CHAPTER #7

PLANE CURVES IL

Shahid Javed

Ammples

Def. An asymptote is a straight line for a given curve C.

9 the distance between I and C lands to 0 as
infinite distance is moved along I.

e.g.

C:
$$xy = 1$$

$$y = \frac{1}{x}$$

As a -> os , y -> o

y=0 is an asymptote for curve C. Like wise for $x=\frac{1}{y}$ As $y \rightarrow \infty$, $x \rightarrow 0$

x=0 is also an asymptote.

The graph of the asymptote is as shown.

x 1 2 3 --- 1/2 1/3 1/4 --- ... Y 1 1/2 1/3 --- 2 3 4 --- ...

Types of Asymptotis There are three lipes of asymptotis.

- 1) Horizontal asymptote
- 2) Vertical asymptote
- 3) Inclined asymptotic

No. of Asymptotes.

the number of asymptotes is less than or equal to the degree of the

than or equal to the degree of the given equation.

How to Find the Asymptote. Assange the given equation in descending powers of x and y like, anx+any+any+any+any++....+y+-....+x+y+x+y+1=0 For Morizontal asymptote Equale the Coefficient of heighest power of x to zero if any. For Vertical Asymptote Equale the G-efficient of heighest power of y to zero if any. Inclined Asymptote Equation of inclined asymptote is y=mx+C

put x=1, y=m in the heighest degree terms and equalet

 $i \cdot e \neq (m) = 0$ => $m = m_1 , m_2 , m_3 - - ... m_n$

Value of C

 $G = -\frac{\beta_{n-1}(m)}{\beta_n'(m)}$

Value of C in the pressence of two equal Values of m.

By Putting the values of m in the below
formula we will get the values of C.

 $\frac{c^{2}}{2!} \phi_{n}(m) + \frac{c}{2!} \phi_{n-1}(m) + \phi_{n-2}(m) = 0$

For three equal values of m.

We will use this formula for three equal values of m ad get the values of C.

 $\frac{c^{3}}{3!} \oint_{n}^{H} (m) + \frac{c^{2}}{2!} \oint_{n-1}^{H} (m) + \frac{c}{1!} \oint_{n-2}^{H} (m) + \oint_{n-3}^{H} (m) = 0$

Asymptotes of Polar Curves:

Let r = f(0) be curve.

Put r = os in the equation of the curve and find the value of oSay o = d, g, s, ...

Then by using the formula $P = r \sin(d - o)$ we can find the equation of the asymptote where $P = Cim R^2 \frac{do}{do}$ $o \rightarrow ode, r = ode$

Available at http://www.MathCity.org

Written by Shahid Javed

Enacise 7.1.

Find equations of the exymptiles of the following curves.

Q.I.

Y = (x-2)Y = (x-2)Y = x^2 be written as x^2 Y = x^2 + 4-4x

11.A. Coefficient of heighest power of x = y-1Put y-1=0

is an asymptete 11 to x-axis.

v.A 6-efficient of heighest power of y = xt

Put x:0

=) x=0, x=0

ive y-axis plays the role of asymptote. Hence the required asymptotis are

Y-1=0, x=0, x=0

Note Number of asymptotis is at the most three which has been acheived. There is no need to look for an inclined asymptote.

Q.2.

 $\chi^{2}y^{2} = 12(x-3)$ $\chi^{2}y^{2} = 12(x-3)$

 $x^2y^2 - 12x + 36 = 0$

B.A: Co-efficient of heighest power of x = Y2

Put Y=0

=> 7=0, 7=0

i.e X-axis plays the role of an asymptote. V.A. Co-efficient of the highest power of $y = x^2$.

Put $x^2 = 0$

=> x=0, x=0

1:e y-axis plays the role of an asymptote: Hence the sequired asymptotes are Y=0, Y=0, x=0 and x=0

```
Bry = x +3 => x+3-2ny=0
               x2-2xy+3=0 -
    Co-efficient of highest power of n = 1
   => There is no asymptote parallel to X-axis.
     Co-efficient of highest power of y = -2x
              Put - 2x =0
   => y-axis plays the role of asymptote.
I.A. Arrange the givenegin desscending power of x
            re. x-2xy+3=0
       Put x = 1 and y = m, we have
             \phi(m) = 1 - \partial m
           Put of (m) = 0
            => 1-2m = 0
                -2m = -1
                2m = 1
                  m = 1/2
  Now for value of C
            c p(m) + p(m) =0
             g(m) = -2
               $ (m) = 0
   Put there values in (I) we have
             C(-2) +0 =0
     So eq. of Enclined asymptote is
               Y= mx +C
               Y= 1/2 x +0
```

