Chapter #7

Plane Curves II

Asymptote:

Def.: An asymptote is a straight line for a given curve C,
if the distance between L and C tends to 0 as the
infinite distance is moved along L.

E.g.:

\[C: \ xy = 1 \]
\[y = \frac{1}{x} \]

As \(x \to \infty \), \(y \to 0 \)
y=0 is an asymptote for curve C.
likewise for \(x = \frac{1}{y} \)
As \(y \to \infty \), \(x \to 0 \)
x=0 is also an asymptote.
The graph of the asymptote is as shown
\[y = \frac{1}{x} \]

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>1/2</th>
<th>1/3</th>
<th>1/4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>1/2</td>
<td>1/3</td>
<td>...</td>
<td>1/3</td>
<td>1/4</td>
<td>...</td>
<td>1/4</td>
</tr>
</tbody>
</table>

Types of Asymptotes:

There are three types of asymptotes:
1) Horizontal asymptote.
2) Vertical asymptote.
3) Inclined asymptote.

No. of Asymptotes:
The number of asymptotes is less
dthan or equal to the degree of the given
equation.
How to Find the Asymptote

Arrange the given equation in descending powers of \(x \) and \(y \) like:

\[a_n x^n + a_{n-1} x^{n-1} y + \cdots + a_1 xy + a_0 y^n + \cdots + x + y + x + y + 1 = 0 \]

For Horizontal Asymptote:

Equate the coefficient of highest power of \(x \) to zero if any.

For Vertical Asymptote:

Equate the coefficient of highest power of \(y \) to zero if any.

Inclined Asymptote:

Equation of inclined asymptote is \(y = mx + c \)

Put \(x = \infty \), \(y = m \) in the highest degree terms and equate to zero.

\[\therefore f(m) = 0 \]

\[\Rightarrow m_1, m_2, m_3, \ldots, m_n \]

Value of \(C \):

\[C = -\frac{f_{n-1}(m)}{f_n(m)} \]

Value of \(C \) in the presence of two equal Values of \(m \):

By putting the values of \(m \) in the below formula we will get the value of \(C \).

\[\frac{C}{a!} f^{(m)}(m) + \frac{C^2}{b!} f^{(m)}(m) + \frac{C^3}{c!} f^{(m)}(m) + \frac{C^4}{d!} f^{(m)}(m) + \cdots = 0 \]

For three equal values of \(m \):

We will use this formula for three equal values of \(m \) and get the value of \(C \).

\[\frac{C^3}{3!} f^{(m)}(m) + \frac{C^2}{2!} f^{(m)}(m) + \frac{C}{1!} f^{(m)}(m) + f^{(m)}(m) = 0 \]
Asymptotes of Polar Curves:

Let \(r = f(\theta) \) be a curve.

Put \(r = a \) in the equation of the curve and find the value of \(\theta \).

Say \(\theta = \alpha, \beta, \gamma, \ldots \).

Then by using the formula

\[
P = r \sin(a - \theta)
\]

we can find the equation of the asymptote.

Where

\[
P = \lim_{\theta \to a} \frac{r^2}{\theta - \alpha, \beta, \gamma, \ldots}
\]

Available at

http://www.MathCity.org

Written by

Shahid Javed
Exercise 7.I.

Find equations of the asymptotes of the following curves.

Q.9. \(y = \frac{(x-2)^2}{x^2} \)

The equation can be written as
\[x^2 y = x^4 - 4x \]
\[x^2 (y-1) + 4x - 4 = 0 \]

H.A. Coefficient of highest power of \(x = y - 1 \)
Put \(y - 1 = 0 \)
\(x = 0 \)

is an asymptote 11 to \(x \)-axis.

V.A. Coefficient of highest power of \(y = x^2 \)
Put \(x^2 = 0 \)
\(\Rightarrow x = 0, x = \infty \)

i.e. \(y \)-axis plays the role of asymptote.
Hence the required asymptotes are
\(y = 1, x = 0, x = \infty \)

Note: Number of asymptotes is at the most three which has been achieved. There is no need to look for an inclined asymptote.

Q.10. \(x^2 y = 12 (x-3) \)
\[x^2 y = 12(x-3) \]
\[x^2 y - 12x + 36 = 0 \]

H.A. Coefficient of highest power of \(x = y^2 \)
Put \(y^2 = 0 \)
\(\Rightarrow y = 0, y = \infty \)

i.e. \(x \)-axis plays the role of asymptote.

V.A. Coefficient of the highest power of \(y = x^2 \)
Put \(x^2 = 0 \)
\(\Rightarrow x = 0, x = \infty \)

i.e. \(y \)-axis plays the role of asymptote.
Hence the required asymptotes are
\(y = 0, y = 0, x = 0 \)
Q.8. \(\frac{dx}{dy} = x^2 + 3 \Rightarrow x^2 - 3x + 6 = 0 \)

H.A.

- Co-efficient of highest power of \(x = 1 \)

\[\Rightarrow \text{there is no asymptote parallel to } x\text{-axis}. \]

V.A.

- Co-efficient of highest power of \(y = -2x \)

\[\Rightarrow 2x = 0 \]

\[\Rightarrow x = 0. \]

\[\Rightarrow y\text{-axis plays the role of asymptote}. \]

I.A. Arrange the given in descending power of \(x \)

\[\Rightarrow x^2 - 3x + 6 = 0 \]

Put \(x = 1 \) and \(y = m \), we have

\[\phi_x(m) = 1 - 6m \]

Put \(\phi_x(m) = 0 \)

\[\Rightarrow 1 - 6m = 0 \]

\[\Rightarrow 6m = 1 \]

\[m = \frac{1}{6} \]

Now for value of \(c \)

\[\phi_x(m) + \phi_y(m) = 0 \]

\[\Rightarrow -2 + \phi_y(m) = 0 \]

Put these values in (I) we have

\[c(-2) + 0 = 0 \]

\[-2c = 0 \]

\[c = 0 \]

So eq. of Enclined asymptote is

\[y = mx + c \]

\[y = \frac{1}{2}x + 0 \]

\[y = \frac{1}{2}x \]

Hence the required asymptote are

\(x = 0 \) and \(y = \frac{1}{2}x \).
Q.9. \[\frac{x^3(x+y)^2}{a^2(x^2-y^2)} = a^2xy. \]

\[x^2(x^3-3xy+y^3) + a^2x^2 - a^2xy \]

\[x^2 - 2xy + x^2 + a^2 - a^2 - a^2 = 0 \]

I

H.A. G-efficient of highest power of \(x = 1 \)

\[\implies \text{there is no horizontal asymptote.} \]

V.A.

