

Dedicated To
 My Honorable Teacher
 Dr. Muhammad Umer Shuaib \&
 My Parents

Lecture \# 01

Integer:

The number which have no decimal no riven (ط)) and no under root.

اعرارج

Positive Integer:

The integer in which $x>0 \quad$ i.e. $\{1,2,3, \ldots .$.

Negative Integer:

The integer in which $\mathrm{x}<0 \quad$ i.e. $\{-1,-2,-3, \ldots \ldots\}$

Non-negative Integer:

The integer in which $x \geq 0 \quad$ i.e. $\{0,1,2,3, \ldots .$.

Non-positive Integer:

The integer in which $\mathrm{x} \leq 0 \quad$ i.e. $\{0,-1,-2,-3, \ldots .$.

Well Ordering Principle:

Let S be a non-empty set of non-negative integers. Then S contains a least (smallest) element.

Even Integer:

An integer ' n ' is said to be even if $n=2 m$ where $m \in Z$

Odd Integer:

An integer ' n ' is said to be odd if $n=2 m+1$ where $m \in Z$

Division Algorithm:

Let ' a ' and ' b ' be any two integers such that $b \neq 0$ then \exists unique integers q and r s.t

$$
\mathrm{a}=\mathrm{qb}+\mathrm{r} \quad ; \quad 0 \leq \mathrm{r}<|b|
$$

Collected by: Muhammad Saleem ${ }_{2}^{\circ}$ Composed by: Muzammil Tanveer

$$
\text { e.g. } \quad a=12, b=5 \quad \Rightarrow \quad 12=(5)+2
$$

$$
\begin{array}{ll}
\& \quad & \mathrm{a}=-36 \quad, \quad \mathrm{~b}=-7 \\
& -36=6(-7)+6
\end{array}
$$

Divisibility:

Let ' a ' and ' b ' be any two integers with $b \neq 0$ we say that b divides a if \exists an integer c such that

$$
\mathrm{a}=\mathrm{bc}
$$

In this case ' b ' is called divisor or factor of ' a ' and ' a ' is called multiple of ' b ' and is denoted by $b \mid a$
e.g $\quad 2 \mid 4 \& a=6, b=2 \Rightarrow 6=3(2)$

Remark:

If there does not exist such integer ' c ' we say be does not divide ' a ' and is denoted by $b \dagger a$. e.g. $2 \dagger 5$

Remarks:

(i) Every integer $\mathrm{a} \neq 0$ divides 0 i.e a $\mid 0$
(ii) 1 divides every integer a i.e $1 \mid-5 \Rightarrow-5=-5(1)$
(iii) Every integer divide itself i.e a $\mid \mathrm{a}$
(iv) If a $\mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{c}$ then $\mathrm{a} \mid \mathrm{c} \quad$ e.g. $2 \mid 4$ and $4 \mid 8$ then $2 \mid 8$
(v) If $a \mid b$ then $a \mid b x$ where $x \in Z$
(vi) If $a \mid b$ and $a \mid c$ the $a \mid b x+c y$ i.e. $a|b \Rightarrow a| b x$ and $a|c \Rightarrow a| c y$ then $a \mid b x+c y$
(vii) If $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \neq 0$ then $|a| \leq|b|$ i.e. $\quad 2|-6 \Rightarrow| 2|\leq|-6|$

Common Divisor:

Let ' a ' and ' b ' be any two integers at least one of them is non-zero and integer ' c ' is said to be common divisor of ' a ' and ' b ' if $c \mid a$ and $c \mid b$.
e.g. $\quad 4$ is a common divisor of 8 and 12

Lecture \# 02

Greatest Common Divisor:

Let ' a ' and ' b ' be any two integers at least one of them is non-zero. A positive integer ' d ' is called Greatest Common Divisor (G.C.D) of 'a' and ' b ' if
(i) $\mathrm{d} \mid \mathrm{a}$ and $\mathrm{d} \mid \mathrm{b}$
(ii) For any other common divisor (say) c of a and b the c \mid d
"It is also known as Highest Common Factor (H.C.F)

Notation:

The greatest common divisor of a and b is denoted by
G.C.D of a and $\mathrm{b}=(\mathrm{a}, \mathrm{b})=\mathrm{d}$

Remark:

(i) If a \mid b then $(a, b)=a$

$$
\text { e.g. }(2,4)=4
$$

$$
\text { and }(0,0)=\text { not exist }
$$

(ii) $\quad(\mathrm{a}, \mathrm{b})=(|a|,|b|)$

Theorem:

Let ' a ' and ' b ' be any two integers at least one of them is non-zero. Then g.c.d of ' a ' and ' b ' exists and is unique.

Proof: Let S be a non-empty set of positive integers of the form ' $\mathrm{ma}+\mathrm{nb}$ ' where $\mathrm{m}, \mathrm{n} \in \mathrm{Z}$.

$$
\mathrm{S}=\{\mathrm{ma}+\mathrm{nb} ; \mathrm{m}, \mathrm{n} \in \mathrm{Z}\}
$$

Then by Well ordering principle S contain a smallest element (say) ' d ' where $d=a x+b y ; x, y \in z$. Now we show that $g . c . d$ of ' a ' and ' b ' $=(a, b)=d$
(i) Observed that d is positive because $d \in S$
(ii) Since $d \leq a$ then by division algorithm \exists unique integers q and r such that

$$
\begin{aligned}
\mathrm{a} & =\mathrm{qd}+\mathrm{r} \quad \ldots(1) \quad \text { where } \quad 0 \leq \mathrm{r}<\mathrm{d} \\
\Rightarrow \mathrm{a} & =\mathrm{q}(\mathrm{ax}+\mathrm{by})+\mathrm{r}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mathrm{a}=\mathrm{aqx}+\mathrm{bqy}+\mathrm{r} \\
& \Rightarrow \mathrm{r}=\mathrm{a}-\mathrm{aqx}-\mathrm{bq} y \\
& \Rightarrow \mathrm{r}=\mathrm{a}(1-\mathrm{qx})+(-\mathrm{qy}) \mathrm{b} \\
& \Rightarrow \mathrm{r}=\mathrm{pa}+\mathrm{sb} \quad \text { where } \mathrm{p}=1-\mathrm{qx} \quad, \mathrm{~s}=-\mathrm{qy} \\
& \Rightarrow \mathrm{r} \in \mathrm{~S}
\end{aligned}
$$