 $Y = \frac{1}{2}x + 0$ $Y = \frac{1}{2}x$ Hence the required asymptotic are x = 0 and $Y = \frac{1}{2}x$.

```
n'(x-y) + a'(n'-y') = a' xy.
Q.4.
        x2(x2-2xy+y2)+ 22x2-3/= 22xy
         x - 2x y + x y + a x - a y - a xy = 0
       Co-efficient of highest power of n = 1
H.A:
         => There is no horizontal asymptote.
        Co-efficient of highest power of y = x²-a²

Put n²-a²=0
              x=a, x=-a
       are the asymptotes 11 to y-axis.
       Dut n=1 ad y= m in the highest degree terms of (I)
            i.e & (m) = 1-2m+ m
                   $(m) = 1+m2-2m
             equal to zero
                    1+m2-2m=0
                   (1-m)^2=0
           =) 1-m=0 , 1-m=0
           =) m=1 , m=1
           \(\frac{c^2}{21}\psi'(m) + \frac{c}{11}\psi'(m) + \frac{c}{11}\psi'(m) + \frac{c}{11}\psi'(m) = 0
              S_0 = \beta_1(m) = 1 + m^2 - 2m
                   $ (m) = 2m -2
                   \phi(m) = 2
                  $ (m) = 0
                    $ (m) =0
                  p2(m) = a2 - a2m2 - a2m
                  gim) = a2 (1-m2-m)
 Put there values in II, we have
           C (2)+ C(0)+ a2(1-m2-m)=0
                c^2 + a^2(1-m^2-m) = 0
```

```
c+ a2(1-1-1)=0
             C^{2} + \alpha^{2}(-1) = 0
              C_{i}^{2} = a^{2}
         => C=a ed C=-a
    Hence the inclined asymptotes are
             y= x+a ady = x-a
 Hence the required asymptotes are
       x=a, x=-a, y= x+a ad y=x-a.
      (x-y)^2(x^2+y^2) - 10(x-y)x^2 + 12y^2 + 2x + 4 = 0
   => (x2+42-2xy) (x2+42) -10(x-4) x +124+2 x+4=0
  x +2x 4 = 2x 4 - 3x 4 - 10x + 10 x 4 + 124 + 3x + 4 = 0
       6-efficient of highest power of x =
          => There is no horizontal asymptete.
       Co-efficient of highest power of y =1
VA
        => "There is no vertical asymptate".
       Put x=1 and y=m in the highest powers of x andy
I.A
            $ (m) = 1+2 m+ m4-2m-2m
           Put $ (m = 0
         = 7 1+2m^2+m^4-2m-2m^3=0
            (m+1)^2 - 2m(m+1) = 0
          (m^2+1)^2(m^2+1) = 2m(m^2+1) = 0
          (m^2+1-2m)(m^2+1)=0
            (m-1)^{2}(m^{2}+1)=0
      => (m-1)^{\frac{1}{2}} \circ \circ d (m^{\frac{1}{2}} + 1) = 0
      =>(m-1)(m-1)=0 and m=-1
                        Imaginary, not included.
               e2 (m) + ( p3(m) + p2(m) = 0 ____ I
                   $(m) = 1+2m+m-2m-2m3
                     d(m) - 1+4m +4m-2-6m2
```