G-efficient of highest power of \(y = x - a \)

\[\begin{align*}
 &\text{Put} \quad x^2 - a^2 = 0 \\
 &\quad x = a \\
 &\quad x = -a \\
 &\quad x = a, \quad x = -a
\end{align*} \]

These are asymptotes \(\parallel \) to \(y \)-axis.

II.

Put \(x = 1 \) and \(y = m \) in the highest degree terms of (I)

\[\begin{align*}
 &\text{I.e.} \\
 &\frac{\phi_1(m)}{\phi_2(m)} = 1 - 2m + m^2 \\
 &\frac{\phi_3(m)}{\phi_4(m)} = 1 + m^2 - 2m
\end{align*} \]

\[\begin{align*}
 &\text{Equal to zero} \\
 &\begin{align*}
 &1 - m^2 - 2m = 0 \\
 &1 - m = 0 \quad \text{or} \quad 1 + m = 0
 \end{align*} \\
 &\implies m = 1 \\
 &\implies m = 1
\end{align*} \]

Now

\[\frac{c}{a} \frac{\phi_2''(m)}{\phi_2'(m)} + \frac{c}{a} \frac{\phi_3'(m)}{\phi_3(m)} + \phi_4(m) = 0 \]

II

So

\[\begin{align*}
 &\phi_2'(m) = 1 + m^2 - 2m \\
 &\phi_3'(m) = 2m - 2 \\
 &\phi_4'(m) = 2 \\
 \end{align*} \]

a-d

\[\begin{align*}
 &\phi_2'(m) = 0 \\
 &\phi_3'(m) = 0 \\
 &\phi_4'(m) = 0
\end{align*} \]

Also

\[\begin{align*}
 &\phi_2(2m) = a^2 - a^2m^2 - a^2m \\
 &\phi_4(m) = a^2(1 - m^2 - m)
\end{align*} \]

Put these values in II, we have

\[\begin{align*}
 &\frac{c}{a} (2) + \frac{c}{a} (0) + a^2(1 - m^2 - m) = 0 \\
 &c^2 + a^2(1 - m^2 - m) = 0
\end{align*} \]

Put \(m = 1 \)
\[c^2 + a^2(-1 - 1) = 0 \\
\; \quad c^2 + a^2(-1) = 0 \\
\quad c^2 = a^2 \\
\; \quad c = \pm a \\
\Rightarrow c = a \quad \text{and} \quad c = -a \\
\]

Hence the inclined asymptotes are
\[y = x + a \quad \text{and} \quad y = x - a. \]

Hence the required asymptotes are
\[x = a, \quad x = -a, \quad y = x + a \quad \text{and} \quad y = x - a. \]

\[\begin{align*}
(x - y)^2 (x^2 + y^2) - 10(x - y)(x^2 + 12y^2 + 2x + y^2 - 2xy) &= 0 \\
x^2 - xy - x^2 - y^2 + 10x^2 + 10y^2 + 12y^2 - 2xy &= 0 \\
4x^2 - xy - 2x^2 - y^2 + 10x^2 + 10y^2 + 12y^2 - 2xy &= 0 \\
&= 0 \quad \text{is highest power of} \ x = 1 \\
\Rightarrow & \quad \text{There is no horizontal asymptote.} \\
\end{align*} \]

V.A. Co-efficient of highest power of \(y = 1 \)
\[\Rightarrow \text{There is no vertical asymptote.} \]

I.A. Put \(x = 1 \) and \(y = m \) in the highest powers of \(x \) and \(y \)
\[\Rightarrow \phi_2(m) = 1 + 2m^2 + m^4 - 2m - 2m^3 \\
\]

Put \(\phi_1(m) = 0 \\
\Rightarrow 2m^2 + m^4 - 2m - 2m^3 = 0 \\
(m^2 + 1) - 2m(m^2 + 1) = 0 \\
(m^2 + 1)(m^2 + 1) = 0 \\
(m - 1)^2 (m + 1) = 0 \\
\Rightarrow (m - 1) = 0 \quad \text{and} \quad (m + 1) = 0 \\
\Rightarrow m(m - 1) = 0 \quad \text{and} \quad m^2 = -1 \\
\Rightarrow m = 1, 1 \quad \text{Imaginary, not included.} \]

Now \[\phi_0(m) + \phi_1(m) + \phi_2(m) = 0 \]
\begin{align*}
\phi_2(m) &= 1 + 2m^2 + m^4 - 2m - 2m^3 \\
\phi_1(m) &= 1 + 4m + 4m^3 - 2m - 6m^3 \\
\phi_0(m) &= 1 + 4m - 6m^2 \\
\end{align*}
\[f''(m) = 4 + 12m^2 - 12m \]

Now, \[f'(m) = -10 + 10m \]

\[f'(m) = 10 \]

and \[f''(m) = 12m^2 \]

Put in \(f'' \)

\[\Rightarrow \frac{d^2}{dx^2} (4 + 12m^2 - 12m) + C(10) + 12m^2 = 0 \]

\[\Rightarrow \frac{d^2}{dx^2} (2 + 6m^2 - 6m) + 10C + 12m^2 = 0 \]

\[\Rightarrow 2c^4 + 6c^2m - 6c^2m + 10c + 12m^2 = 0 \]

Putting \(m = 1 \), the above eq. is:

\[c^2 (2 + 6 - 6) + 10C + 12 = 0 \]

\[2c^2 + 10c + 12 = 0 \]

\[c^2 + 5c + 6 = 0 \]

\[(c+2)(c+3) = 0 \]

\[\Rightarrow c+2 = 0 \quad \text{or} \quad c+3 = 0 \]

\[\Rightarrow c = -2 \quad \text{or} \quad c = -3 \]

So the eqs. of inclined asymptotes are:

\[y = x - 2 \quad \text{and} \quad y = x - 3 \]

Hence the required asymptotes are:

\[y = x - 2 , \quad y = x - 3 \]

Q. 6.

\[x^2y + xy^2 + xy + y^2 + 3x = 0 \]

Here \(x^2y + xy^2 + y^2 + xy + 3x = 0 \) \(\quad \) \(\text{v) \) \(\)

H.A. Co-efficient of highest power of \(x = y \)

Put \(y = 0 \) is an asymptote.

i.e. \(x \)-axis plays the role of asymptote.

