Tangent and Normal

Let \(y = f(x) \) be the curve, and \(P(x_1, y_1) \) be any point on it.

\[
\begin{align*}
\frac{dy}{dx} &= f'(x) \\
\left(\frac{dy}{dx} \right)_{P(x_1,y_1)} &= f'(x_1)
\end{align*}
\]

Tangent. If a line touches the curve at the pt. \(P(x_1, y_1) \), then this line is called Tangent to the curve at the pt. \(P(x_1, y_1) \). The equation of the Tangent at this point to the curve \(y = f(x) \) is given by

\[
y - y_1 = m \cdot (x - x_1)
\]

Similarly \(y - y_1 = f'(x_1) \cdot (x - x_1) \)

Normal. A line passing through the pt. \(P(x_1, y_1) \) to the Tangent at the pt. \(P(x_1, y_1) \) to the curve is called the Normal at that pt. \(P \).

The equation of the Normal at the pt. \(P(x_1, y_1) \) to the curve \(y = f(x) \) is given by

\[
y - y_1 = -\frac{1}{f'(x_1)} \cdot (x - x_1)
\]

Example 7. Find the equation of the normal to the parabola \(y^2 = 4ax \) in the form \(y = mx - am^3 \)

Soln.

\[
y^2 = 4ax
\]

\[
\frac{dy}{dx} = 4a \\
\Rightarrow \frac{dx}{dy} = \frac{a}{y}
\]

\[
\frac{dy}{dx} \bigg|_{P(x_1,y_1)} = \frac{a}{y_1}
\]

Slope of the normal \(= -\frac{1}{\frac{a}{y_1}} = \frac{y_1}{a} \) (say)

http://www.MathCity.org
\[y = 2ax \quad \Rightarrow \quad y_1 = -2am \quad \text{(2)} \]

\[(x_1, y_1) \text{ lies on } y^2 = 4ax \]

\[y_1^2 = 4ax_1 \quad \text{(3)} \]

Put \(y = -2am \) in (3)

\[4a^2m^2 = 4ax_1 \]

\[\Rightarrow \quad x_1 = am^2 \quad \text{(4)} \]

\[P(x_1, y_1) = P(am^2, -2am) \]

Eq. of the normal

\[y - (-2am) = m(x - am^2) \]

\[y + 2am = mx - am^3 \]

\[y = mx - 2am - am^3 \]

It is as required.

Parametric form of Parabola:

\[y^2 = 4ax \]

\[x = at^2, \quad y = 2at \]

\(x = at^2, \quad y = 2at \) are the equations representing the parabola in parametric form. Where 't' is called the parameter.

Parametric form of Ellipse:

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]

\[x = a \cos \theta, \quad y = b \sin \theta \] are the parametric equations of the ellipse.

Parametric form of Hyperbola:

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \]

\[x = a \sec \theta; \quad y = b \tan \theta \]

\[\text{or} \quad x = a \cosh \theta; \quad y = b \sinh \theta \]

are the parametric equations of the hyperbola.
Example #8

Show that the points \((at, at^2)\) always lies on the parabola \(y = 4ax\). Find the condition that the chord joining the points \((at_1, at_1^2)\) and \((at_2, at_2^2)\) may be a focal chord. Find an equation of the tangent to the parabola at \((at, at^2)\).

Solution:

Let \(P(at_1, at_1^2)\) and \(Q(at_2, at_2^2)\).

Using two points formula:

\[
\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}
\]

Putting \((at_1, at_1^2)\) and \((at_2, at_2^2)\)

\[
\frac{y-at_1^2}{at_2-at_1} = \frac{x-at_1^2}{at_2-at_1}
\]

\[
\frac{y-at_1^2}{at_2-at_1} = \frac{x-at_1^2}{at_2-at_1}
\]

\[
\frac{y-at_1^2}{at_2-at_1} = \frac{x-at_1^2}{at_2-at_1}
\]

Focus: \((0, 0)\), put \(x = a\), \(y = 0\) in (1)

\[
\frac{a-at_1^2}{at_2-at_1} = \frac{x-at_1^2}{at_2-at_1}
\]

\[
\frac{a-at_1^2}{at_2-at_1} = \frac{x-at_1^2}{at_2-at_1}
\]

\[
\frac{a-at_1^2}{at_2-at_1} = \frac{x-at_1^2}{at_2-at_1}
\]
\[-t_i = \frac{1 - t_i^2}{t_i + t_i^2}\]

\[-t_i^2 - t_i t_i = 1 - t_i^2\]

\[-t_i t_i = 1\]

\[t_i, t_i = -1\]

Is the required condition for the chord PA to be focal chord.

