + \frac{3}{7} = \frac{17}{7}$
 $A_2 = a_3 = a_1 + 2d = 2 + 2\left(\frac{3}{7}\right) = 2 + \frac{6}{7} = \frac{20}{7}$
 $A_3 = a_4 = a_1 + 3d = 2 + 3\left(\frac{3}{7}\right) = 2 + \frac{9}{7} = \frac{23}{7}$
 $A_4 = a_5 = a_1 + 4d = 2 + 4\left(\frac{3}{7}\right) = 2 + \frac{12}{7} = \frac{26}{7}$
 $A_5 = a_6 = a_1 + 5d = 2 + 5\left(\frac{3}{7}\right) = 2 + \frac{15}{7} = \frac{29}{7}$
 $A_6 = a_7 = a_1 + 6d = 2 + 6\left(\frac{3}{7}\right) = 2 + \frac{18}{7} = \frac{32}{7}$
Hence $\frac{17}{7}$, $\frac{20}{7}$, $\frac{23}{7}$, $\frac{26}{7}$, $\frac{29}{7}$, $\frac{32}{7}$ are six A.Ms between 2 and 5.

Question # 4 Suppose A_1 , A_2 , A_3 and A_4 are four A.Ms between $\sqrt{2}$ and $\frac{12}{\sqrt{2}}$.

Then
$$\sqrt{2}$$
, A_1 , A_2 , A_3 , A_4 , $\frac{12}{\sqrt{2}}$ are in A.P.
Here $a_1 = \sqrt{2}$ and $a_6 = \frac{12}{\sqrt{2}}$
 $\Rightarrow a_1 + 5d = \frac{12}{\sqrt{2}} \Rightarrow \sqrt{2} + 5d = \frac{12}{\sqrt{2}} \Rightarrow 5d = \frac{12}{\sqrt{2}} - \sqrt{2}$

$$\Rightarrow 5d = \frac{12-2}{\sqrt{2}} \Rightarrow 5d = \frac{10}{\sqrt{2}} \Rightarrow d = \frac{2}{\sqrt{2}} = \frac{\left(\sqrt{2}\right)^2}{\sqrt{2}} \Rightarrow d = \sqrt{2}$$

Now $A_1 = a_2 = a_1 + d = \sqrt{2} + \sqrt{2} = 2\sqrt{2}$
 $A_2 = a_3 = a_1 + 2d = \sqrt{2} + 2\sqrt{2} = 3\sqrt{2}$
 $A_3 = a_4 = a_1 + 3d = \sqrt{2} + 3\sqrt{2} = 4\sqrt{2}$
 $A_4 = a_5 = a_1 + 4d = \sqrt{2} + 4\sqrt{2} = 5\sqrt{2}$
Hence $2\sqrt{2}$, $3\sqrt{2}$, $4\sqrt{2}$, $5\sqrt{2}$ are four A.Ms between $\sqrt{2}$ and $\frac{12}{\sqrt{2}}$.

Question # 5 & 6 Same as Question # 3 & 4.

Question # 7

Since we kno	we that A.M. $= \frac{a+b}{2} \dots \dots$)	
But we have	given A.M. $= \frac{a^n + b^n}{a^{n-1} + b^{n-1}} \dots$	\cdots (ii)	
Comparing (i)	and (<i>ii</i>)		
	$a^n + b^n$ $a + b$		
	$\frac{a^n + b^n}{a^{n-1} + b^{n-1}} = \frac{a+b}{2}$		
\Rightarrow	$2(a^{n} + b^{n}) = (a + b)(a^{n-1} + b^{n-1})$		Cross \times ing
\Rightarrow	$2a^{n} + 2b^{n} = a^{n} + a^{n-1}b + ab^{n-1} + b^{n}$		
\Rightarrow	$2a^{n} + 2b^{n} - a^{n} - b^{n} = a^{n-1}b + ab^{n-1}$	l	
\Rightarrow	$a^{n} + b^{n} = a^{n-1}b + ab^{n-1}$		
\Rightarrow	$a^{n} - a^{n-1}b = ab^{n-1} - b^{n}$		
\Rightarrow	$a^{n-1+1} - a^{n-1}b = ab^{n-1} - b^{n-1+1}$		$\because n = n - 1 + 1$
\Rightarrow	$a^{n-1}(a-b) = b^{n-1}(a-b)$		
\Rightarrow	$a^{n-1} = b^{n-1}$		
\Rightarrow	$\frac{a^{n-1}}{b^{n-1}} = 1$		
\Rightarrow	$\left(\frac{a}{b}\right)^{n-1} = \left(\frac{a}{b}\right)^0 \qquad \qquad \because \left($	$\left(\frac{a}{b}\right)^0 = 1$	
\Rightarrow	$n-1=0 \implies n=1$	~ ~	

Made by: Atiq ur Rehman, Email: atiq@mathcity.org, URL: http://www.mathcity.org

The End