$$g''(m) = 4 + 12m^2 - 12m$$

Now $g_{1}(m) = 10$
 $g'(m) = 10$
 $g'(m) = 10$
 $g'(m) = 12m^2$

Pat in S

$$g'(m) = \frac{1}{2}(4+12m^2-12m) + C(10) + 12m^2 = 0$$

$$g'(m) = \frac{1}{2}(4+12m^2-12m) + C(10) + 12m^2 = 0$$

$$g'(m) = \frac{1}{2}(4+12m^2-12m) + C(10) + 12m^2 = 0$$

$$g'(m) = \frac{1}{2}(4+12m^2-12m) + C(10) + 12m^2 = 0$$

$$g'(m) = \frac{1}{2}(4+12m^2-12m) + C(10) + 12m^2 = 0$$

$$g'(m) = \frac{1}{2}(4+12m^2-12m) + C(10) + 12m^2 = 0$$

$$g'(m) = \frac{1}{2}(m) + C(10) + 12m^2 = 0$$

$$g'(m) = \frac{1}{2}(m) + C(10) + C(1$$

```
Inclined Asymptete
          put n=1 and y= m in the highest degree
terms of I, we have
             $ (m) = m+m2
         Put $ (m) =0
         => m+m^2=0
         => m(1+m)=0
         m=0 ad 1+m=0
      =) m=0 ad m=-1
         For Value of C we use the formula
                 C = -\frac{\phi_{n-1}(m)}{\phi'(m)}
             $(m) = m + m2 => $(m) = 1+2m
       ad $(m) = m2+m
                put these values in (2)
     Put m = 0, we have 1+2m
       So the equation of the asymptote for m=0, and c=0
      which we have already found.
                  C = -\frac{(-1)^2 + (-1)}{1 + 2(-1)}
```

```
so eq. of asymptete is
   Hence required asymptote are
                 4=0, x+1=0 ad y=-x
          (x-y+1)(x-y-2)(x+y) = 8x-1
        (x2xy-2x-xy+y2+2y+x-y-2)(x+y)=8x-1
        (x+y2-2xy-2x+2y+x-y-2)(x+y)= Bx-1
        (x^2+y^2-2xy-x+y-2)(x+y)=8x-1
        ( x3+ xy2- 2x2y - x2+xy - 2x + x2y + y3- 2xy2- xy+y22y)=8x.
         x_{+}^{3} + y_{-}^{3} + x_{y}^{2} - xy_{-}^{2} + y_{-}^{2} + y_{-}^{2} - 2x_{-}^{2} - 2y_{-}^{2} + y_{-}^{2} = 0
          x^{3}+y^{3}-x^{2}y-xy^{2}-x^{2}+y^{2}-10x-2y+1=0
 Horizontal Asymptate
               Co-efficient of highest power of x = 1

=> No Horizontal asymptete.
  Vertical Asymptote
                Co-efficient of highest power of y = 1

=> No vertical asymptate.
 Inclined Asymptote
           Put x= 1 and y=m in the highest degree lerms
   of x and y.
                     $ (m) = 1+m3-m-m2
                     1-m2-m +m3=0
              =>
                     1-m2-m(1-m)=0
                     (1-m2)(1-m)=0
                     1-m2=0, 1-m=0
              =)
                     m^2 = 1
                                   m = 1
                     m=1,-1, m=1
Value of C For
                     \frac{c^2}{2/3} \phi'(m) + \frac{c}{1/3} \phi'(m) + \phi'(m) = 0 - I
                                  m^3 - m^2 - m + 1
                      $ (m) =
                       \phi'(m) = \delta m^2 - \partial m - 1
               =)
```

6"(m) = 6m -2

y=x-3, y=x+2 ad y=-2

```
Q.8. Y + n y + 2 xy2 - y +1 =0

Hosizontal asymptate
              Co-efficient of highest power of x = Y
                     is on anymptale.
     Vertical Asymptote
           Coefficient of highest power of Y = 1

=> There is no vertical Asymptote.
    Inclined Asymptote
            put x=1 ad y=m in the highest degree letins of
            \beta_3(m) = m^3 + m + 2m^2
           Put $sun)=0
                m_{+}^{3}am_{+}m=0
               m(m^2+2m+1)=0
            m=0 , m^2+2m+l=0
             m=0 , (m+1)^2=0
             m=0 , (m+1)(m+1)=0
              m== , m=-1,-1
         Value of C For m=0
                => C = 0 $s(m)
            so eq. of the asymptate i's
Now Value of C For m = -1
                  c2 (m) + C (m) + (cm) = 0 _
                  $3 cm) = m3 + 2m2 + m
            NOW
                   $ (m) = 3m2 + 4m
```