For g.c.d
(i) $\mathrm{d} \geq 0$
(ii) $\mathrm{d}|\mathrm{a} \& \mathrm{~d}| \mathrm{b}$
(iii) For any other common divisor c of $\mathrm{a} \& \mathrm{~b}$ then $\mathrm{c} \mid \mathrm{d}$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{qd} \\
& \mathrm{~d} \mid \mathrm{a}
\end{aligned}
$$

Similarly,
$\mathrm{d} \mid \mathrm{b}$
(iii) Let ' c ' be any integer such that $c \mid a$ and $c \mid b$. Then

$$
\mathrm{c} \mid \mathrm{ax} \text { and } \mathrm{c} \mid \text { by }
$$

$\Rightarrow \mathrm{c} \mid \mathrm{ax}+\mathrm{by}$
$\Rightarrow \mathrm{c} \mid \mathrm{d}$

$$
\therefore d=a x+b y
$$

Since d satisfy all conditions of definition of g.c.d. Therefore

$$
(a, b)=d
$$

Uniqueness:

Suppose that d_{1} and d_{2} (if possible) are g.c.d's of a and b.
If d_{1} is g.c.d then by definition

$$
\begin{align*}
& d_{2} \mid d_{1} \\
\Rightarrow & d_{2} \leq d_{1} \tag{ii}
\end{align*}
$$

Similarly, if d_{2} is g.c.d then by definition

$$
\begin{align*}
& d_{1} \mid d_{2} \\
\Rightarrow & d_{1} \leq d_{2} \tag{iii}
\end{align*}
$$

From (ii) and (iii)

$$
d_{1}=d_{2}
$$

Which show the uniqueness

Lecture \# 03

Remark:

If $(a, b)=d$ then \exists integer x and y such that

$$
a x+b y=d
$$

Co-prime integer or Relatively prime integer:

Two integers ' a ' and ' b ' are said to be co-prime integer if $(a, b)=1$
Example: Find $(4,9)=$?
Solution: 4 and 9 are relatively prime
$a=9, b=4$
$9=2(4)+1$
$\Rightarrow(4,9)=1$
$9 x+4 y=1$

$$
\because a x+b y=1
$$

$1=9-4(2)$
$1=9(1)+4(-2)$
$\Rightarrow \mathrm{x}=1$ and $\mathrm{y}=-2$
Question: $(-9,4)=4$
Solution: $\mathrm{a}=4, \mathrm{~b}=4$
$9=2(4)+1$
$\Rightarrow(-9,4)=1$

In linear combination
$-9 x+4 y=1$
$1=-9(-1)+4(-2)$
$\Rightarrow \mathrm{x}=-1$ and $\mathrm{y}=-2$

Question: $(5,12)=$?
Solution: $\mathrm{a}=12, \mathrm{~b}=5$
$12=2(5)+2$
Here $\mathrm{a}=5, \mathrm{~b}=2$
$5=2(2)+1$
i.e. $(5,12)=1$

Now in linear combination

$12 x+5 y=1$
$1=5-2(2)$
$=5-2[12-2(5)]$
from (i)
$=5-24+4(5)$
$=5(5)-24$
$1=12(-2)+5(5)$
$\Rightarrow \mathrm{x}=-2$ and $\mathrm{y}=5$
Question: $(13,6)=$?
Solution: $\quad a=13, b=6$
$13=2(6)+1$
i.e $(13,6)=1$

Now in linear combination
$13 x+6 y=1$
$1=13-6(2)$
$1=13(1)+6(-2)$
$\Rightarrow \mathrm{x}=1$ and $\mathrm{y}=-2$

Question: $(24,7)=$?
Solution: $\quad a=24, b=7$
$24=3(7)+3$
(i)
$7=2(3)+1$
$(24,7)=1$
Now in linear combination

7
7

$24 x+7 y=1$
$1=7-2(3)$
$=7-2[24-3(7)] \quad$ from (i)
$=7-2(24)+6(7)$
$1=24(-2)+7(7)$
$\Rightarrow \mathrm{x}=-2, \mathrm{y}=7$
Question: $(34,4)=$?
Solution: $\mathrm{a}=34, \mathrm{~b}=4$
$34=8(4)+2$
$4=2(2)+0$
$\Rightarrow(34,4)=2$
Now in linear combination
$34 x+4 y=2$
$2=34-8(4)$
$2=34(1)+4(-8)$
$\Rightarrow \mathrm{x}=1$ and $\mathrm{y}=-8$

Question: $(76,8)=$?
Solution: $\mathrm{a}=76, \mathrm{~b}=8$
$76=9(8)+4$
$8=4(2)+0$
$\Rightarrow(76,8)=4$
Now in linear combination
$4=76-9(8)$
$4=76(1)+8(-9)$
$\Rightarrow \mathrm{x}=1$ and $\mathrm{y}=-9$
Question: $(59,11)=$?
Solution: $\mathrm{a}=59, \mathrm{~b}=11$
$59=5(11)+4$
$11=2(4)+3$ \qquad (ii)
$4=1(3)+1$
$\Rightarrow(59,11)=1$
Now in linear combination
$1=4-3(1)$
$1=4-(1)[11-2(4)] \quad$ from (ii)
$1=4-11+2(4)$
$1=-11+3(4)$
$1=-11+3[59-5(11)] \quad \Rightarrow 1=-11+3(59)-15(11)$
$1=-16(11)+3(59) \quad \Rightarrow 1=59(3)-11(16)$
$1=59(3)+11(-16)$
$\Rightarrow \mathrm{x}=3$ and $\mathrm{y}=-16$