V.A. Co-efficient of highest power of \(y = x + 1 \)

Put \(x + 1 = 0 \)

\[\Rightarrow x = -1 \]

is an asymptote.
Inclined Asymptote

Put \(n = 1 \) and \(y = m \) in the highest degree terms of \(I \), we have

\[
\phi_3(m) = m + m^2
\]

Put \(\phi_3(m) = 0 \)

\[
\Rightarrow m + m^2 = 0
\]

\[
\Rightarrow m(1 + m) = 0
\]

\[
\Rightarrow m = 0 \quad \text{and} \quad m = -1
\]

Value of \(C \) for \(m = 0 \)

For value of \(C \) we use the formula

\[
C = -\frac{\phi_{n-1}(m)}{\phi'_n(m)}
\]

\[
\Rightarrow \phi_3(m) = m + m^2 \quad \Rightarrow \phi'_3(m) = 1 + 2m
\]

\[
\text{Put these values in (2)}
\]

\[
C = -\frac{1 + 2m}{m^2 + m}
\]

Put \(m = 0 \), we have \(\frac{1 + 2m}{m^2 + m} \)

\[
\Rightarrow C = 0
\]

So the equation of the asymptote for \(m = 0, 0 \) and \(C = 0 \)

is

\[
y = 0
\]

which we have already found.

Value of \(C \) for \(m = -1 \)

From above

\[
c = -\frac{mt + m}{1 + 2m}
\]

Put \(m = -1 \)

\[
\Rightarrow c = -\frac{(-1)t + (-1)}{1 + 2(-1)}
\]

\[
\Rightarrow c = -\frac{1 - 1}{1 - 2}
\]

\[
\Rightarrow c = 0
\]
So eq. of asymptote is
\[y = -x \]

Hence required asymptote are
\[y = 0, \quad x + 1 = 0 \quad \text{and} \quad y = -x \]

Q.7
\[(x-y+1)(x-y-2)(x+y) = 8x-1\]
\[(x^2-xy-2x-xy+y^2+3y+x-y-2)(x+y) = 8x-1\]
\[(x+y)^2-2xy-x+y-2)(x+y) = 8x-1\]
\[(x^3+xy^2-2x+y^2-2x+3y+y^3-2x^2-xy^2+y^2+2y)=0\]
\[x^3+y^3-3x^2+y^2-x^2+y^2-10x-3y+1=0 \quad I\]

Horizontal Asymptote

- Co-efficient of highest power of \(x = 1 \)
 \[\Rightarrow \text{No Horizontal Asymptote.} \]

Vertical Asymptote

- Co-efficient of highest power of \(y = 1 \)
 \[\Rightarrow \text{No Vertical Asymptote.} \]

Inclined Asymptote

Put \(x = 1 \) and \(y = m \) in the highest degree terms
\[y = x - 1 \]
\[m = 1 \]
\[m - 1 \]
\[m = 1 \]

Value of \(C \) for \(m = 1 \)

\[\frac{C^2}{3} \frac{y^{(m)}}{3} + \frac{C}{1} \frac{y^{(m)}}{1} + \frac{C}{3-2} \frac{y^{(m)}}{3-2} = 0 \quad I \]

\[\Rightarrow \frac{d}{d} \frac{y^{(m)}}{1} = m^2 - m^2 + 1 \]
\[\Rightarrow \frac{d}{d} \frac{y^{(m)}}{3} = 3m^2 - 3m - 1 \]
\[\frac{d}{d} \frac{y^{(m)}}{1} = 6m - 2 \]
\[f'(m) = -1 + m^2 \]

\[f'(m) = 2m \]

and \[f'(m) = -10 - 2m \]

Put these values in \(I \), we have

\[\frac{x}{2} \cdot 2(3m-1) + c \cdot 2m - 10 - 2m = 0 \]

\[\frac{x}{2} \cdot (3m-1) + 2cm - 2m = 0 \]

Put \(m = 1 \)

\[c(3-1) + 2c - 2 - 10 = 0 \]

\[2c + 2c - 12 = 0 \]

\[c^2 + c - 6 = 0 \]

\[(c+3)(c-2) = 0 \]

\[\Rightarrow c = -3 \quad c = 2 \]

So the eq. of asymptote when \(m = 1 \) are

\[y = x - 3 \quad y = x + 2 \]

Value of \(c \) for \(m = -1 \)

We know that

\[c = -\frac{\phi_k(m)}{\phi_1'(m)} \]

\[\Rightarrow c = -\frac{m^2 - 1}{3m^2 - 2m - 1} \]

Put \(m = -1 \)

\[\Rightarrow c = -\frac{(-1)^2 - 1}{3(-1)^2 - 2(-1) - 1} \]

\[\Rightarrow c = 0 \]

So eq. of the asymptote when \(m = -1 \) is

\[y = -x \]

Hence the required asymptotes are

\[y = x - 3 \quad y = x + 2 \quad \text{and} \quad y = -x \]
\[
\begin{align*}
\text{Horizontal Asymptote} & \quad \text{Coefficient of highest power of } x = 1 \\
\quad & \quad \text{Put } y = 0 \\
\quad & \quad \text{is an asymptote.}
\end{align*}
\]

Vertical Asymptote
\[
\begin{align*}
\text{Coefficient of highest power of } y & = 1 \\
\Rightarrow & \quad \text{There is no Vertical Asymptote.}
\end{align*}
\]

Inclined Asymptote
\[
\begin{align*}
& \quad \text{Put } x = a \text{ and } y = m \text{ in the highest degree terms of } x \text{ and } y. \\
\Rightarrow & \quad \Phi(m) = m^3 + m^2 + 2m + 3 \\
& \quad \Phi'(m) = 0 \\
& \quad m^3 + 2m^2 + m = 0 \\
& \quad m(m^2 + 2m + 1) = 0 \\
\Rightarrow & \quad m = 0, \quad m = -1, -1 \\
& \text{New Value of } c \text{ for } m = 0 \\
& \quad c = -\frac{\Phi(m)}{\Phi'(m)} \\
& \quad c = 0 \\
& \text{so eq. of the asymptote is } y = 0
\end{align*}
\]

New Value of \(c \) for \(m = -1 \)
\[
\begin{align*}
& \frac{c}{2} \Phi''(m) + \frac{c}{3} \Phi'(m) + \Phi(m) = 0 \\
& \text{New } \Phi(m) = m^3 + 2m^2 + m \\
& \Phi'(m) = 3m^2 + 4m \\
& \Phi''(m) = 6m + 4
\end{align*}
\]
\[a + d = g_1(m) = 0 \]
\[a + d = g_2(m) = -m \]

Put these values in \(\Delta \)
\[\Delta = 2(3m+2) + 2 \cdot 0 - m^2 = 0 \]

Put \(m = -1 \)
\[\Rightarrow c^2 (3(-1)+2) - (-1) = 0 \]
\[c^2 (-1) + 1 = 0 \]
\[1 - c^2 = 0 \]
\[c^2 = 1 \]
\[c = \pm 1 \]

\[\Rightarrow c = 1, \; c = -1 \]

So eqs of the asymptotes are
\[y = -x + 1 \; \; \; y = -x - 1 \]

Hence the required asymptotes are
\[y = 0 \; , \; y = -x - 1 \; \; \; \text{and} \; \; y = -x + 1 \]

Q.9.