\$"(m) = Bm +4

```
ad $1m)=0
        => p'(m=0)
          \phi_{i}(m) = -m
  Put These values in I
             \frac{c^2}{2}. 2(3m+2)+c.0-m=0
   Pul- m =-
           => (2(3(-1)+2) - (-1)=0
             C^{2}(-1) + 1 = 0
                1-0=0
                  C=/
                  C = \pm 1
              => (=/, C=-/
        So egs. of the asymptotes are
          ソニーンナノ ノ ソニールー/
 Hence the required asymptotis are
         Y=0, Y=-x-1 and Y=-x+1
          y(x-y)2 = x+y
         \gamma(x^2+y^2-\partial xy)=x+y
          x27 + 43 - 2x42 = x+4
          Y = x24 - 2x42 x-4 = 0
Horizontal Asymptale
         6-efficient of highest power of x = Y
=> Y=0 is an asymptete.
Vertical Asymptote
         Co-efficient of highest power of y=1
           => There is no horizontal asymptate.
Oblique Asymplete
         Put n=1 ad y=m in highest dagree lerms
   of x and y.
             =) \phi_3(m) = m^2 + m - 2m^2
            \implies m^3 + m - \partial m^2 = 0
              m3-2m2+m=0
              m 1 m2_2m_1) =0
```

$$m=0$$
, $(m-1)=0$
 $m=0$ $(m-1)(m-1)=0$
 $m=0$ $m=1,1$
 $m=0$ $m=1$
 $m=0$
 $m=$

So eq. of asymptote is y = 0Hence the required asymptotes are y=0, $y=x+\sqrt{2}$, and $y=x-\sqrt{2}$

```
Q.10. ny (x-y) = (x+y)
        x^{2}y^{2}(x+y-2x^{2}y^{2}) - (x+y^{2})^{3} = 0
     x^{6}y^{2} + x^{2}y^{6} - \partial x^{4}y^{4} - (x^{6} + y^{6} + 3x^{2}y^{4} + 3x^{4}y^{2}) = 0
     xy-2x4+x2y- x4y=3xy2-3x4y=0
      xy-dxy+xy6-x6-y6-3x42-3x2y=0
   Horizontal Asymptote
       Co-efficients of highest power of x = y'-1
              Put 42-1=0
               = y^2 = 1
               => Y = ±1 is an asymplete.
   Vertical Asymptote
        Co-efficient of highest power of y = x2-1
            put x=1=0
               = x^2 = 1
               => x=±1 is an asymptote.
  Inclined Asymptote
    Put x=1 and y=m in the highest degree lerms.
        i.e. $ (m) = m- dm + m6
         Put 9 (m) =0
           =) m - 2 m + m = 0
           =) m'(m'-2m+1)=0
          m^2=0 , (m^2-1)^2=0
     =) m = 0,0 , (m^2-1)(m^2-1)=0
                   = ) m^2 - 1 = 0 , m^2 - 1 = 0
                    s) mel, mel
                    =) m=+1 , m=+1
                         m = 1,1,-1,-1
     m=0,0 has already used
  is No need to look for it.
   Value of C For m = 1,1
              5 (m) + 5 (m) + (m) = 0
```

```
$ (m) = m -2m +m
          $ (m) = 6m5 - 8m3 +2m
         $"(m) = 30m - 24m2+2
       $ cm ) =
         g'(m) 20
          $(m) = -1-m - 3m - 3m
  Pat these values in I
          c1 ( 30m - 24m +2) + C ( 0) -1-m-3m-3m =0-
  Put m=1, we have
            \frac{c^2}{2}(30-24+2)-1-1-3-3=0
          \frac{c^{2}}{2}(8) - 8 = 0
              402-8=0
              c2 _ 2 = 0
            => C = \sqrt{2}, -\sqrt{2}
  So the inclined asymptotes when m=1,1 ad c=12,-52
              y = x1/2 ad y = x - N2
 Value of C For m = -1,-1
       put m = - 1 in II , we have
       £ (30-24+2)-1-1-3-3=0
                 c = \sqrt{2}, -\sqrt{2}
  So eqs. of asymptotes when m = -1,-1 and = \sqrt{2}, -\sqrt{2} are
            \gamma = -x + \sqrt{2}, \gamma = -x - \sqrt{2}
 Hence the required asymptotes are
    Y=+1, X=±1, Y=+x+12, y=+x-12
             xy2 = (x+y)2
             xy= x+y+ 2xy
          x+ 2xy - xy+y= 0 => xy-x-dry-y=0
Horizontal asymptele
            G-efficient of highest power of x =-1
           e) No horizontal asymptate.
Vertical Asymptotic
           Co-chriciant of highest power of y = x-1
```

```
Available at
http://www.MathCity.org
```