Question: $(37,47)=$?
Solution: $\mathrm{a}=47$ and $\mathrm{b}=37$
$47=1(37)+10$
$37=3(10)+7$
$10=1(7)+3$
$7=2(3)+1$
$\Rightarrow(37,47)=1$
Now in linear combination
$47 x+37 y=1$
$1=7-3(2)$
$1=7-2[10-1(7)] \quad$ from (iii)
$1=7-2(10)+2(7)$
$1=3(7)-2(10)$
$1=-2(10)+3[37-3(10)] \quad$ from (ii)
$1=-2(10)+3(37)-9(10)$
$1=3(37)-11(10)$
$1=3(37)-11[47-1(37)] \quad$ from (i)
$1=3(37)-11(47)+11(37)$
$1=14(37)-11(47)$
$1=47(-11)+37(14)$
$\Rightarrow x=-11$ and $y=14$
Example: Find $(256,1166)=$?
Solution: $a=1166, b=256$
$1166=4(256)+142$
(i)

Collected by: Muhammad Saleem

$$
\begin{aligned}
& 256=1(142)+114 \\
& 142=1(114)+28 \\
& 114=4(28)+2 \\
& 28=14(2)+0 \\
& \Rightarrow \quad(256,1166)=2
\end{aligned}
$$

Now in linear combination
$1166 x+256 y=2$
$2=114-4(28)$
$2=114-4[142-1(114)]$
from (iii)
$2=114-4(142)+4(114)$
$2=-4(142)+5(114)$
$2=-4(142)+5[256-1(142)]$
$2=-4(142)+5(256)-5(142)$
$2=5(256)-9(142)$
$2=5(256)-9[1166-4(256)]$
from (ii)
from (i)
$2=5(256)-9(1166)+36(256)$
$2=1166(-9)+41(256)$
$2=1166(-9)+256(41)$
$\Rightarrow x=-9$ and $y=41$

Lecture \# 04

Theorem:

Let ' a ' and ' b ' be any two integers and ' k ' be any integer then $(k a, k b)=k(a, b)$
Proof:
Let $\quad(a, b)=d$
And $\quad(\mathrm{ka}, \mathrm{kb})=\mathrm{t}$
Then we show that

$$
\mathrm{kd}=\mathrm{t}
$$

Since $(a, b)=d$
Then there exist integers u and v such that

$$
\begin{align*}
& \mathrm{au}+\mathrm{bv}=\mathrm{d} \\
\Rightarrow \quad & \mathrm{u}(\mathrm{ka})+\mathrm{v}(\mathrm{~kb})=\mathrm{kd} \tag{i}
\end{align*}
$$

We suppose
$(\mathrm{ka}, \mathrm{kb})=\mathrm{t}$

$\Rightarrow \quad t|u(k a) \quad, \quad t| v(k b)$
$\Rightarrow \quad \mathrm{t} \mid \mathrm{u}(\mathrm{ka})+\mathrm{v}(\mathrm{kb})$
By definition of divisibility
$\Rightarrow \quad u(k a)+v(k b)=\operatorname{tr}$
Put in (i)

$$
\begin{align*}
& \mathrm{kd}=\mathrm{tr} \\
& \Rightarrow \quad \mathrm{t} \mid \mathrm{kd} \quad \text { by def. of divisibility } \\
& \Rightarrow \quad \mathrm{t} \leq \mathrm{kd} \quad \text { (ii) } \quad \tag{ii}
\end{align*}
$$

Now as $(a, b)=d$
$\Rightarrow \quad \mathrm{d} \mid \mathrm{a}$
and
$\mathrm{d} \mid \mathrm{b}$
$\Rightarrow \quad \mathrm{kd} \mid \mathrm{ka} \quad$ and
$\mathrm{kd} \mid \mathrm{kb}$
$\Rightarrow \quad \mathrm{kd} \mid(\mathrm{ka}, \mathrm{kb})$
$\Rightarrow \quad \mathrm{kd} \mid \mathrm{t}$
$\Rightarrow \quad \mathrm{kd} \leq \mathrm{t}$ \qquad (iii)

From (ii) and (iii)

$$
\mathrm{kd}=\mathrm{t}
$$

$$
\text { or } \quad \mathrm{t}=\mathrm{kd}
$$

$$
(\mathrm{ka}, \mathrm{~kb})=\mathrm{k}(\mathrm{a}, \mathrm{~b}) \quad \text { proved }
$$

Corollary:

If $(\mathrm{a}, \mathrm{b})=\mathrm{d}$ Then show that $\left(\frac{a}{d}, \frac{b}{d}\right)=1$
Solution:
Given that $(a, b)=d$
$\Rightarrow \quad\left(\frac{a d}{d}, \frac{b d}{d}\right)=\mathrm{d}$
By using above theorem $(\mathrm{ka}, \mathrm{kb})=\mathrm{k}(\mathrm{a}, \mathrm{b})$

$$
\begin{aligned}
& \mathrm{d}\left(\frac{a}{d}, \frac{b}{d}\right)=\mathrm{d} \\
\Rightarrow & \left(\frac{a}{d}, \frac{b}{d}\right)=1
\end{aligned}
$$

Theorem: If $a \mid c$ and $b \mid c$ and $(a, b)=1$ then show that $a b \mid c$
Proof: Since $\quad a \mid c$ and $b \mid c$
So, by def. of divisibility \exists integers x and y such that

$$
\mathrm{c}=\mathrm{ax} \quad \& \quad \mathrm{c}=\mathrm{by}
$$

Also given that
$(a, b)=1 \quad$ then \exists integers u and v such that
Collected by: Muhammad Saleem

$$
\begin{array}{ll}
& \mathrm{au}+\mathrm{bv}=1 \\
\Rightarrow \quad & \mathrm{acu}+\mathrm{bcv}=\mathrm{c} \\
& \mathrm{a}(\mathrm{by}) \mathrm{u}+\mathrm{b}(\mathrm{ax}) \mathrm{v}=\mathrm{c} \\
& \mathrm{ab}(\mathrm{yu}+\mathrm{xv})=\mathrm{c} \\
\Rightarrow \quad & \mathrm{ab}(\mathrm{z})=\mathrm{c} \\
\text { Or } & \mathrm{c}=\mathrm{ab}(\mathrm{z}) \\
\Rightarrow \quad & \mathrm{ab} \mid \mathrm{c}
\end{array}
$$

Proved.
Theorem: If $\mathrm{a} \mid \mathrm{bc}$ and $(\mathrm{a}, \mathrm{b})=1$ then $\mathrm{a} \mid \mathrm{c}$
Proof:
Given that
$(a, b)=1$