Horizontal Asymptote:

Coefficient of highest power of \(x = y \)

\[\Rightarrow y = 0 \; \; \; \text{i.e. an asymptote.} \]

Vertical Asymptote:

Coefficient of highest power of \(y = 1 \)

\[\Rightarrow \text{there is no vertical asymptote.} \]

Oblique Asymptote:

Put \(m = 1 \) and \(y = m \) in highest degree terms

\[a + d = g_y(m) = m^4 + m - 2m^3 \]
\[\Rightarrow m^4 + m - 2m^3 = 0 \]
\[m^4 - 2m^3 + m = 0 \]
\[m(m^3 - 2m^2 + 1) = 0 \]
Value of C for m = 1

\[
\frac{c^2}{3} \phi_3(m) + \frac{c}{3} \phi_3'(m) + \phi_3(m) = 0
\]

Now \(\phi_3(m) = m^3 - 3m^2 + m\)
\(\phi_3'(m) = 3m^2 - 4m + 1\)
\(\phi_3''(m) = 6m - 4\)
and \(\phi_3(m) = 0\)
\(\phi_3'(m) \neq 0\)
\(\phi_3''(m) = -1 - m\)

Put these values in I

\[
\frac{c^2}{2} (6m-4) + c(0) - 1 - m = 0
\]

Put \(m = 1\)

\[
\frac{c^2}{2} (6-4) - 1 - 1 = 0
\]
\[
\frac{c^2}{2} \cdot 2 - 2 = 0
\]
\[
c^2 - 2 = 0
\]
\[
c = \pm \sqrt{2}
\]

So eqs. of asymptote are
\(y = x + \sqrt{2}, y = x - \sqrt{2}\)

New Value of C for \(m = 0\)

We know that:

\[
C = - \frac{\phi_3(m)}{\phi_3'(m)}
\]

\[
C = - \frac{0}{\phi_3'(m)}
\]

\(\Rightarrow C = 0\)

So eq. of asymptote is \(y = 0\)

Hence the required asymptote are
\(y = 0, y = x + \sqrt{2}, a d y = x - \sqrt{2}\)
Q.10. \(x^2 y^2 (x^2 - y^2) = (x^2 + y^2)^3 \)
\(x^2 y^2 (x^2 + y^2) - (x^2 + y^2)^3 = 0 \)
\(x^2 + x^2 y^2 - 3x^2 y^2 - (x^2 + 3x^2 y^2 + 3x^2 y^2) = 0 \)
\(x^2 - x^2 y^2 - x^2 y^2 - x^2 y^2 = 0 \)
\(x^2 - x^2 y^2 - x^2 y^2 = 3x^2 y^2 - 3x^2 y^2 = 0 \)

Horizontal Asymptote
- Coefficient of highest power of \(x = y^4 - 1 \)
 - Put \(y^2 = 1 \)
 - \(y = \pm 1 \) is an asymptote.

Vertical Asymptote
- Coefficient of highest power of \(y = x^2 - 1 \)
 - Put \(x^2 = 1 \)
 - \(x = \pm 1 \) is an asymptote.

Inclined Asymptote
- Put \(x = 1 \) and \(y = m \) in the highest-degree terms.
 - \(\frac{d}{dx} (m) = m^2 - 2mx + m^2 \)
 - \(\frac{d}{dx} (m) = 0 \)
 - \(m^3 - 2m^2 + m^2 = 0 \)
 - \(m^3 - m^2 = 0 \)
 - \(m^2 = 0 \), \(m^2 = 1 \)
 - \(m = 0, 1 \)

- \(m = 0, 1 \) was already used.
 - No need to check for it.

Value of \(C \) for \(m = 1,1 \)

Formula for \(C \)

\[\frac{C}{2!} \left(\frac{d^2}{dx^2} (m) + \frac{C}{1!} \frac{d}{dx} (m) + \frac{C}{0!} (m) \right) = 0 \]
\[f'(m) = m^6 - 5m^3 + \lambda \\
\]
\[g'(m) = 6m^5 - 3m^2 + \mu \\
\]
\[h'(m) = 3m^4 - 2m^2 + \nu \\
\]
\[ad \]
\[f'(m) = 0 \\
\]
\[g'(m) = 0 \\
\]
\[ad \]
\[g'(m) = -1 + m^6 - 3m^4 - 3m^2 \\
\]
\[Put \text{ these values in} \]
\[\frac{c^2}{2} (3m^6 - 24m^4 + 2) + C(0) - 1 + m^6 - 3m^4 - 3m^2 = 0 \]
\[\text{Put} \ m = 1 \], we have
\[\frac{c^2}{2} (30 - 24 + 2) - 1 - 1 - 3 = 0 \]
\[\frac{c^2}{2} (0) = 8 = 0 \]
\[4c^2 = 8 \]
\[c^2 = 2 \]
\[\Rightarrow c = \sqrt{2}, -\sqrt{2} \]

So the inclined asymptotes when \(m = 1 \) and \(c = \sqrt{2}, -\sqrt{2} \) are
\[y = a(x - b) \quad \text{and} \quad y = a(x - b) \]

Value of \(c \) for \(m = -1, 1 \)

Put \(m = -1 \) in \(II \), we have
\[\frac{c^2}{2} (30 - 24 + 2) - 1 - 1 - 3 = 0 \]
\[\Rightarrow c = \sqrt{2}, -\sqrt{2} \]

So eq. of asymptotes when \(m = -1 \) and \(c = \sqrt{2}, -\sqrt{2} \) are
\[y = -x + \sqrt{2}, \quad y = -x - \sqrt{2} \]

Hence, the required asymptotes are
\[y = \pm 1, \quad x = \pm 1, \quad x^2 + 4x + \sqrt{2}, \quad y = \pm x - \sqrt{2} \]

\[xy^2 = (x + y)^2 \]
\[x^2 - 2xy - y^2 = 0 \]

Horizontal Asymptote

Coefficient of highest power of \(x = 1 \)

\(\Rightarrow \) no horizontal asymptote.

Vertical Asymptote

Coefficient of highest power of \(y = x - 1 \)
\[x = 1 \]

\[\Rightarrow x = 1 \] is an asymptote.

Inclined Asymptote

Put \(x = 1 \) and \(y = m \) in the highest degree terms.

\[\Rightarrow f(x,y) = m^2 - m + 1 \]

Put \(f(m) = 0 \)

\[\Rightarrow m^2 - m + 1 = 0 \]

\[m = 0, m = 1 \]

\[\therefore \] there is no oblique asymptote.

Horizontal Asymptote

Coefficients of highest powers of \(x = -y - 3 \)

Put \(-y - 3 = 0 \)

\[-y = 3 \]

\[y = -3 \] is an asymptote.