=> x=1 is an asymptote. Inclined Asymptote. Put x=1 ad y= m in the highest degree lessons i.e. \$ 3(m) = m2 Put &(m)=0 => m=0 s m=0;0 : m=0,0 .. There is no oblique asymptote. Hence the required asymptotes are xy-xy-3x- 2xy+y+x-2y+1=0 Horizontal Asymptote G-efficients of highest powers of x = -4-3 Put -4-3=0 Y=-3 is an asymptote. Vertical Asymptote Co-efficients of highest powers of y = x + 1 put x+1=0=> x = -/ is an asymplete. Oblique Asymptote Put n=1 and y=m in the highest degree lerins. \$3 cm) = m2 - m ABIBIDAMILLIHA Put \$(m) = 0 => m2-m=0 m(m-1)=0=) m=0, m-1=0m=0, m=1: When m =0 there is no inclined asymptete-. We look for m=1 Gem)

p' cm)

Now
$$g(m) = m^2 - m$$
 $g'(m) = 2m - 1$
 $g'(m) = 3 - 2m + m^2$

Put there values in I , we have

$$C = -\frac{3 - 2m + m^2}{2m - 1}$$

Put $m = 1$

$$=) C = -\frac{3 - 2 + 1}{2 - 1} = -\frac{4}{1} = 4$$

So eq. of inclined alsymptote when $m = 1$ and $C = 1$ is

 $Y = x + 4$.

Hence the beguined alsymptotes are

 $Y + 3 = 0$, $x + 1 = 0$ and $Y = x + 4$

$$Y = \frac{a}{5}$$

Put $x = \frac{a}{5}$
 $y = 0$

Put $y = 0$
 y

Hence the asymptole is $p_2 \quad r \sin (a - 0)$ $-a = r \sin (0 - 0)$ $-a = r \sin (-0)$ $-a = r \sin 0$

Now
$$g(m) = m^2 - m$$
, $g'(m) = 2m - 1$.

and $g(m) = -3 - 2m + m^2$.

Put there values in E , we have
$$C = -\frac{3 - 2m + m^2}{2m - 1}$$

Put $m = 1$

$$=) C = -\frac{3 - 2 + 1}{2 - 1} = -\frac{1}{1} = 4$$

So eq. of inclined asymptotic when $m = 1$ and $C = 4$ is $y = x + 4$.

Hence the sequired asymptotic are $y + 3 = 0$, $x + 1 = 0$ and $y = x + 4$.

$$y = \frac{3}{6}$$

$$y = 0$$

$$y = 0 = 0$$

$$y =$$

v Sin O is the required armodate.

Q.M.

Put
$$r = \infty$$

$$\Rightarrow \infty = \frac{a}{a} \Rightarrow \sqrt{0} = \frac{a}{\infty} \Rightarrow \sqrt{0} = 0 \Rightarrow 0 \Rightarrow 0 \Rightarrow 0$$

$$\text{Giff. } \vec{i} \text{ w.r.t. } 0. \frac{\sqrt{0}}{\sqrt{0}}$$

$$\frac{d\theta}{dh} = -\frac{1}{2}a \frac{\partial^{3}2}{\partial h}$$

$$\frac{d\theta}{dh} = -\frac{2}{a} \frac{\partial^{3}2}{\partial h}$$

$$\frac{d\theta}{dh} = -\frac{2}{a} \frac{\partial^{3}2}{\partial h}$$

$$\frac{d\theta}{dh} = -\frac{2}{a} \frac{\partial^{3}2}{\partial h}$$

$$x \text{ by } r^{2}$$

$$\Rightarrow r^{2} \frac{d\theta}{dh} = \frac{a^{2}}{a} \cdot -\frac{2}{a} \frac{\partial^{3}2}{\partial h}$$

$$\Rightarrow r^{2} \frac{d\theta}{dh} = \frac{a^{2}}{a} \cdot -\frac{2}{a} \frac{\partial^{3}2}{\partial h}$$

$$P = \lim_{n \to \infty} h^{2} \frac{d\theta}{dh}$$

$$P$$

 $r = \frac{a}{\sin \theta} + b \qquad -(A)$ $r = \frac{a}{\sin \theta} + b \sin \theta$ $r = \frac{a + b}{\sin \theta} \qquad 1$ $Pat r = \infty$

Now Diff (A) wirt 0.