Then \exists integers x and y such that

	$\mathrm{ax}+\mathrm{by}=1$
\Rightarrow	$\mathrm{acx}+\mathrm{bcy}=\mathrm{c}$
As	$\mathrm{a} \mid \mathrm{a}$
\Rightarrow	$\mathrm{a} \mid \mathrm{bc}$ (given)
\Rightarrow	$\mathrm{a} \mid \mathrm{bcy}$
\Rightarrow	$\mathrm{a} \mid \mathrm{acx}+\mathrm{bcy}$
\Rightarrow	$\mathrm{a} \mid \mathrm{c} \quad$ acx
\Rightarrow	Proved

Lecture \# 05

Common Multiple:

Let ' a ' and ' b ' be any two integers at least one of them is non-zero. An integer (either positive or negative) ' m ' is called common multiple of ' a ' and ' b ' if a|m and $\mathrm{b} \mid \mathrm{m}$.

Least common multiple (LCM):

Let ' a ' and ' b ' be any two integers at least one of them is non-zero. A positive integer ' m ' is called least common multiple of ' a ' and ' b ' if
(i) $\quad \mathrm{a} \mid \mathrm{m}$ and $\mathrm{b} \mid \mathrm{m}$
(ii) If ' c ' is any other common multiple of ' a ' and ' b ' i.e. $a|c \& b| c$ then m c.

Notation:

If least common multiple of ' a ' and ' b ' is ' m ' we denote it as $\quad[a, b]=m$
Remark: If $a \mid b$ then $[a, b]=b$

$$
\begin{aligned}
& n=P_{1}^{x_{1}} \times P_{2}^{x_{2}} \times P_{3}^{x_{3}} \times \ldots . . P_{r}^{x_{r}} \\
& \because \quad \text { where } P_{i}{ }^{\prime} s \text { are prime number and } x_{i}>0 \\
& \\
& 12=(2)^{2} \times(3)^{1} \\
& \because \quad 72=2 \times 2 \times 2 \times 3 \times 3 \\
& =(2)^{3} \times(3)^{2} \\
& P_{1}=2, P_{2}=3 \\
& x_{1}=3, x_{2}=2 \\
& n=P_{1}^{x_{1}} \times P_{2}^{x_{2}} \times P_{3}^{x_{3}} \times \ldots . . P_{r}^{x_{r}} \\
& n=\prod_{i=1}^{r} P_{i}^{x_{i}}
\end{aligned}
$$

Theorem:

Let ' a ' and ' b ' be any two integers at least one of them is non-zero where $a=\prod_{i=1}^{r} P_{i}^{x_{i}}, b=\prod_{i=1}^{r} P_{i}^{y_{i}}$. Let $M_{i}=\max \left\{x_{i}, y_{i}\right\}$ then show that $[\mathrm{a}, \mathrm{b}]=\mathrm{d}$ where $d=\prod_{i=1}^{r} P_{i}^{M_{i}}$. Also show uniqueness of d .

Proof:

(i) Note that $d=\prod_{i=1}^{r} P_{i}^{M_{i}}$ is positive because all P_{i} are prime number and
$M_{i} \geq 0$
(ii) Since $M_{i}=\max \left\{x_{i}, y_{i}\right\}$

$$
\begin{aligned}
& \Rightarrow x_{i} \leq M_{i} \quad \text { and } \quad y_{i} \leq M_{i} \\
& \Rightarrow P^{x_{i}} \leq P^{M_{i}} \quad \text { and } \quad P^{y_{i}} \leq P^{M_{i}} \quad \forall i \\
& \Rightarrow P^{x_{i}} \mid P^{M_{i}} \quad \text { and } \quad P^{y_{i}} \mid P^{M_{i}} \quad \forall i \\
& \Rightarrow \prod_{i=1}^{r} P^{x_{i}} \mid \prod_{i=1}^{r} P^{M_{i}} \text { and } \quad \prod_{i=1}^{r} P^{y_{i}} \mid \prod_{i=1}^{r} P^{M_{i}} \quad \forall i \\
& \Rightarrow \mathrm{a} \mid \mathrm{d} \text { and } \mid \mathrm{d}
\end{aligned}
$$

(iii) Let ' c ' be any other common multiple of ' a ' and ' b ' where $\mathrm{c}=\prod_{i=1}^{r} P_{i}^{t_{i}}$ Since $a \mid c$ and $b \mid c$
i.e. $\prod_{i=1}^{r} P^{x_{i}} \mid \prod_{i=1}^{r} P^{t_{i}} \quad$ and $\quad \prod_{i=1}^{r} P^{y_{i}} \prod_{i=1}^{r} P^{t_{i}} \quad \forall i$
$\Rightarrow x_{i} \leq t_{i} \quad$ and $\quad y_{i} \leq t_{i}$
$\Rightarrow \max \left\{x_{i}, y_{i}\right\} \leq t_{i} \quad \forall i$
$\Rightarrow M_{i} \leq t_{i} \quad \forall i$
$\Rightarrow P^{M_{i}} \leq P^{t_{i}} \quad \forall i$
$\Rightarrow \prod_{i=1}^{r} P^{M_{i}} \mid \prod_{i=1}^{r} P^{t_{i}} \quad \forall i$
$\Rightarrow d \mid c \quad$ Hence $[a, b]=d$

Uniqueness:

Suppose that d_{1} and d_{2} (if possible) are L.C.M's of a and b If d_{1} is L.C.M then by definition

$$
\begin{align*}
& d_{2} \mid d_{1} \\
& \Rightarrow d_{2} \leq d_{1} \tag{i}
\end{align*}
$$

If d_{2} is L.C.M then by definition

$$
\begin{align*}
& d_{1} \mid d_{2} \\
& \Rightarrow d_{1} \leq d_{2} \tag{ii}
\end{align*}
$$

From (i) \& (ii)

$$
d_{1}=d_{2} \text { which show the uniqueness }
$$

Theorem:

Let ' a ' and ' b ' be any two integers at least one of them is non-zero then $(\mathrm{a}, \mathrm{b}) \cdot[\mathrm{a}, \mathrm{b}]=\mathrm{ab}$
Proof: Muzammil Tanveer
Let $d=(a, b)$ and $m=[a, b]$
$\Rightarrow \quad \exists$ integers r, s and integers u, v such that
$\mathrm{a}=\mathrm{dr}, \mathrm{b}=\mathrm{ds} \quad(\mathrm{r}, \mathrm{s})=1$
and $d=a u+b v$
Also

$$
\begin{aligned}
& m=[a, b] \\
& \Rightarrow \quad \exists \text { integers } t \text { and } w \text { such that } \\
& \quad m=a t \& m=b w \\
& d=a u+b v \\
& m d=m(a u+b v)
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{md}=\mathrm{mau}+\mathrm{mbv} \\
&=\mathrm{bwau}+\mathrm{atbv} \\
& \mathrm{md}=\mathrm{ab}(\mathrm{uw}+\mathrm{tv}) \\
& \Rightarrow \quad \mathrm{ab} \mid \mathrm{md} \tag{iii}
\end{align*}
$$

Also $\frac{a b}{d}=\frac{d r b}{d}=r b \quad \because b y(i)$

$$
\frac{a b}{d}=\frac{a d s}{d}=s a \quad \because b y(i)
$$

$$
a\left|\frac{a b}{d}, \mathrm{~b}\right| \frac{a b}{d} ; \text { that } \frac{a b}{d} \text { is a common multiple of ' } \mathrm{a} \text { ' and ' } \mathrm{b} \text { '. }
$$

$$
\begin{equation*}
\Rightarrow m \left\lvert\, \frac{a b}{d}\right. \text { or } \quad m d \mid a b \tag{iv}
\end{equation*}
$$

From (iii) and (iv)

$$
\mathrm{md}=\mathrm{ab}
$$

$(a, b) \cdot[a, b]=a b$

Corollary:

$$
\text { If }(a, b)=1 \text { then }[a, b]=a b
$$

Proof:
We know that from above theorem

$$
(a, b) \cdot[a, b]=a b
$$

Given that $(a, b)=1$

$$
\begin{aligned}
& 1 .[\mathrm{a}, \mathrm{~b}]=\mathrm{ab} \\
\Rightarrow \quad & {[\mathrm{a}, \mathrm{~b}]=\mathrm{ab} }
\end{aligned}
$$

(i)

$$
\begin{aligned}
& {[\mathbf{6 , 1 4}]=?} \\
& 14=2(6)+2 \\
& 6=3(2)+0 \\
& \Rightarrow(6,14)=2
\end{aligned}
$$

Now (6,14). $[6,14]=6 \times 14$
2 . $[6,14]=6 \times 14$

$$
[6,14]=42
$$

$$
\text { If }[a, b, c]=[[a, b], c]
$$

(ii) $\quad[6,14,8]=$?

$$
[6,14,8]=[[6,14], 8]
$$

First, we find $[6,14]$

$$
\begin{aligned}
& 14=2(6)+2 \\
& 6=3(2)+0 \\
& \Rightarrow(6,14)=2
\end{aligned}
$$

Now (6,14). $[6,14]=6 \times 14$
2. $[6,14]=6 \times 14$

$$
[6,14]=42
$$

$$
[6,14,8]=[[6,14], 8]=[42,8]
$$

Now $42=5(8)+2$

$$
8=4(2)+0 \quad \text { i.e. }(42,8)=2
$$

$$
(42,8) \cdot[42,8]=42 \times 8
$$

$$
2 \cdot[42,8]=42 \times 8 \quad \Rightarrow \quad[42,8]=\frac{42 \times 8}{2}=168
$$

$$
\Rightarrow[6,14,8]=168
$$

Lecture \# 06

Linear Indeterminate equations or Linear Diophantine equations:

An equation with two or more than two variables is called Linear indeterminate equations or Linear Diophantine equations.
e.g.

$$
a x+b y=c
$$

or

$$
\alpha x+\beta y+\gamma z=\delta
$$

$x+7 y=31$ is satisfied by $x=21, y=1$ also by $x=3, y=4$ and also by $x=17$, $y=2$ so we have infinite many solutions.

On the contrary the Diophantine equation $15 x+51 y=14$ or $2 x+4 y=5$ has no solutions. Thus, we may ask when can a given Diophantine have solutions? We give it in our next theorem.

Theorem: Let $a(\neq 0), b(\neq 0)$ and ' c ' be any integer then the equation

$$
\begin{equation*}
a x+b y=c \tag{i}
\end{equation*}
$$

has a solution iff $\mathrm{d} \mid \mathrm{c}$ where $\mathrm{d}=(\mathrm{a}, \mathrm{b})$. If $\left(x_{0}, y_{0}\right)$ is a solution of eq (i) then general solution of eq (i) is given by $x^{\prime}=x_{0}+\frac{b}{d} t, y^{\prime}=y_{0}-\frac{a}{d} t$ where $\mathrm{t} \in \mathrm{Z}$ Proof:

Suppose eq (i) has a solution (say) $\left(x_{0}, y_{0}\right)$ then

$$
\begin{equation*}
a x_{0}+b y_{0}=c \tag{ii}
\end{equation*}
$$

We are to show that d|c

$$
\begin{array}{lllc}
\text { Since } & \text { (a,b) }=\mathrm{d} & & \text { (given) } \\
\Rightarrow & \mathrm{d} \mid \mathrm{a} & \text { and } & \mathrm{d} \mid \mathrm{b} \\
\Rightarrow & d \mid a x_{0} & \text { and } & d \mid b y_{0} \\
\Rightarrow & d \mid a x_{0}+b y_{0} & \\
\Rightarrow & \mathrm{~d} \mid \mathrm{c} \text { by eq (ii) } &
\end{array}
$$

Conversely:

Suppose $\mathrm{d} \mid \mathrm{c}$ then by definition of divisibility there exist integer t such that

$$
\mathrm{c}=\mathrm{dt}
$$

Now as $\quad d=(a, b)$

$$
\begin{array}{ll}
\Rightarrow & \exists \text { integers } \mathrm{u} \text { and } \mathrm{v} \text { such that } \\
\Rightarrow & \mathrm{au}+\mathrm{bv}=\mathrm{d} \\
\Rightarrow & \mathrm{a}(\mathrm{ut})+\mathrm{b}(\mathrm{vt})=\mathrm{dt} \quad \text { multiplying by } \mathrm{t} \\
& a x_{0}+b y_{0}=c \\
\Rightarrow & \text { where } x_{0}=u t, y_{0}=v t, c=d t \\
\Rightarrow & \left(x_{0}, y_{0}\right) \text { is solution of eq (i) }
\end{array}
$$

Now suppose $\left(x^{\prime}, y^{\prime}\right)$ is another solution of eq (i). Then

$$
\begin{equation*}
a x^{\prime}+b y^{\prime}=c \tag{iii}
\end{equation*}
$$

Subtracting eq (ii) from eq (iii)

$$
\begin{align*}
& \mathrm{V} \cup \mathbb{Z} a\left(x-x_{0}\right)+b\left(y^{\prime}-\overline{y_{0}}\right)=0 \\
& \Rightarrow \quad a\left(x^{\prime}-x_{0}\right)=-b\left(y^{\prime}-y_{0}\right) \tag{iv}
\end{align*}
$$

As $d=(a, b)$

$$
\Rightarrow \quad \mathrm{d} \mid \mathrm{a} \quad \text { and } \quad \mathrm{d} \mid \mathrm{b}
$$

$\Rightarrow \quad \exists$ integers ' r ' and ' s ' such that

$$
\mathrm{a}=\mathrm{rd} \quad, \quad \mathrm{~b}=\mathrm{sd} \quad \text { where } \quad(\mathrm{r}, \mathrm{~s})=1
$$

Put the values of ' a ' and ' b ' in eq (iv)

$$
\begin{align*}
& r d\left(x^{\prime}-x_{0}\right)=-s d\left(y^{\prime}-y_{0}\right) \\
& r\left(x^{\prime}-x_{0}\right)=-s\left(y^{\prime}-y_{0}\right) \tag{v}
\end{align*}
$$

From (v) we have

$$
s \mid r\left(x^{\prime}-x_{0}\right)
$$

$\operatorname{But}(\mathrm{r}, \mathrm{s})=1 \quad$ (relatively prime) holds when

$$
\begin{aligned}
& s \mid\left(x^{\prime}-x_{0}\right) \\
\Rightarrow \quad & x^{\prime}-x_{0}=s t \\
\Rightarrow \quad & x^{\prime}=x_{0}+s t \\
\Rightarrow \quad & x^{\prime}=x_{0}+\frac{b}{d} t \quad \because b=s d \Rightarrow s=\frac{b}{d}
\end{aligned}
$$

Again, from eq (v)

$$
-r \mid s\left(y^{\prime}-y_{0}\right)
$$

But

$$
\begin{aligned}
& (\mathrm{r}, \mathrm{~s})=1 \quad \text { holds when } \\
& \\
& \quad \begin{aligned}
& r \mid-\left(y^{\prime}-y_{0}\right) \\
& \Rightarrow \quad-\left(y^{\prime}-y_{0}\right)=r t \\
& \Rightarrow \quad-y^{\prime}+y_{0}=r t
\end{aligned} \\
& \Rightarrow \quad y^{\prime}=y_{0}-r t \\
& \Rightarrow \quad y^{\prime}=y_{0}-\frac{a}{d} t \quad \because a=r d \Rightarrow r=\frac{a}{d} \quad \text { proved }
\end{aligned}
$$

Question: Find the general solution of $2 x+5 y=6$
Solution:

$$
\text { Since }(2,5)=1 \text { and } 1 \mid 6
$$

Solution of the given equation exists
Now

$$
5=2(2)+1
$$

$$
\begin{array}{ll}
\Rightarrow & 1=5-2(2) \\
\text { Or } & 2(-2)+5(1)=1 \\
& \text { Multiplying by } 6 \\
& 2(-12)+5(6)=6 \\
& x_{0}=-12, y_{0}=6
\end{array}
$$

Now for general solution

$$
\begin{array}{r}
\Rightarrow \quad x^{\prime}=x_{0}+\frac{b}{d} t \\
x^{\prime}=-12+\frac{5}{1} t \\
x^{\prime}=-12+5 t \\
y^{\prime}=y_{0}-\frac{a}{d} t \\
y^{\prime}=6-\frac{2}{1} t \\
y^{\prime}=6-2 t
\end{array}
$$

To check

$$
\begin{aligned}
& \text { When } \mathrm{t}=1 \Rightarrow \quad x^{\prime}=-7, y^{\prime}=4 \\
& 2 \mathrm{x}+5 \mathrm{y}=6 \\
& 2(-7)+5(4)=-14+20=6
\end{aligned}
$$

Satisfied for all value of t.

Question: Find the general solution of $47 x+37 y=15$
Solution: Since $\quad(47,37)=1 \quad$ and $1 \mid 15$ so, solution of the given equation exists

Now

$$
\begin{aligned}
& 47=1(37)+10 \\
& 37=3(10)+7 \\
& 10=1(7)+3 \\
& 7=2(3)+1 \\
& 1=7-2(3) \\
& 1=7-2[10-1(7)] \quad \text { from (iii) } \\
& 1=7-2(10)+2(7) \\
& 1=3(7)-2(10) \\
& 1=3[37-3(10)]-2(10) \\
& 1=3(37)-9(10)-2(10) \\
& 1=3(37)-11(10) \\
& \mathrm{V} \| \geq \square 1=3(37)-[47-1(37)] \\
& 1=14(37)-11(47) \\
& \text { Or } \\
& 47(-11)+37(14)=1 \\
& 47(-165)+37(210)=15 \\
& \Rightarrow \quad x_{0}=-165, y_{0}=210
\end{aligned}
$$

For G.S

$$
\begin{array}{ll}
x^{\prime}=x_{0}+\frac{b}{d} t & , \quad y^{\prime}=y_{0}-\frac{a}{d} t \\
x^{\prime}=-165+37 t & , \quad y^{\prime}=210-47 t
\end{array}
$$

is the required general solution.