Now equation of the tangent at \(P(\alpha t^2, 2\alpha t)\) to the parabola \(y^2 = 4\alpha x\) is

\[y - y_i = m(x - x_i)\] \(\text{(1)}\)

\[m = \text{slope of tangent at } P(\alpha t^2, 2\alpha t)\]

\[m = \frac{dy}{dx} = \frac{d(\alpha t)}{d(\alpha t^2)} = \frac{2\alpha t}{\alpha t} = \frac{2}{t}\]

\[
\Rightarrow \text{ we have to find the equation of tangent at } P(\alpha t^2, 2\alpha t).
\]

\[
\text{put } x_i = \alpha t^2, \; y_i = 2\alpha t \Rightarrow \frac{dy}{dx} = \frac{1}{t} \text{ in (2) we have}
\]

\[y - 2\alpha t = \frac{1}{t}(x - \alpha t^2)\]

\[ty - 2\alpha t = x - \alpha t^2\]

\[yt = x - \alpha t + 2\alpha t^2\]

\[\Rightarrow yt = x + \alpha t^2\]

Note: \(x = \alpha t^2, \; y = 2\alpha t\) are called the parametric equations of the parabola \(y^2 = 4\alpha x\). The point \((\alpha t^2, 2\alpha t)\) is also referred to as point "\(t\)" on the parabola.
Pedal Equation:

The pedal equation is an equation in \(p \) and \(r \) where 'r' is the distance of any point 'P' on the curve from O and \(p \) is the distance of O from the tangent at P.

Let \(P(x_1, y_1) \) be any point on the curve \(y = f(x) \). Then \(r = |OP| = \sqrt{x_1^2 + y_1^2} \) by distance formula.

\[
\begin{align*}
 r &= x_1^2 + y_1^2 \quad (1) \\
 P \text{ lies on the curve } f(x) \quad (2) \\
 \text{equation of the tangent at } P(x_1, y_1): \\
 (y - y_1) &= f'(x_1)(x - x_1) \\
 \nu &= f(x_1) \quad (3) \\
 \nu &= f'(x_1) \\
 \eta &= x - x_1 \\
 \eta &= y - y_1 \quad \text{from eq (1) to (3) will give us the equation in } p \text{ and } r \text{ called the pedal equation.}
\end{align*}
\]

Now, \(p = \text{distance of } O(0,0) \text{ from tangent line.} \)

\[
p = \frac{|f'(x_1)(0) - 0 + y_1 - x_1 f(x_1)|}{\sqrt{(f(x_1))^2 + 1}}
\]

The distance of point \(P(x_1, y_1) \) from line \(ax + by + c = 0 \) is given by

\[
p = d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}
\]

\[
\text{Elimination of } x_1 \text{ and } y_1
\]
Example #9

IF the tangent at any point \(Q \) of the parabola meets \(y \)-axis at \(A, \) then prove that
\[
\hat{PAF} = 90^\circ
\]
where \(P \) is any point on the parabola, \(A \) is point on \(y \)-axis and \(F \) is focus.

Proof

Consider that the tangent at the point \(P(at^2, 2at) \) of the parabola,
\[y^2 = 4ax \]
meets \(y \)-axis at the point \(A. \)

\(P(a, 0) \) is the focus of this parabola.

We know that the equation of the tangent at the point \((at^2, 2at) \) is
\[x - ty + at^2 = 0 \]
for the coordinates of \(A, \) put \(x = 0 \)
then
\[0 - 2at + at^2 = 0 \]
\[at^2 - 2at + 0 = 0 \]
\[y = at \]
the coordinates of \(A(0, at) \)

\[m_1 = \text{slope of } (PA) = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2at - at}{2at^2 - at^2} = \frac{at}{at^2} = \frac{1}{t} \]

by\[
m_2 = \text{slope of } (FA) = \frac{a - at}{0 - 2at} = \frac{-at}{a} = -t
\]

Now \[m_1 m_2 = \frac{1}{t} \cdot -t = -1 \]

\[\Rightarrow \overrightarrow{PA} \perp \overrightarrow{FA} \]
\[\Rightarrow \hat{PAF} = 90^\circ \]
Example 10

Find the locus of the middle points of a system of parallel chords of the parabola \(y = 4ax \).

Soln. Given \(y = 4ax \)

Consider a system of chords of the parabola.

Let \(m \) be their slopes

and \(y = mx + c \) \(\cdots (2) \)

be the equation of the chord \(PA \), representative of the chords.

Further let \(R = (h,k) \)

be the middle point of the chord \(PA \) not on the parabola.