$$\frac{d\rho}{d\rho} = -a \text{ Galeco Cato}$$

$$\frac{d\theta}{d\rho} = -\frac{1}{a \text{ Galeco Gato}}$$

$$\Rightarrow r^{2} \frac{d\theta}{dr} = -\frac{(a+b\sin\theta)^{2}}{\sin\theta}. \qquad \frac{\sin\theta \cdot \sin\theta}{a \text{ Gato}}$$

$$= -\frac{(a+b\sin\theta)^{2}}{a \text{ Gato}}.$$

$$Value of P when $\alpha = 0$

$$= -\frac{(a+b\sin\theta)^{2}}{a \text{ Gato}}$$

$$= -\frac{(a+b\sin\theta)^{2}}{a \text{ Gato}}$$

$$= -\frac{a^{2}}{a \text{ Gato}}.$$
So eq of the asymptotic when $\alpha = 0$ is
$$\rho = r \sin\theta \quad \text{is the asymptotic.}$$

$$Value of P when $\beta d = \overline{0}$

$$= -r \sin\theta \quad \text{is the asymptotic.}$$

$$Value of P when $\beta d = \overline{0}$

$$= -\frac{(a+b\sin\theta)^{2}}{a \text{ Gato}}$$

$$= -\frac{(a+b\cos\theta)^{2}}{a \text{ Gato}}$$

$$= -\frac{(a+b\cos\theta)^{2}}{a \text{ Gato}}$$

$$= -\frac{a^{2}}{a \text{ Gato}}.$$
So eq. of the asymptotic when $\beta = \overline{0}$ is
$$\rho = A \sin(\beta - \theta)$$

$$a = A \sin(\beta - \theta)$$

$$a = r \sin\theta$$$$$$$$

=> rsino = a is the asymptate.

Q.16.
$$r = 2a \sin \theta \cdot A \cos \theta$$
 $r = 2a \sin \theta \cdot A \cos \theta$
 $r = 2a \sin \theta \cdot C \cos \theta$
 $r = 2a \sin \theta \cdot C \cos \theta$
 $r = 2a \sin \theta \cdot C \cos \theta$
 $r = 2a \sin \theta \cdot C \cos \theta$
 $r = 2a \sin \theta \cdot C \cos \theta$
 $r = 2a \sin \theta \cdot C \cos \theta$
 $r = 2a \sin \theta \cdot C \cos \theta \cdot C \sin \theta \cdot C \cos \theta$
 $r = 2a \left[\frac{2 \sin \theta \cos \theta + \sin^2 \theta}{\cos^2 \theta} \right]$
 $r = 2a \left[\frac{2 \sin \theta \cos \theta + \sin^2 \theta}{\cos^2 \theta} \right]$
 $r = 2a \left[\frac{2 \sin \theta \cos \theta + \sin^2 \theta}{\cos^2 \theta} \right]$
 $r = 2a \left[\frac{2 \sin \theta \cos^2 \theta + \sin^2 \theta}{\cos^2 \theta} \right]$
 $r = 2a \left[\frac{2 \sin \theta \cos^2 \theta + \sin^2 \theta}{\cos^2 \theta} \right]$
 $r = 2a \left[\frac{2 \sin \theta \cos^2 \theta + \sin^2 \theta}{\cos^2 \theta} \right]$
 $r = 2a \left[\frac{2 \sin \theta \cos^2 \theta + \sin^2 \theta}{\cos^2 \theta} \right]$
 $r = 2a \sin^3 \theta$
 $r =$

So eq. ap the asymptote when $\alpha = \frac{\pi}{2}$ is $2a = r \sin(\frac{\pi}{2} - \theta)$ $2a = r \cos\theta \text{ is The asymptote}$ $p = \lim_{\theta \to 3\pi/2} \frac{2a \sin^3 \theta}{2\cos^2 \theta + \sin^2 \theta}$ $= \frac{2a(-1)^3}{2a(-1)^2} = -2a$

