mathcity.org
Merging man and maths

Question \# 1 (i) $3 \sqrt{5}$ and $5 \sqrt{5}$
Here $a=3 \sqrt{5}$ and $b=5 \sqrt{5}$, so

$$
\text { A.M. }=\frac{a+b}{2}=\frac{3 \sqrt{5}+5 \sqrt{5}}{2}=\frac{8 \sqrt{5}}{2}=4 \sqrt{5}
$$

(ii) Same as (i) and (ii)
(iii) $1-x+x^{2}$ and $1+x+x^{2}$

Here $a=1-x+x^{2}$ and $b=1+x+x^{2}$

$$
\text { A.M. }=\frac{a+b}{2}=\frac{1-x+x^{2}+1+x+x^{2}}{2}=\frac{2+2 x^{2}}{2}=1+x^{2}
$$

Question \#2 Since 5, 8 are two A.Ms between a and b.
Therefore $a, 5,8, b$ are in A.P.
Here $a_{1}=a$ and $d=8-5=3$
Now $a_{2}=a_{1}+d \Rightarrow 5=a+3 \Rightarrow 5-3=a \Rightarrow a=2$
Also $a_{4}=a_{1}+3 d \Rightarrow b=2+3(3) \Rightarrow b=11$

Question \#3 Let $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ and A_{6} are six A.Ms between 2 and 5 .
Then $2, A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, 5$ are in A.P.
Here $a_{1}=2$ and $a_{8}=5$

$$
\begin{aligned}
& \Rightarrow a_{1}+7 d=5 \Rightarrow 2+7 d=5 \\
& \Rightarrow 7 d=5-2 \Rightarrow 7 d=3 \Rightarrow d=3 / 7
\end{aligned}
$$

So $A_{1}=a_{2}=a_{1}+d=2+3 / 7=17 / 7$

$$
\begin{aligned}
& A_{2}=a_{3}=a_{1}+2 d=2+2(3 / 7)=2+6 / 7=20 / 7 \\
& A_{3}=a_{4}=a_{1}+3 d=2+3(3 / 7)=2+9 / 7=23 / 7 \\
& A_{4}=a_{5}=a_{1}+4 d=2+4(3 / 7)=2+12 / 7=26 / 7 \\
& A_{5}=a_{6}=a_{1}+5 d=2+5(3 / 7)=2+15 / 7=29 / 7 \\
& A_{6}=a_{7}=a_{1}+6 d=2+6(3 / 7)=2+18 / 7=32 / 7
\end{aligned}
$$

Hence $\frac{17}{7}, \frac{20}{7}, \frac{23}{7}, \frac{26}{7}, \frac{29}{7}, \frac{32}{7}$ are six A.Ms between 2 and 5 .
Question \#4 Suppose A_{1}, A_{2}, A_{3} and A_{4} are four A.Ms between $\sqrt{2}$ and $\frac{12}{\sqrt{2}}$.
Then $\sqrt{2}, A_{1}, A_{2}, A_{3}, A_{4}, \frac{12}{\sqrt{2}}$ are in A.P.
Here $a_{1}=\sqrt{2}$ and $a_{6}=\frac{12}{\sqrt{2}}$

$$
\Rightarrow a_{1}+5 d=\frac{12}{\sqrt{2}} \Rightarrow \sqrt{2}+5 d=\frac{12}{\sqrt{2}} \Rightarrow 5 d=\frac{12}{\sqrt{2}}-\sqrt{2}
$$

FSC-I / Ex 6.3-2

$$
\Rightarrow 5 d=\frac{12-2}{\sqrt{2}} \Rightarrow 5 d=\frac{10}{\sqrt{2}} \Rightarrow d=\frac{2}{\sqrt{2}}=\frac{(\sqrt{2})^{2}}{\sqrt{2}} \Rightarrow d=\sqrt{2}
$$

Now $A_{1}=a_{2}=a_{1}+d=\sqrt{2}+\sqrt{2}=2 \sqrt{2}$
$A_{2}=a_{3}=a_{1}+2 d=\sqrt{2}+2 \sqrt{2}=3 \sqrt{2}$
$A_{3}=a_{4}=a_{1}+3 d=\sqrt{2}+3 \sqrt{2}=4 \sqrt{2}$
$A_{4}=a_{5}=a_{1}+4 d=\sqrt{2}+4 \sqrt{2}=5 \sqrt{2}$
Hence $2 \sqrt{2}, 3 \sqrt{2}, 4 \sqrt{2}, 5 \sqrt{2}$ are four A.Ms between $\sqrt{2}$ and $\frac{12}{\sqrt{2}}$.
Question \# 5 \& $6 \quad$ Same as Question \# 3 \& 4.

Question \# 7

Since we know that A.M. $=\frac{a+b}{2}$
But we have given A.M. $=\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$.
Comparing (i) and (ii)

$$
\begin{aligned}
& \frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}=\frac{a+b}{2} \\
\Rightarrow & 2\left(a^{n}+b^{n}\right)=(a+b)\left(a^{n-1}+b^{n-1}\right) \\
\Rightarrow & 2 a^{n}+2 b^{n}=a^{n}+a^{n-1} b+a b^{n-1}+b^{n} \\
\Rightarrow & 2 a^{n}+2 b^{n}-a^{n}-b^{n}=a^{n-1} b+a b^{n-1} \\
\Rightarrow & a^{n}+b^{n}=a^{n-1} b+a b^{n-1} \\
\Rightarrow & a^{n}-a^{n-1} b=a b^{n-1}-b^{n} \\
\Rightarrow & a^{n-1+1}-a^{n-1} b=a b^{n-1}-b^{n-1+1} \\
\Rightarrow & a^{n-1}(a-b)=b^{n-1}(a-b) \\
\Rightarrow & a^{n-1}=b^{n-1} \\
\Rightarrow & \frac{a^{n-1}}{b^{n-1}}=1 \\
\Rightarrow & \left(\frac{a}{b}\right)^{n-1}=\left(\frac{a}{b}\right)^{0} \quad \because n=n-1+1 \\
\Rightarrow & n-1=0 \Rightarrow\left(\frac{a}{b}\right)^{0}=1 \\
& n=1
\end{aligned}
$$

The End