Vertical Asymptote

Coefficients of highest powers of \(y = x + 1 \)

Put \(x + 1 = 0 \)

\[\Rightarrow x = -1 \] is an asymptote.

Oblique Asymptote

Put \(x = 1 \) and \(y = m \) in the highest degree terms.

\[\Rightarrow \frac{\partial f}{\partial y} = m^2 - m + 1 \]

Put \(\frac{\partial f}{\partial y} = 0 \)

\[\Rightarrow m^2 - m + 1 = 0 \]

\[m = 0, m = 1 \]

\[\therefore \] when \(m = 0 \) there is no inclined asymptote.

We look for \(m = 1 \)

Value of \(c \) for \(m = 1 \)

\[c = -\frac{\partial f}{\partial y} \]

\[\Rightarrow 1 \]
\[f(m) = m^2 - m \]
\[g'(m) = 2m - 1 \]
\[h'(m) = -3 - 2m + m^2 \]

Put these values in \(\Sigma \), we have
\[C = -\frac{-3 - 2m + m^2}{2m - 1} \]

Put \(m = 1 \)
\[\Rightarrow C = -\frac{-3 - 2 \cdot 1}{2 - 1} = -\frac{5}{1} = 4 \]

So eq. of inclined asymptote when \(m = 1 \) and \(C = 4 \) is
\[y = x + 4 \]

Hence the required asymptotes are
\[y + 3 = 0 \quad \text{and} \quad x + 1 = 0 \]

Q.13
\[r = \frac{a}{\theta} \]
\[\theta = 0 \]
\[r = \frac{a}{\theta} \]
\[\text{Diff. w.r.t. } \theta. \]
\[\frac{dr}{d\theta} = -\frac{a}{\theta^2} \]
\[\frac{d\theta}{d\theta} = -\frac{a}{\theta} \]

\[x = r \cos \theta \]
\[y = r \sin \theta \]
\[x \frac{dy}{dx} = \frac{r \cos \theta \frac{d}{d\theta} (r \sin \theta) - r \sin \theta \frac{d}{d\theta} (r \cos \theta)}{r^2} = \frac{r \cos \theta \sin \theta - r \sin \theta \cos \theta}{r^2} = -1 \]

\[\text{Now } \lim_{\theta \to 0} \frac{b \frac{d}{d\theta} \theta}{ \frac{d}{d\theta} \theta} = -a \]
\[\rho = \frac{a}{\theta} \]
\[\lim_{\theta \to 0} \rho = -a \]

Hence the asymptote is
\[\rho = r \sin (\theta - \theta) \]
\[-a = r \sin (\theta - \theta) \]
\[-a = r \sin (-\theta) \]
\[-a = -r \sin \theta \]
\[\begin{align*}
&f_1(m) = m^2 - m \\
&f_1'(m) = 2m - 1 \\
&f_2(m) = -3 - 2m + m^2
\end{align*} \]

Put these values in \(I \), we have
\[C = -\frac{3 - 2m + m^2}{2m - 1} \]

Put \(m = 1 \)
\[C = -\frac{3 - 2 \times 1}{2 - 1} = -\frac{4}{1} = 4 \]

So eq. of inclined asymptote when \(m = 1 \) and \(c = 4 \) is
\[y = x + 4 \]

Hence the required asymptotes are
\[y + 3 = 0, \quad x + 1 = 0 \quad \text{and} \quad y = x + 4 \]

\[r = \frac{a}{\Theta} \]

\[\Theta = 0 \]

\[r e \Theta = 0 \]

Diff. wrt. \(\Theta \).
\[\frac{dr}{d\Theta} = -\frac{a}{\Theta^2} \]
\[\frac{d\Theta}{dh} = -\frac{a}{\Theta} \]
\[h x \beta r^3 \]
\[\frac{\rho d\theta}{dh} = \frac{a^2}{\Theta^2} - \frac{\Theta}{a} = -a \]

Now \(\rho = \lim_{\Theta \to 0} \Theta \frac{d\theta}{dh} \)
\[\rho = \lim_{\Theta \to 0} -a \]
\[\rho = -a \]

Hence the asymptote is
\[\rho = r \sin (\theta - \Theta) \]
\[-a = r \sin (\Theta - \Theta) \]
\[-a = r \sin (\theta - \Theta) \]
\[-a = r \sin \Theta \]
\[\frac{a}{r} = \sin \Theta \quad \text{is the required asymptote.} \]
Q. 14.

\[r = a \tan \theta \quad \longrightarrow \quad I \]

Put \(r = \infty \)

\[\Rightarrow \infty = \frac{a}{\tan \theta} \quad \Rightarrow \quad \sqrt{\theta} = \frac{a}{\theta} \quad \Rightarrow \quad \sqrt{\theta} = 0 \quad \Rightarrow \theta = 0 \]

\[r = a \tan \theta \quad \rightarrow \quad \theta = \theta \]

\[\frac{dr}{d\theta} = -\frac{1}{2} a \tan^{-1} \theta \]

\[\frac{d\theta}{d\theta} = \frac{2}{a \tan^{-1} \theta} \]

\[\frac{dr}{d\theta} = -\frac{2}{a} \theta^{-1/2} \]

\[\times \text{ by } r^2 \]

\[\Rightarrow \quad r^2 \frac{d\theta}{d\theta} = \frac{a^2}{\theta} - \frac{2}{a} \theta^{3/2} \]

\[= -\frac{2a \sqrt{\theta}}{\theta} \]

Now

\[P = \lim_{\theta \to 0} r^2 \frac{d\theta}{d\theta} \]

\[P = \lim_{\theta \to 0} -2a \sqrt{\theta} \]

\[P = 0 \]

So, the equation of the asymptote is

\[\rho = r \sin (\theta - \phi) \]

\[0 = r \sin (\theta - \phi) \]

\[r \sin (\theta - \phi) = 0 \]

\[-r \sin \theta = 0 \]

\[r \sin \theta = 0 \]

\[\sin \theta = 0 \]

\[\theta = 0 \]

Q. 15.

\[r = a \cos \theta + b \quad \longrightarrow \quad (\theta) \]

\[r = a \cos \theta + b \]

\[r = \frac{a}{\sin \theta} + b \sin \theta \quad \longrightarrow \quad I \]

Put \(r = \infty \)

\[\Rightarrow \quad \sin \theta = 0 \]

\[\theta = 0, \pi \]

\[\text{i.e. } \theta = a, \beta = \pi \]
New Diff (r) w.r.t. \(\theta \):

\[
\frac{dr}{d\theta} = -a \cos \theta \sin \theta
\]

\[
\frac{d\theta}{dr} = \frac{1}{a \cos \theta \sin \theta}
\]