So Eq. of the asymptote when
$$\beta = \frac{37}{12}$$
 and $\beta = -2a$ is

$$-2a = r \sin(37/2 - 0)$$

$$-2a = -r \cos\theta$$

$$\Rightarrow 2a = r \cos\theta \text{ is an asymptote.}$$
Hence the required asymptote is
$$2a = r \cos\theta.$$

$$r = \frac{a \cos 3\theta}{\sin 2\theta} = \frac{1}{2} \cos\theta.$$

$$put r = ds \text{ in } I$$

$$\Rightarrow ds = \frac{a \cos 3\theta}{\sin 2\theta}$$

$$\Rightarrow \sin 2\theta = 0, \pi$$

$$\theta = 0, \pi/2, i = d = 0, \beta = \pi/2$$

$$\frac{dh}{d\theta} = a\left(\frac{\sin 2\theta \cdot (-3 \cos\theta) - \cos 3\theta \cdot 2 \cos\theta}{\sin^2 2\theta}\right)$$

$$x \text{ by } \frac{1}{h^2} \frac{dh}{d\theta} = \frac{\sin^2 2\theta}{a^2 \cos^2 3\theta} \cdot a\left(\frac{-3 \sin 2\theta \sin 3\theta - 2 \cos 3\theta \cos\theta}{\sin^2 2\theta}\right)$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin 2\theta \sin 3\theta - 2 \cos 3\theta \cos\theta}{a^2 \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin 2\theta \sin 3\theta - 2 \cos 3\theta \cos\theta}{a^2 \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin 2\theta \sin 3\theta - 2 \cos 3\theta \cos\theta}{a^2 \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin^2 2\theta \sin 3\theta - 2 \cos 3\theta \cos\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin^2 2\theta \sin 3\theta - 2 \cos 3\theta \cos\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin^2 2\theta \sin 3\theta - 2 \cos 3\theta \cos\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin^2 2\theta \sin 3\theta - 2 \cos 3\theta \cos\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin^2 2\theta \sin 3\theta - 2 \cos 3\theta \cos\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin^2 3\theta \sin 3\theta - 2 \cos 3\theta \cos\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin^2 2\theta \sin 3\theta - 2 \cos 3\theta \cos\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin^2 2\theta \sin 3\theta - 2 \cos 3\theta \cos\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin^2 2\theta \sin 3\theta - 2 \cos 3\theta \cos\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin^2 2\theta \sin 3\theta - 2 \cos 3\theta \cos\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin^2 2\theta \sin 3\theta - 2 \cos^2 3\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin^2 2\theta \sin 3\theta - 2 \cos^2 3\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin^2 2\theta \sin^2 3\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin^2 2\theta \sin^2 3\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{dh}{d\theta} = \frac{-3 \sin^2 2\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{d\theta}{d\theta} = \frac{-3 \sin^2 2\theta}{a \cos^2 3\theta}$$

$$\frac{1}{h^2} \frac{d\theta}{d\theta} = \frac{-3 \sin^2 2\theta}{a \cos^2 3\theta}$$

Value of P when & =0.

$$P = \lim_{0 \to \infty} \Lambda^{2} \frac{d\theta}{d\Lambda}$$

$$P = \lim_{0 \to \infty} \frac{a \cos^{2} 3\theta}{3 \sin 2\theta \sin 3\theta + 2 \cos 3\theta \cos 2\theta}$$

$$P = \frac{a(1)^{2}}{3(0)(0) + 2(1)(1)}$$

$$Q = \frac{a}{2}$$

$$P = -\frac{a}{2}$$

```
So eg. of the asymptote is
                     P = rSin(d-0)
                     -\frac{a}{2} = r \sin(0-\theta)
                     - = - rsino
                     arsin 0 = a is an asymptote.
Value of P when B = 1/2
                       P= Lim r2 do
O->p dh
                   P=-Cim a Gs2 30
0-18/2 3 Sin 20 Sin 30 + 2 Cos 30 Cos 20
                               a Cas (3 1/2)
                             3 Sin 12/2) Sin 3/2 + 2 Gs 3/2 Cas 2/2
                                    a (0)
        So eq. of the asymptite is
                 P = LSin (B-0)
                    0 = 12 Sin ( 1/2-0)
                   0 = 1 Cas 0
             => rCos 0=0
                    Caro = 0
                      0= 1/2
        Hence the required asymptotes are
                 arsino = a ad 0 = 7/2
                         1- CMO
        put r= 0
                       1- Cas 0 = 0
                          Car0 = 1
                              0 = 0 1.e d=0
       Biff. 2 wr.t. "O"
                      \frac{dx}{d\theta} = -\alpha \left( 1 - \cos \theta \right)^{-2} \left( 0 + \sin \theta \right)
                                                               a sin O
```

