Merging man and maths

Textbook of Algebra and Trigonometry for Class XI Available online @ http://www.mathcity.org, Version: 1.0.0

Question \# I (i) $a_{n}=2 n-3$
Put $n=1$

$$
a_{1}=2(1)-3 \quad \Rightarrow \quad a_{1}=2-3=-1
$$

Put $n=2$

$$
a_{2}=2(2)-3 \quad \Rightarrow \quad a_{2}=4-3=1
$$

Put $n=3$

$$
a_{3}=2(3)-3 \quad \Rightarrow \quad a_{3}=6-3=3
$$

Put $n=4$

$$
a_{4}=2(4)-3 \quad \Rightarrow \quad a_{4}=8-3=5
$$

Hence $-1,1,3,5$ are the first four term of the sequence.
(ii)

$$
a_{n}=(-1)^{n} n^{2}
$$

Put $n=1$

$$
a_{1}=(-1)^{1}(1)^{2} \quad \Rightarrow a_{1}=(-1)(1)=-1
$$

Put $n=2$

$$
a_{2}=(-1)^{2}(2)^{2} \quad \Rightarrow \quad a_{2}=(1)(4)=4
$$

Put $n=3$

$$
a_{3}=(-1)^{3}(3)^{2} \quad \Rightarrow a_{3}=(-1)(9)=-9
$$

Put $n=4$

$$
a_{4}=(-1)^{4}(4)^{2} \quad \Rightarrow a_{4}=(1)(16)=16
$$

Hence $-1,4,-9,16$ are the first four terms of the sequence.
(iii), (iv), (v) and (vi) Do yourself as above.
(vii) $\quad a_{n}-a_{n-1}=n+2, \quad a_{1}=2$

Put $n=2$

$$
a_{2}-a_{2-1}=2+2 \Rightarrow a_{2}-a_{1}=4 \quad \Rightarrow a_{2}=4+a_{1}=4+2=6 \quad \because a_{1}=2
$$

Put $n=3$

$$
a_{3}-a_{3-1}=3+2 \Rightarrow a_{3}-a_{2}=5 \Rightarrow a_{3}=5+a_{2}=5+6=11 \quad \because a_{2}=6
$$

Put $n=4$

$$
a_{4}-a_{4-1}=4+2 \Rightarrow a_{4}-a_{3}=6 \Rightarrow a_{4}=6+a_{3}=6+11=17 \quad \because a_{3}=11
$$

Hence $2,6,11,17$ are the first four terms of the sequence.
(viii)

$$
a_{n}=n a_{n-1}, \quad a_{1}=1
$$

Put $n=2$

$$
a_{2}=(2) a_{2-1} \Rightarrow a_{2}=2 a_{1}=2(1)=2 \quad \because a_{1}=1
$$

Put $n=3$

$$
a_{3}=(3) a_{3-1} \Rightarrow a_{3}=3 a_{2}=3(2)=6 \quad \because a_{2}=2
$$

Put $n=4$

$$
a_{4}=(4) a_{4-1} \Rightarrow a_{4}=4 a_{3}=4(6)=24 \quad \because a_{3}=6
$$

Hence $1,2,6,24$ are the first four terms of the sequence.
(ix) Same as above
(x) $a_{n}=\frac{1}{a+(n-1) d}$

Put $n=1$

$$
a_{1}=\frac{1}{a+(1-1) d} \Rightarrow a_{1}=\frac{1}{a+(0) d}=\frac{1}{a+0}=\frac{1}{a}
$$

Put $n=2$

$$
a_{2}=\frac{1}{a+(2-1) d} \Rightarrow a_{2}=\frac{1}{a+(1) d}=\frac{1}{a+d}
$$

Put $n=3$

$$
a_{3}=\frac{1}{a+(3-1) d} \quad \Rightarrow a_{3}=\frac{1}{a+(2) d}=\frac{1}{a+2 d}
$$

Put $n=4$

$$
\begin{aligned}
a_{4}= & \frac{1}{a+(4-1) d} \Rightarrow a_{4}=\frac{1}{a+(3) d}=\frac{1}{a+3 d} \\
& \text { Hence } \frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2 d}, \frac{1}{a+3 d} \text { are the first four terms of the sequence. }
\end{aligned}
$$

Question \# 2 (i) $2,6,11,17, \ldots \ldots \ldots \ldots . . a_{7}$
We see that the successive difference of the given terms are 4, 5, 6 and conclude that sequence of the differences is $4,5,6,7,8,9$, \qquad
So $a_{5}=17+7=24, a_{6}=24+8=32$ and $a_{7}=32+9=41$
Thus the required term is $a_{7}=41$
(ii)
$1,3,12,60, \ldots \ldots \ldots \ldots \ldots . a_{6}$
We see that the successive multiplying factor are $3,4,5$ and conclude that the sequence of multiplying factors is $3,4,5,6,7,8,9$. \qquad
So $a_{5}=60 \times 6=360, a_{6}=360 \times 7=2520$
Thus the required term is $a_{6}=2520$
(iii)

$$
1, \frac{3}{2}, \frac{5}{4}, \frac{7}{8}, \ldots \ldots \ldots \ldots . a_{7}
$$

The successive terms in numerator are $1,3,5,7, \ldots \ldots \ldots \ldots$. which are the consecutive odd numbers and next terms are 9, 11, 13.

And the successive terms in denominators are 1, 2, 4, 8, \qquad with common ratio 2 , so the next terms are $16,32,64$.
(iv) Thus the required term is $a_{7}=\frac{13}{64}$

$$
1,1,-3,5,-7,9, \ldots \ldots \ldots \ldots \ldots \ldots a_{8}
$$

*Correction
We see that the common difference of odd terms is -4 , so $a_{7}=-7+(-4)=-11$
And the common difference of even terms is 4 , so $a_{8}=9+4=13$
Thus the required term is $a_{8}=13$
(v)

$$
1,-3,5,-7,9,-11, \ldots \ldots \ldots \ldots \ldots . . a_{8}
$$

We see that the common difference of odd terms is 4 , so $a_{7}=9+4=13$.
And the common difference of the even terms is -4 , so $a_{8}=-11+(-4)=-15$
Thus the required term is $a_{8}=-15$
Question \# 3 (i) 7,9,12,16,
We see that the sequence of the successive difference is $2,3,4$, so the next two differences are 5 and 6.

Thus the next two terms are $16+5=21$ and $21+6=27$.
(ii)
$1,3,7,15,31$, \qquad
We see that the sequence of the successive difference is $2,4,8,16$, \qquad so the next two differences are 32 and 64.

Thus the next two terms of the sequence are $31+32=63$ and $63+64=127$.
(iii)
$-1,2,12,40$, \qquad
The sequence of the above terms can be written as

$$
-1 \times 1,1 \times 2,3 \times 4,5 \times 8
$$

\qquad
So the next two terms are $7 \times 16=112$ and $9 \times 32=288$.
(iv) $1,-3,5,-7,9,-11$,

We see that the common difference of odd terms is 4 , so $a_{7}=9+4=13$.
And the common difference of the even terms is -4 , so $a_{8}=-11+(-4)=-15$
Thus the next two terms are 13 and -15 .
Made By Atiq ur Rehman (atiq@mathcity.org). http://www.mathcity.org