Multiply \(r \):

\[
\implies \frac{d}{dr} \left(r^2 \right) = \frac{(a + b \sin \theta)^2}{\sin^2 \theta} \cdot \frac{\sin \theta \cdot \sin \theta}{a \cos \theta}
\]

\[
= -\frac{(a + b \sin \theta)^2}{a \cos \theta}
\]

Value of \(\rho \) when \(\alpha = 0 \):

\[
\rho = \lim_{\theta \to 0} \frac{(a + b \sin \theta)^2}{a \cos \theta}
\]

\[
= -\frac{a^2}{a} = -a
\]

So eq. of the asymptote when \(\alpha = 0 \) is:

\[
\rho = r \sin (\alpha - \theta)
\]

\[
a = r \sin \theta
\]

\[
a = r \sin \theta \quad \text{is the asymptote.}
\]

Value of \(\rho \) when \(\beta = \pi \):

\[
\rho = \lim_{\theta \to -\pi} \frac{(a + b \sin \theta)^2}{a \cos \theta}
\]

\[
= -\frac{a^2}{-a} = a
\]

So eq. of the asymptote when \(\beta = \pi \) is:

\[
\rho = r \sin (\beta - \theta)
\]

\[
a = r \sin (\pi - \theta)
\]

\[
a = r \sin \theta
\]

\[
\implies r \sin \theta = a \quad \text{is the asymptote.}
\]
\[r = 2a \sin \theta \sin \theta \]
\[r = 2a \sin \theta \]
\[r = \frac{2a \sin \theta}{\cos \theta} \]

Put \(r = \alpha \).

\[\Rightarrow \alpha \cos \theta = 0 \]
\[\theta = \frac{\pi}{2}, \frac{3\pi}{2} \]
\[\Rightarrow \alpha = \frac{\pi}{2}, \frac{3\pi}{2} \]

\[\text{Diff. w.r.t. } \theta \]
\[\frac{dr}{d\theta} = 2a \left[\frac{\cos \theta 2 \sin \theta \cos \theta - \sin^3 \theta (\sin \theta)}{\cos^3 \theta} \right] \\
= 2a \left[\frac{2 \sin \theta \cos^2 \theta + \sin^3 \theta}{\cos^3 \theta} \right] \\
\]
\[\text{by } r^2 \]
\[\frac{dr}{d\theta} = \frac{2a \sin^3 \theta}{4a^2 \sin^2 \theta} \]
\[= 2a \left[\frac{2 \sin \theta \cos^2 \theta + \sin^3 \theta}{\cos^3 \theta} \right] \\
= \frac{2a \sin^3 \theta}{\cos^3 \theta} \\
= 2a \sin \theta \frac{\sin^3 \theta}{\cos^3 \theta} \]

Now
\[p = \lim_{\theta \to \frac{\pi}{2}} \frac{r^2}{\theta} \]
\[p = \lim_{\theta \to \frac{\pi}{2}} \frac{2a \sin^3 \theta}{\theta \cos^3 \theta + \sin^3 \theta} \]
\[p = \frac{2a \sqrt{1}}{\theta \cos^3 \theta + \sin^3 \theta} \]

So eq. \(r^2 \) the asymptote when \(\alpha = \frac{\pi}{2} \) is
\[2a = \theta \sin (\frac{\pi}{2} - \theta) \]
\[2a = r \cos \theta \] is the asymptote.

Now
\[p = \lim_{\theta \to \frac{3\pi}{2}} \frac{2a \sin^3 \theta}{\theta \cos^3 \theta + \sin^3 \theta} \]
\[= \frac{2a (-1)^3}{\theta \cos^3 \theta + \sin^3 \theta} \]
So Eq. of the asymptote when \(\beta = \frac{3\pi}{2} \) and \(\rho = -2a \) is
\[
-2a = r \sin \left(\frac{3\pi}{2} - \phi \right)
\]
\[
-2a = -r \cos \phi
\]
\[
\Rightarrow 2a = r \cos \phi
\]
so that the required asymptote is
\[
2a = r \cos \phi.
\]
\[
r \sin 2\phi = a \cos 3\phi
\]
\[
r = \frac{a \cos 3\phi}{\sin 2\phi}
\]
Putting \(r = \rho \) in \(\Sigma \)
\[
\Rightarrow \rho = \frac{a \cos 3\phi}{\sin 2\phi}
\]
\[
\Rightarrow \sin 2\phi = 0
\]
\[
2\phi = 0, \pi
\]
\[
\phi = 0, \frac{\pi}{2}
\]
\[
\rho = 0, \frac{a \pi}{2}
\]
Difference w.r.t. \(\theta \)
\[
\frac{d\rho}{d\theta} = a \left(\frac{\sin 2\phi (-3 \sin 3\phi) - \cos 3\phi 2 \cos \phi}{\sin^2 2\phi} \right)
\]
\[
\frac{d\theta}{d\phi} = a \left(\frac{-3 \sin 3\phi \sin 3\phi - 2 \cos 3\phi \cos 2\phi}{\sin^2 3\phi} \right)
\]
\[
\Rightarrow \frac{d\rho}{d\phi} = \frac{\sin^3 2\phi}{\cos^3 3\phi} \cdot a \left[\frac{-3 \sin 3\phi \sin 3\phi - 2 \cos 3\phi \cos 2\phi}{\sin^2 2\phi} \right]
\]
\[
\Rightarrow \frac{d\rho}{d\phi} = \frac{-3 \sin 2\phi \sin 3\phi - 2 \cos 3\phi \cos 2\phi}{a \cos^3 3\phi}
\]
\[
\Rightarrow \frac{d\rho}{d\phi} = -\frac{a \cos^3 3\phi}{3 \sin 2\phi \sin 3\phi + 2 \cos 3\phi \cos 2\phi}
\]
Value of \(\rho \) when \(\phi = 0 \)
\[
\rho = \lim_{\phi \to 0} \frac{a \cos 3\phi}{\sin 2\phi}
\]
\[
\rho = \lim_{\phi \to 0} \frac{a \cos 3\phi}{3 \sin 2\phi \sin 3\phi + 2 \cos 3\phi \cos 2\phi}
\]
\[
\rho = \frac{a((1))}{3(0)(0) + 2((1)(1))}
\]
\[
\rho = -\frac{a}{2}
\]
So eq. of the asymptote is
\[P = r \sin (\alpha - \beta) \]
\[- \frac{a}{2} = r \sin (\alpha - \beta) \]
\[- \frac{a}{2} = - r \sin \theta \]
\[3r \sin \theta = a \quad \text{is an asymptote}. \]