(1-GAO)2

$$\frac{1}{\Lambda^{\perp}} \frac{d\Lambda}{dO} = \frac{(\ell - \Delta \Lambda O)^{2}}{2^{2}} - \frac{a \sin \Theta}{(\ell - \Delta \Lambda O)^{2}}$$

$$= -\frac{1}{a} \sin \Theta$$

$$\Lambda^{\perp} \frac{d\Theta}{d\Lambda} = -\frac{a}{\sin \Theta}$$

$$\frac{1}{A^{\perp}} \frac{d\Lambda}{d\Lambda} = -\frac{a}{\sin \Theta}$$

$$\frac{1}{A^{\perp}} \frac{d\Lambda}{d\Lambda} = -\frac{a}{\sin \Theta}$$

$$\frac{1}{A^{\perp}} \frac{d\Lambda}{d\Omega} = -\frac{a}{\sin \Theta}$$

$$\frac{1}{A^{\perp}} \frac{d\Lambda}{d\Omega} = -\frac{a \sin \Theta}{a \cos \Theta}$$

$$\frac{1}{A^{\perp}} \frac{d\Lambda}{d\Omega} = -\frac{a \sin \Theta}{a \cos \Theta}$$

$$\frac{1}{A^{\perp}} \frac{d\Lambda}{d\Omega} = -\frac{a \cos \Omega}{a \cos \Omega}$$

=>
$$\Lambda^2 \frac{ol\theta}{ol\lambda} = -\frac{\alpha}{n G s n \theta}$$

Applying Lim

Lim 12 de = Lim e 0-> KT/n d/L = 0-> KT/n nasno

$$P = \frac{a}{nGN^{n}K^{n}}$$

$$= \frac{a}{nGN^{n}K^{n$$

$$P = -\frac{a(e^{4}+1)^{4}}{ae^{5}}$$

$$P = -\frac{a(e^{4}+1)^{4}}{ae^{5}} = \frac{a(1+1)^{4}}{a(1)} = \frac{4a}{a} = -2a$$

$$So cq. q the asymptote is
$$P = A (Sin (u-0))$$

$$-2a = A Sin (0-0)$$

$$2a = A Sin (0-0)$$

$$3a = -\frac{a^{5}}{sin n\theta} = -\frac{a^{5}}{sin n\theta}$$

$$3a = -\frac{a^{5}}{sin n\theta} = -\frac{a^{5}}{sin n\theta}$$

$$3a = -\frac{a^{5}}{sin n\theta} = -\frac{a$$$$

x by h

http://www.MathCity.org

$$\frac{1}{h^{2}} = \frac{1}{h^{2}} \frac{dh}{d\theta} = \frac{\sin \theta}{a^{2}\cos 2\theta} \cdot \frac{a^{2}}{2r} \left[\frac{2\sin \theta \sin 2\theta + \cos \theta \cos 2\theta}{\sin^{2}\theta} \right]$$

$$\frac{1}{h^{2}} \frac{dh}{d\theta} = -\frac{1}{2 \frac{\cos \theta \cos 2\theta}{\sin \theta}} \cdot \left[\frac{2\sin \theta \sin 2\theta + \cos \theta \cos 2\theta}{\sin \theta} \right]$$

$$\frac{1}{h^{2}} \frac{dh}{d\theta} = \frac{1}{2 \frac{a\sin \theta \sin 2\theta + \cos \theta \cos 2\theta}{\sin \theta}} \cdot \left[\frac{2\sin \theta \sin 2\theta + \cos \theta \cos 2\theta}{\sin \theta} \right]$$

$$= \frac{\sqrt{\sin \theta}}{\sqrt{\sin \theta}} \cdot \left[\frac{2\sin \theta \sin 2\theta + \cos \theta \cos 2\theta}{\sqrt{\sin \theta}} \right]$$

$$h^{2} \frac{d\theta}{dh} = \frac{2a\cos^{3/2} 2\theta \sqrt{\sin \theta}}{2\sin \theta \sin 2\theta + \cos \theta \cos 2\theta}$$

$$Now \quad Value & P when $d = 0$$$

Now Value of Pwhen d = 0

P = Cim L' do dr

P = 0So eq. of asymptote is $P = r \sin(\alpha - 0)$ $0 = r \sin(0 - 0)$ $0 = -r \sin 0$ $= r \sin 0 = 0$

Sin O = 0

0=0 15 am asymptete.

Now Value of P when B = T

=) P = 050 eq. of asymptate is $0 = r \sin(\pi - 0)$ $0 = r \sin(\pi - 0)$ $0 = r \sin(\pi - 0)$ Hence the required enympleteis 0 = 0.