MathCity.org

Merging man and maths

MGQs - Gk # 4: F.Sc Part 1

TEXT BOOK OF ALGEBRA AND TRIGONOMETRY CLASS XI

Available online at http://www.mathcity.org, Version: 1.0.0

Equations

- An equation of the form $ax^2 + bx + c = 0$ is 1) called
 - A) Quadratic
 - B) Cubic
 - C) Bi-quadratic
 - D) Linear
- In the quadratic equation $ax^2 + bx c = 0$ 2) the sum of roots is
 - A) -b/c
 - B) b/a
 - C) c/a
 - D) a/c
- In the quadratic equation $ax^2 bx + c = 0$ 3) the product of roots is
 - A) c/a
 - B) b/a
 - C) a/c
 - D) c/a
- The sum of cube roots of unity is 4)
 - A) 3
 - B) 2
 - C) 1
 - D) 0
- The roots of a quadratic equation $ax^2 + bx$ 5) + c = 0 are

$$A) \frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$$

B)
$$\frac{2a}{2a}$$
C)
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2}$$
D)
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$C) \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$$

$$D) \frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$$

- 6) The product of cube root of unity is
 - A) 3
 - B) 2
 - C) 1
 - D) 0
- The number of real roots in cube roots of 7) unity are
 - A) 3
 - B) 2
 - C) 1
 - D) 0
- 8) The roots of quadratic equation $ax^2 bx c =$ 0 are real if
 - A) $b^2 + 4ac \le 0$
 - B) $b^2 4ac < 0$
 - C) $b^2 + 4ac \ge 0$
 - D) $b^2 4ac = 0$
- 9) The roots of quadratic equation $ax^2 + bx c =$ 0 are equal if
 - A) $b^2 4ac < 0$
 - B) $b^2 + 4ac \ge 0$
 - C) $b^2 + 4ac = 0$
 - D) $b^2 4ac = 0$
- The roots of quadratic equation $ax^2 bx bx$ 10) c = 0 are imaginary if
 - A) $b^2 + 4ac < 0$
 - B) $b^2 4ac \ge 0$
 - C) $b^2 + 4ac = 0$
 - D) $b^2 4ac = 0$
- If 4 & 5 are the roots, then quadratic 11) equation will be
 - A) $x^2 x 20 = 0$ B) $x^2 x + 20 = 0$

C)
$$x^2 + x - 20 = 0$$

D) $x^2 + x + 20 = 0$

D)
$$x^2 + x + 20 = 0$$

- The value of ω^{12} is 12)
 - A) 1
 - B) ω
 - C) ω^2
 - D) 0
- The square of a number when added to the 13) number results in 6 then the number is
 - A) 2
 - B) -2
 - C) -3
 - D) Both A & C
- The sum of roots of $3x^2 4x + 7 = 0$ is 14)
 - A) 4/3
 - B) 7/3
 - C) -7/3
 - D) -4/3
- The product of roots of $3x^2 + 5x 2 = 0$ is 15)
 - A) 5/3
 - B) 3/5
 - C) -2/5
 - D) -2/3
- If $3^{1+x} + 5.3^x 8 = 0$, then x =16)
 - A) 8
 - B) 5
 - C) 3
 - D) 0
- If $\sqrt{2x+1} + \sqrt{x} = 5$ then x =17)
 - A) 5
 - B) 4
 - C) 3
 - D) 2
- If $\sqrt{5x-1} \sqrt{2x} = 1$ then x =18)
 - A) 3
 - B) 2
 - C) 1
 - D) 5

- 19) If $\frac{\sqrt{2x+1} \sqrt{x}}{\sqrt{2x+1} + \sqrt{x}} = \frac{1}{5}$, then x =
 - A) 1
 - B) 2
 - C) 3
 - D) 4
- If one root of quadratic equation is 4 + 5i, 20) then equation
 - A) $x^2 8x + 41 = 0$

 - B) $x^2 + 8x + 41 = 0$ C) $x^2 41x + 8 = 0$
 - D) $x^2 41x 8 = 0$
- In the quadratic equation $x^2 9 = 0$, the 21) sum of the root is
 - A) 9
 - B) -9
 - C) 1/9
 - D) 0
- In the quadratic equation $3x^2 5x = 0$, the 22) product of root is
 - A) 5/3
 - B) -5/3
 - C) 0
 - D) 3/5
- The roots of quadratic equation $x^2 4x = 0$ 23) are
 - A) Imaginary
 - B) Rational & Different
 - C) Irrational
 - D) Rational & Equal
- Ifω, $ω^2$ are complex cube roots of unity 24) Then $\omega + \omega^2 =$
 - A) 1
 - B) -1
 - C) 0
 - D) none of these

- 25) If ω , ω^2 are complex cube roots of unity then ω^2 =
 - A) $1/\omega$
 - B) -ω
 - C) $-1/\omega$
 - D) none of these
- 26) $\left(\frac{-1+\sqrt{-3}}{2}\right)^4 + \left(\frac{-1-\sqrt{-3}}{2}\right)^4 =$
 - A) 0
 - B) 1
 - C) -1
 - D) 4
- 27) If ω and ω^2 are cube roots of unity then $(1 \omega \omega^2)^5 =$
 - A) 0
 - B) 1
 - C) 32
 - D) None of these

- 28) If the area of a rectangle is 56 & the length is one more than the breadth then the dimensions are
 - A) -8, -7
 - B) 8, 7
 - C) 14, 4
 - D) 28, 2
- 29) The sides of a right angle triangle are 2x + 1, 2x, 2x 1, then x is
 - A) -1
 - B) ½
 - C) -2
 - D) 2
- 30) If one root of $4x^2 + 7hx h^2 + 9 = 0$ is zero then h =
 - A) 0
 - B) 3
 - C) -3
 - D) ± 3

Written by NAUMAN IDREES (nomi255@yahoo.com) FSc (Session: 2007-09)

ICMS College System Hayatabad, Peshawar