Question: Find the general solution of $85 x+60 y=20$
Solution: Since $\quad(85,60)=1 \quad$ and $5 \mid 20$
given equation exists
Now

$$
\begin{align*}
& 85=1(60)+25 \tag{i}\\
& 60=2(25)+10 \tag{ii}\\
& 25=2(10)+5 \tag{iii}\\
& 10=2(5)+0
\end{align*}
$$

\qquad
\qquad

Now
Or

$$
\begin{array}{rl}
5 & =25-2(10) \\
& =25-2[60-2(25)] \\
& =25-2(60)+4(25) \\
& =5(25)-2(60) \\
& =5[85-1(60)]-2(60) \\
& =5(85)-5(60)-2(60) \\
5 & =5(85)-7(60) \\
8 & 85(5)+60(-7)=5 \\
8 & x_{0}=20, y_{0}=-28
\end{array}
$$

For G.S

$$
\begin{array}{ll}
x^{\prime}=x_{0}+\frac{b}{d} t & , \quad y^{\prime}=y_{0}-\frac{a}{d} t \\
x^{\prime}=20+12 t & , \quad y^{\prime}=-28-17 t
\end{array}
$$

is the required general solution.
For check $\mathrm{t}=1$

$$
x^{\prime}=32, y^{\prime}=-45 \Rightarrow 85(32)+60(-45)=20
$$

Collected by: Muhammad Saleem

Question: Find the general solution of $34 x+7 y=2$
Solution: Since $\quad(34,7)=1 \quad$ and $1 \mid 2$ so, solution of the given equation exists

Now

$$
\begin{align*}
34 & =4(7)+6 \tag{i}\\
7 & =1(6)+1 \tag{ii}
\end{align*}
$$

\qquad
Now

$$
\begin{array}{ll}
& 1=7-1(6) \\
& =7-1[34-4(7)] \\
& =7-1(34)+4(7) \\
\text { Or } \quad & 34(-1)+7(5)=1 \\
& 34(-2)+7(10)=2 \\
\Rightarrow \quad & x_{0}=-2, y_{0}=10
\end{array}
$$

$$
=7-1[34-4(7)] \quad \text { from (i) }
$$

For G.S

$$
\begin{aligned}
x^{\prime} & =x_{0}+\frac{b}{d} t \quad, \quad y^{\prime}=y_{0}-\frac{a}{d} t \\
\mathbb{M} \cup \mathbb{Z}^{x^{\prime}} & =-2+7 t
\end{aligned}
$$

is the required general solution.
For check $\mathrm{t}=1$

$$
x^{\prime}=5, y^{\prime}=-24 \Rightarrow 34(5)+7(-24)=2
$$

Lecture \# 07
Theorem: Let $a(\neq 0), b(\neq 0)$ and ' c ' be any integer then the equation
ax-by = c
has a solution iff $\mathrm{d} \mid \mathrm{c}$ where $\mathrm{d}=(\mathrm{a}, \mathrm{b})$. If $\left(x_{0}, y_{0}\right)$ is a solution of eq (i) then general solution of equation is given by

$$
x^{\prime}=x_{0}+\frac{b}{d} t \quad \text { and } \quad y^{\prime}=y_{0}+\frac{a}{d} t \quad \text { where } t \in Z
$$

Proof:
Suppose eq (i) has a solution (say) $\left(x_{0}, y_{0}\right)$ then

$$
\begin{equation*}
a x_{0}-b y_{0}=c \tag{ii}
\end{equation*}
$$

We are to show that $\mathrm{d} \mid \mathrm{c}$

$$
\begin{align*}
& \text { Since } \\
& (a, b)=d \tag{given}\\
& \Rightarrow \quad \mathrm{~d} \mid \mathrm{a} \quad \text { and } \quad \mathrm{d} \mid \mathrm{b} \\
& \Rightarrow \quad d \mid a x_{0} \quad \text { and } \quad d \mid b y_{0} \\
& \Rightarrow U Z d \mid a x_{0}-b y_{0} \\
& \Rightarrow \quad \mathrm{~d} \mid \mathrm{c} \text { by eq (ii) } \\
& d \mid b \\
& \text { - }
\end{align*}
$$

Conversely:

Suppose d|c then by definition of divisibility there exist integer t such that

$$
\mathrm{c}=\mathrm{dt}
$$

Now as $\quad d=(a, b)$

$$
\begin{aligned}
& \Rightarrow \quad \exists \text { integers 'u' and 'v' such that } \\
& \qquad \begin{array}{l}
a u+b v=d \\
\Rightarrow \quad a(u t)+b(v t)=d t \quad \text { multiplying by } t \\
\Rightarrow \quad a(u t)-b(-v t)=d t
\end{array}
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & a x_{0}-b y_{0}=c \\
& \text { where } x_{0}=u t, y_{0}=v t, c=d t \\
\Rightarrow & \left(x_{0}, y_{0}\right) \text { is solution of eq (i) }
\end{array}
$$

Now suppose $\left(x^{\prime}, y^{\prime}\right)$ is another solution of eq (i). Then

$$
\begin{equation*}
a x^{\prime}-b y^{\prime}=c \tag{iii}
\end{equation*}
$$

\qquad
Subtracting eq (ii) from eq (iii)

$$
\begin{array}{ll}
& a\left(x^{\prime}-x_{0}\right)-b\left(y^{\prime}-y_{0}\right)=0 \\
\Rightarrow \quad & a\left(x^{\prime}-x_{0}\right)=b\left(y^{\prime}-y_{0}\right) \tag{iv}
\end{array}
$$

As $d=(a, b)$

$$
\Rightarrow \quad \mathrm{d} \mid \mathrm{a} \text { and } \mathrm{d} \mid \mathrm{b}
$$

$\Rightarrow \quad \exists$ integers 'r' and 's' such that

$$
\mathrm{a}=\mathrm{rd} \quad, \quad \mathrm{~b}=\mathrm{sd} \quad \text { where } \quad(\mathrm{r}, \mathrm{~s})=1
$$

Put the values of ' a ' and ' b ' in eq (iv)

$$
\begin{align*}
& r d\left(x^{\prime}-x_{0}\right)=s d\left(y^{\prime}-y_{0}\right) \\
& r\left(x^{\prime}-x_{0}\right)=s\left(y^{\prime}-y_{0}\right) \tag{v}
\end{align*}
$$