Now \(P \) from \((2) \) in \((1) \)

\[(mx + c)^2 = 4ax \]

\[m^2x^2 + 2mcx + c^2 = 4ax \]

\[m^2x^2 + 2(mc - 2a)x + c^2 = 0 \] \(\cdots (3) \)

\(\Delta \) is quadratic in \(x \);

the values of \(x \) obtained from \((3) \) will give as the \(x \)-coordinates of \(P \) and \(Q \).

\(R \) is the mid pt. of \(P \) \& \(Q \).

\[h = \frac{x_1 + x_2}{2} \]

\[h = \frac{-2(mc - 2a)}{m^2} \]

\[h = \frac{-(mc - 2a)}{m^2} \]

\(\cdots (4) \)

\[\Rightarrow \; R = (h,k) \] lies on \((2) \)

\[\Rightarrow \; h = mh + c \]

\[\Rightarrow \; c = k - mh \] \(\cdots (5) \)

http://www.MathCity.org
\[\text{(5) im}(y) = \gamma \Rightarrow h = \frac{-(m(k - mh) - 2a)}{m^2} \]

\[
\begin{align*}
hm^2 &= -(mk - m^2h) - 2a) \\
m^2h &= -mk + m^2h + 2a \\
m^2h - m^2h &= -mk + 2a \\
o &= -mk + 2a \\
vh &= 2a/m \\
k &= \frac{2a}{m} \\
\end{align*}
\]

\[i.e. \text{ the pt. } R(h, k) \text{ lies on the locus } \gamma = \frac{2a}{m} \]
\[x^2 \Omega \gamma = \frac{2a}{m} \text{ and } y^2 = 4ax \]
\[\text{Put } \gamma = \frac{2a}{m} \text{ in } \gamma^2 = 4ax \]
\[\frac{4a^2}{m^2} = 4ax \]
\[\frac{a}{m^2} = x \]
\[\begin{align*}
\frac{a}{m^2} &= x \\
x &= \frac{a}{m^2}
\end{align*} \]

\[\text{Point } \left(\frac{a}{m^2}, \frac{2a}{m} \right) \text{ is the locus.} \]

\[\text{Note: } \text{The locus of the middle points of parallel chords of a parabola is called a diameter of the parabola.} \]

Auxiliary Circle.

Ref. "The circle constructed on the major axis of the ellipse as a diameter is called the auxiliary circle."

At \(P(x, y) \) be any point on the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \). Draw \(PM \perp ax \)-axis.

Produce \(PM \) so that it meets the circle at \(Q \). Join \(QA \) to \(Q \).

http://www.MathCity.org
Let \(\alpha \not\equiv \theta \) then we call \(\theta \) as the eccentric angle of \(P \).

From \(\triangle OMQ \):

\[
\frac{x}{a} = \cos \theta
\]

\[
x = a \cos \theta
\]

Put \(x = a \cos \theta \) in \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)

\[
\Rightarrow \frac{a^2 \cos^2 \theta}{a^2} + \frac{y^2}{b^2} = 1
\]

\[
\cos^2 \theta + \frac{y^2}{b^2} = 1
\]

\[
\frac{y^2}{b^2} = 1 - \cos^2 \theta
\]

\[
\frac{y^2}{b^2} = \sin^2 \theta
\]

\[
\gamma^2 = b^2 \sin^2 \theta
\]

\[
\gamma = b \sin \theta
\]

\[
\gamma = b \sin \theta
\]

i.e. \(P(x, y) = (a \cos \theta, b \sin \theta) \)

Theorem.

Show that the locus of the middle points of a system of \(n \) chords of the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) is

\[
\gamma = -\frac{b^2}{a^2 m} x
\]

where \(m \) is the slope of the \(n \) chords.

The parallel chords
have slope \(m \) so that the equation to any one of them, say \(PQ \) is

\[y = mx + c \]

The straight line \((1) \) meets the ellipse

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]

at points whose abscissae are given by

\[\frac{x^2}{a^2} + \frac{(mx + c)^2}{b^2} = 1 \]

\[\Rightarrow \quad b^2x^2 + a^2(mx + c)^2 = a^2b^2 \]

\[\Rightarrow \quad b^2x^2 + a^2(m^2x^2 + 2mcx + c^2) = a^2b^2 \]

\[\Rightarrow \quad b^2x^2 + a^2m^2x^2 + 2a^2mcx + a^2c^2 = a^2b^2 \]

\[\Rightarrow \quad x^2(b^2 + a^2m^2) + 2a^2mcx + a^2c^2 - a^2b^2 = 0 \]

i.e. \(x^2(\frac{a^2m^2}{b^2} + \frac{2a^2mc}{b^2} + \frac{a^2c^2}{b^2}) = 0 \)