Value of \(P \) when \(\beta = \frac{\pi}{3} \):
\[\rho = \lim_{\theta \to \frac{\pi}{3}} \frac{a \cos^3 \theta}{3 \sin^2 \theta \sin \theta + 2 \cos^3 \cos \theta} \]
\[\rho = - \frac{a \cos^3 \theta}{3 \sin^2 \frac{\pi}{3} \sin \frac{\pi}{3} + 2 \cos^3 \cos \frac{\pi}{3}} \]
\[\rho = - \frac{a \cos^3 \theta}{3 \sin^2 \frac{\pi}{3} \sin \frac{\pi}{3} + 2 \cos^3 \cos \frac{\pi}{3}} \]
\[\rho = - \frac{a \cos^3 \theta}{3 \sin^2 \frac{\pi}{3} \sin \frac{\pi}{3} + 2 \cos^3 \cos \frac{\pi}{3}} \]

\[P = 0 \]
So eq. of the asymptote is
\[P = h \sin (\beta - \theta) \]
\[0 = h \sin (\frac{\pi}{3} - \theta) \]
\[0 = h \sin \theta \]
\[\Rightarrow \quad \cos \theta = \infty \]
\[\cos \theta = \infty \]
\[\theta = \frac{\pi}{2} \]

Hence, the required asymptote are
\[3r \sin \theta = a \quad \text{and} \quad \theta = \frac{\pi}{3} \]

\[v = \frac{a}{1 - \cos \theta} \quad \text{and} \quad 2 \]

Put \(r = \infty \):
\[1 - \cos \theta = 0 \]
\[\cos \theta = 1 \]
\[\theta = 0 \quad \text{i.e.} \ a = 0 \]

Diff. 2 w.r.t. \(\theta \):
\[\frac{d\theta}{d\theta} = \frac{a (1 - \cos \theta)^2 (0 + \sin \theta)}{(1 - \cos \theta)^2 (0 + \sin \theta)} \]
\[= - \frac{a}{(1 - \cos \theta)^2} (0 + \sin \theta) = - \frac{a \sin \theta}{(1 - \cos \theta)^2} \]
\[
\frac{d}{dx} \frac{1}{\sqrt{a^2 - \sin^2 \theta}} = \frac{(a^2 - \sin^2 \theta)^{-\frac{3}{2}} \cdot \cos \theta}{a^2 - \alpha^2}
\]

\[
\frac{d}{d\theta} \frac{1}{\sin \theta} = -\frac{1}{\sin \theta}
\]

\[
\frac{d^2}{d\theta^2} \frac{1}{\sin \theta} = -\frac{a}{\sin^3 \theta}
\]

Value of \(P \) when \(\alpha = 0 \):

\[
P = \lim_{\theta \to 0} r^2 \frac{d\theta}{d\theta} = 0
\]

\[
P = \lim_{\theta \to 0} \frac{a}{\sin \theta}
\]

\[
P = \infty
\]

\text{as} \quad r \text{ tends to} \infty

\text{There is no asymptote for the given curve.}

\[
r \sin \theta = a
\]

\[
r = \frac{a}{\sin \theta}
\]

At \(r = \infty \):

\[
\sin \theta = 0
\]

\[\theta = \frac{\pi}{2}, k \pi\] \text{where } k = 0, 1, 2, 3, \ldots

\[\theta = \frac{\pi}{n}, \text{ i.e. } \alpha = \frac{\pi}{n}\]

Differentiate w.r.t. \(\theta \):

\[
\frac{d}{d\theta} \sin \theta = -\frac{a}{\sin \theta} \cos \theta
\]

\[
\frac{d}{d\theta} \sin \theta = -\frac{a}{\sin \theta} \cos \theta
\]

\[\Rightarrow \frac{d^2}{d\theta^2} \sin \theta = -\frac{a}{\sin \theta} \cos \theta
\]

\[\Rightarrow \frac{d^2}{d\theta^2} \sin \theta = -\frac{a}{\sin \theta} \cos \theta
\]

Applying \(\lim_{\theta \to k\pi}\):

\[
\lim_{\theta \to k\pi} r^2 \frac{d\theta}{d\theta} = \lim_{\theta \to k\pi} \frac{a}{\sin \theta}
\]
\[\rho = -\frac{a}{n\sin^2 \kappa \bar{\kappa}} \]

\[= \frac{-a}{\sin^2 \bar{\kappa} \bar{\kappa}} \]

So eq. (7) the asymptote is

\[\rho = r \sin (\kappa - \theta) \]

\[-a \frac{n \sec \kappa}{\sin^2 \bar{\kappa} \bar{\kappa}} = r \sin (\kappa - \theta) \]

\[-a \frac{n \sec \kappa}{\sin^2 \bar{\kappa} \bar{\kappa}} = -r \sin (\kappa - \theta) \]

\[-a \frac{n \sec \kappa}{\sin^2 \bar{\kappa} \bar{\kappa}} = r \sin (\kappa - \theta) \]

\[-a \frac{n \sec \kappa}{\sin^2 \bar{\kappa} \bar{\kappa}} = -r \sin (\kappa - \theta) \]

\[r (e^\alpha - 1) = a (e^\beta - 1) \]

\[r = \frac{a(e^\beta - 1)}{e^\alpha - 1} \]

Let \(r = 0 \)

\[\Rightarrow \quad e^\alpha - 1 = 0 \]

\[\Rightarrow \quad e^\alpha = 1 \]

\[\Rightarrow \quad e^\beta = e^0 \]

\[\Rightarrow \quad \alpha = 0 \quad \text{or} \quad \beta = 0 \]

Diff. (1) w.r.t. \(\alpha \)

\[\frac{dr}{d\alpha} = a \left[\frac{(e^\alpha - 1)(e^\beta) - (e^\alpha)(e^\beta)}{(e^\alpha - 1)^2} \right] \]

\[= a \left[\frac{e^\alpha(e^\beta - 1) - e^\beta}{(e^\alpha - 1)^2} \right] \]

\[\times \frac{e^\alpha}{(e^\alpha - 1)^2} \]

\[\Rightarrow \quad \frac{1}{a^2} \cdot \frac{dr}{d\alpha} = \frac{(e^\beta - 1)}{a^2 (e^\alpha - 1)^2} \left(\frac{2ae^\alpha}{a^2 (e^\alpha - 1)^2} \right) \]

\[= -\frac{2ae^\alpha}{a^2 (e^\alpha - 1)^2} \]

\[\Rightarrow \quad \frac{dr}{d\alpha} = -\frac{a(e^\beta - 1)}{2e^\alpha} \]

Now

\[\rho = \lim_{\alpha \to 0} \frac{dr}{d\alpha} \]
\[
\rho = - \frac{a(e^{\theta})^4}{2e^\theta} \quad \text{as} \quad \rho \to 0
\]

So eq. 8 the asymptote is

\[
\rho = a (\sin(\theta - \phi))
\]

\[-2a = a \sin(\theta - \phi)
\]

\[2a = a \sin \theta]

is the required asymptote.

\[
\rho^2 \sin \theta = a^2
\]

\[
\Rightarrow \quad \rho = \frac{a^2}{\sin \theta}
\]

At \(r = \infty\)

\[
\Rightarrow \quad \sin \theta = 0
\]

\[\theta = k \frac{\pi}{2}
\]

where \(k = 0, 1, 2, 3, \ldots \)

\[
\theta = k \frac{\pi}{2}
\]

Diff. (1) w.r.t. \(\theta\):

\[
\frac{dr}{d\theta} = - \frac{a^2}{\sin^2 \theta} \cos \theta
\]

\[
\frac{d\rho}{d\theta} = - \frac{a^2 \cos \theta}{\sin \theta}
\]

\[
\frac{d\rho}{d\theta} = - \frac{a^2 \cos \theta}{\sin \theta}
\]

\[
\Rightarrow \quad \frac{d\rho}{d\theta} = - \frac{a^2 \cos \theta}{\sin \theta}
\]

\[
x \text{ by } a
\]

\[
\Rightarrow \quad \frac{d\rho}{d\theta} = - \frac{a^2 \cos \theta}{\sin \theta}
\]

\[\rho^2 \frac{d\theta}{d\rho} = - \frac{\sin \theta}{\cos \theta}
\]

\[\rho^2 \frac{d\theta}{d\rho} = - \frac{\sin \theta}{\cos \theta}
\]

\[\rho = \frac{a}{(\sin \theta)^{1/2}}
\]

\[\rho = \frac{a}{(\sin \theta)^{1/2}}
\]

Conclusion:

\[
\rho = \frac{a}{(\sin \theta)^{1/2}}
\]
\[\frac{d^2 \theta}{d\lambda^2} = -\frac{a \left(\sin \theta \right)^{1-n}}{\cos \theta} \]

Now
\[p = \lim_{\theta \to \pi \over 2} \frac{d \theta}{d\lambda} \]
\[= \lim_{\theta \to \pi \over 2} \frac{a (\sin n \theta)^{n-1}}{\cos \theta} \]
\[= \lim_{\theta \to \pi \over 2} \frac{a (\sin n \theta)^{n-1}}{\cos \theta} \]
\[= 0 \]
So eq. 7 asymptote is
\[p = a \sin (n \theta - \phi) \]
\[c = r \sin (\pi \over 2 - \phi) \]
\[\Rightarrow \sin (\theta - \phi) = 0 \]
\[\frac{\pi \over 2 - \phi}{\pi \over 2} = 0 \]
\[\theta = \frac{\pi \over 2} \]
\[i's an asymptote. \]
\[r^2 \sin^2 \theta = a^2 \sin 2\theta \]
\[r = a \sqrt{2} \]
\[\rho = \infty \]
\[\Rightarrow \sin \theta = 0 \]
\[\theta = 0, \pi \]
\[\beta = \pi \]

Riff. (i) w.r.t. \'\theta'
\[dr \frac{d\theta}{dr} = a \left\{ \frac{-2 \sin 2\theta \cos \theta + \cos 2\theta \sin 2\theta}{\sin^2 \theta} \right\} \]
\[\frac{dr}{d\theta} = -\frac{a}{dr} \left\{ \frac{2 \sin \theta \cos \theta + \cos \theta \sin \theta}{\sin^2 \theta} \right\} \]
\[
x \text{by } \frac{1}{h^2} \Rightarrow \frac{1}{h^2} \frac{dh}{d\theta} = -\sin\theta - \frac{x}{2r} \left(\frac{2\sin\theta \sin 2\theta + \cos \theta \cos 2\theta}{\sin \theta} \right)
\]

\[
\frac{1}{h^2} \frac{dh}{d\theta} = \frac{1}{\partial \alpha^2} \left(\frac{2\sin \theta \sin 2\theta + \cos \theta \cos 2\theta}{\sin \theta} \right)
\]

\[
\frac{1}{h^2} \frac{dh}{d\theta} = -\frac{1}{\partial \alpha^2} \left(\frac{2\sin \theta \sin 2\theta + \cos \theta \cos 2\theta}{\sin \theta} \right)
\]

\[
\frac{1}{h^2} \frac{dh}{d\theta} = -\frac{1}{\partial \alpha^2} \left(\frac{2\sin \theta \sin 2\theta + \cos \theta \cos 2\theta}{\sin \theta} \right)
\]

\[
\frac{1}{h^2} \frac{dh}{d\theta} = -\frac{2\sin \theta \sin 2\theta + \cos \theta \cos 2\theta}{\sin \theta} \frac{\sin \theta}{\partial \alpha^2}
\]

\[
\frac{1}{h^2} \frac{dh}{d\theta} = -\frac{2\sin \theta \sin 2\theta + \cos \theta \cos 2\theta}{\sin \theta}
\]

\[
\frac{1}{h^2} \frac{dh}{d\theta} = -\frac{2\sin \theta \sin 2\theta + \cos \theta \cos 2\theta}{\sin \theta}
\]

Now \text{ Value of } \rho \text{ when } \alpha = 0
\]

\[
\rho = \lim_{\alpha \to 0} \frac{2\alpha \tan \frac{\theta}{2} \theta}{\sin \theta \sin \theta + \cos \theta \cos \theta}
\]

\[
\rho = -\lim_{\alpha \to 0} \frac{2\alpha \tan \frac{\theta}{2} \theta}{\sin \theta \sin \theta + \cos \theta \cos \theta}
\]

\[
\Rightarrow \rho = 0
\]

So eq. (8) asymptotic is
\[
\rho = r \sin (\pi - \theta)
\]

\[
0 = r \sin (0 - \theta)
\]

\[
\rho = -r \sin \theta
\]

\[
\Rightarrow \rho = 0
\]

So eq. (8) asymptotic is
\[
0 = r \sin (\pi - \theta)
\]

\[
0 = r \sin \theta
\]

\[
\Rightarrow \theta = 0 \text{ is an asymptote}
\]

\[
\text{Now Value of } \rho \text{ when } \theta = \pi
\]

\[
\rho = \lim_{\theta \to \pi} \frac{2\alpha \tan \frac{\theta}{2} \theta}{\sin \theta \sin \theta + \cos \theta \cos \theta}
\]

\[
\rho = -\lim_{\theta \to \pi} \frac{2\alpha \tan \frac{\theta}{2} \theta}{\sin \theta \sin \theta + \cos \theta \cos \theta}
\]

\[
\Rightarrow \rho = 0
\]

So eq. (8) asymptotic is
\[
0 = r \sin (\pi - \theta)
\]

\[
0 = r \sin \theta
\]

\[
\Rightarrow \theta = 0 \text{ is an asymptote}
\]