Let the roots of this equation be \(x_1, x_2 \). Then \(x_1, x_2 \) are the abscissae of \(P \) and \(Q \). Let \(M(h,k) \) be the middle point of \(PQ \). Then by using them of the roots we have

\[h = \frac{x_1 + x_2}{2} = \frac{-2a^2mc}{2a^2m^2b^2 + a^4b^2} = \frac{-a^2mc}{a^2m^2 + b^2} \]

(2)

\[M(h,k) \] lies on (1).

\[k = mh + c \]

\[c = k - mh \]

(3)

in (2)

\[h = \frac{a^2m(h-mh)}{a^2m^2 + b^2} \]

\[a^2m^2h + b^2h = a^2mk + a^2m^2h \]

\[b^2h = a^2mk \]

\[h = \frac{a^2m}{a^2m} \]

i.e. the pt. \(M(h,k) \) lies on the locus, \(y = \frac{a^2m}{a^2m} \).
Diameters of an Ellipse

Def: The locus of the middle pts. of a system of 11 chords of an ellipse is called a diameter of an ellipse.

Conjugate Diameters

Def: Two diameters of an ellipse are called conjugate if each bisects chord 11 to the other.

Result for Conjugate Diameters:

For Conjugate diameters the product of their slopes is \(\frac{-b^2}{a^2} \)

Theorem

If \(CP \) and \(CD \) are semiconjugate diameters of an ellipse with center \(C \), show that:

i) The eccentric angles of \(P \) and \(D \) differ by a right-angle.

ii) \(CP^2 + CD^2 = a^2 + b^2 \) is a constant.

iii) The locus of the point of intersection of tangents at \(P \) and \(D \) is

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2(\cos \theta, \sin \theta)
\]

Proof. Let \(O \) and \(O' \) be the eccentric angles of \(P \) and \(D \) where \(CO \) and \(CO' \) are the semi conjugate diameters.

Then \(P = (a \cos \theta, b \sin \theta) \), \(D = (a \cos \theta', b \sin \theta') \)

http://www.MathCity.org
Slope of CP = \(\frac{b \sin \theta - 0}{a \cos \theta - 0} \)

= \(\frac{b \sin \theta}{a \cos \theta} \)

Similarly, slope of \(\mathcal{Q} \) \(\mathcal{P} \) = \(\frac{b \sin \theta}{a \cos \theta} \)

\(\mathcal{C} \) \(\mathcal{P} \) and \(\mathcal{Q} \) are semi conjugate diameters.

\[\frac{b \sin \theta}{a \cos \theta} \times \frac{b \sin \theta}{a \cos \theta} = -\frac{b^2}{a^2} \]

\[\Rightarrow \frac{\sin \theta \sin \theta}{\cos \theta \cos \theta} = -1 \]

\[\Rightarrow \sin \theta \sin \theta + \cos \theta \cos \theta = 0 \]

\[\cos (\theta - \theta') = 0 \]

\(\Rightarrow \theta - \theta' = 90^\circ \)

\(\therefore \theta = \theta' + 90^\circ \)

i.e. \(\theta \) \(\theta' \) are equal to each other.

Deduction:

\[\Rightarrow \theta = \theta' + 90^\circ \]

\[\Rightarrow D = \left(a \cos (\mathcal{P} + 90^\circ), b \sin (\mathcal{Q} + 90^\circ) \right) \]

= \((-a \sin \theta, b \cos \theta) \)

\(\therefore \)

Target:

\[cP^2 + cQ^2 = a^2 + b^2 \]

\[IC^2 = \\left| \left(a \cos \theta - 0 \right)^2 + \left(b \sin \theta - 0 \right)^2 \right| \]

\[= a^2 \cos^2 \theta + b^2 \sin^2 \theta \]

\(\therefore \)

Now:

\[IC^2 = \\left(-a \sin \theta - 0 \right)^2 + \left(b \cos \theta - 0 \right)^2 \]

\[= a^2 \sin^2 \theta + b^2 \cos^2 \theta \]

\(\therefore \)

\[IC^2 + IC^2 = a^2 \cos^2 \theta + b^2 \sin^2 \theta + a^2 \sin^2 \theta + b^2 \cos^2 \theta \]

\[= a^2 + b^2 \]

\(\therefore \) Proved.
iii) We know that the Eq of ellipse is

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]

It can be written as

\[\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1 \]

New tangent at P is

\[\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1 \] \hspace{1cm} (i)

Tangent at D is

\[\frac{x (-a \sin \theta)}{a} + \frac{y (b \cos \theta)}{b} = 1 \] \hspace{1cm} (ii)

Equating and adding (i) and (ii)

\[\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1 \]

Proved.