From (v) we have

$$
s \mid r\left(x^{\prime}-x_{0}\right)
$$

$\operatorname{But}(\mathrm{r}, \mathrm{s})=1 \quad$ (relatively prime) holds when

$$
\begin{aligned}
& s \mid\left(x^{\prime}-x_{0}\right) \\
\Rightarrow & x^{\prime}-x_{0}=s t \\
\Rightarrow & x^{\prime}=x_{0}+s t
\end{aligned}
$$

$$
\Rightarrow \quad x^{\prime}=x_{0}+\frac{b}{d} t \quad \because b=s d \Rightarrow s=\frac{b}{d}
$$

Again, from eq (v)

$$
r \mid s\left(y^{\prime}-y_{0}\right)
$$

But $\quad(r, s)=1 \quad$ holds when

$$
\begin{aligned}
& r \mid\left(y^{\prime}-y_{0}\right) \\
\Rightarrow & \left(y^{\prime}-y_{0}\right)=r t \\
\Rightarrow & y^{\prime}=y_{0}+r t \\
\Rightarrow \quad & y^{\prime}=y_{0}+\frac{a}{d} t \quad \because a=r d \Rightarrow r=\frac{a}{d} \quad \text { proved }
\end{aligned}
$$

Question: Find the general solution of $8 x-15 y=20$
Solution: Since $(8,15)=1 \quad$ and $1 \mid 20$ so, solution of the given equation exists

Now

$$
\begin{aligned}
& 15=1(8)+7 \\
& 8=1(7)+1
\end{aligned}
$$

And

$$
\times \text { by } 20
$$

$$
\begin{aligned}
1 & =8-1(7) \\
& =8-1[15-1(8)] \\
& =8-1(15)+1(8) \\
& =2(8)-1(15) \\
1 & =8(2)-15(1) \\
& 8(40)-15(20)=20 \\
\Rightarrow \quad & x_{0}=40, y_{0}=20
\end{aligned}
$$

For G.S

$$
\begin{aligned}
x^{\prime} & =x_{0}+\frac{b}{d} t & , & y^{\prime}=y_{0}+\frac{a}{d} t \\
x^{\prime} & =40+15 t & , & y^{\prime}=20+8 t
\end{aligned}
$$

For check $\quad t=1$

$$
\begin{aligned}
& x^{\prime}=55 \quad, \quad y^{\prime}=28 \\
& 8(55)-15(28)=20
\end{aligned}
$$

Question: Find the general solution of $67 x-45 y=131$
Solution: Since $\quad(67,45)=1 \quad$ and $1 \mid 131$ so, solution of the given equation exists

Now

$$
\begin{array}{r}
67=1(45)+22 \\
45=2(22)+1
\end{array}
$$

And

$$
\begin{gathered}
1=45-2(22) \\
=45-2[67-1(45)] \\
=45-2(67)+2(45) \\
\text { Or } \quad \begin{aligned}
1 & =3(45)-2(67) \\
\times \text { by } 131 \quad & 67(-2)-45(-3)=1 \\
& 67(-262)-45(-393)=131
\end{aligned} \\
x_{0}=x_{0}+\frac{b}{d} t \quad, \quad y^{\prime}=y_{0}+\frac{a}{d} t \\
x^{\prime}=-262+45 t \quad, \quad y_{0}^{\prime}=-393+67 t
\end{gathered}
$$

For G.S

$$
\begin{aligned}
& \mathrm{t}=1 \\
& \quad x^{\prime}=-217 \quad, \quad y^{\prime}=-326 \\
& \quad 67(-217)-45(-326)=131
\end{aligned}
$$

Question: If the cost of an apple is Rs. 8 and cost of mango is Rs. 15 How many minimum (least) number of apples can bought from rupees 200.

Solution: Let x represent the number of apple and y represent the number of mangoes. Then

$$
8 x+15 y=200
$$

Since

$$
(8,15)=1
$$

and $1 \mid 200$
so, solution of the given equation exists

Now

$$
\begin{aligned}
15 & =1(8)+7 \\
8 & =1(7)+1
\end{aligned}
$$

And

$$
\begin{aligned}
1 & =8-1(7) \\
& =8-1[15-1(8)] \\
& =8-1(15)+1(8)
\end{aligned}
$$

$$
1=2(8)-1(15)
$$

Or

$$
8(2)+15(-1)=1
$$

$$
\begin{aligned}
& \times \text { by } 200 \quad 8(400)+15(-200)=200 \\
& V \cup Z \Longrightarrow x_{0}=400, y_{0}=-200
\end{aligned}
$$

For G.S

$$
\begin{array}{ll}
x^{\prime}=x_{0}+\frac{b}{d} t & , \quad y^{\prime}=y_{0}-\frac{a}{d} t \\
x^{\prime}=400+15 t & , \quad y^{\prime}=-200-8 t
\end{array}
$$

Put $\quad \mathrm{t}=-26 \quad x^{\prime}=400+15(-26) \quad, y^{\prime}=-200-8(-26)$

$$
x^{\prime}=10 \quad, \quad y^{\prime}=8
$$

To check

$$
8(10)+15(8)=80+120=200
$$

Hence, we bought 10 apples from 200 rupees.

Lecture \# 08
$-13 \div 5=2 \quad$ Re mainder

2	3
$5 \sqrt{\frac{-13}{\frac{10}{-3}}}$	$\sqrt[5]{\frac{-16}{\frac{15}{-1}}}$
$R=5-3=2$	$\mathrm{R}=5-1=4$

Remainder $<$ Divisor

Congruence:

Let ' a ' and ' b ' be any two integers and ' m ' be a fixed positive integer. We say that ' a ' is congruent to ' b ' modulo ' m ' if ' m ' divides $a-b$ and is denoted by

$$
\begin{equation*}
a \equiv b(\bmod m) \tag{i}
\end{equation*}
$$

The relation (i) is called congruence ' m ' is called modulus value of congruence ' b ' is called remainder/residue of the congruence. If ' m ' does not divides $a-b$ we say that ' a ' is incongruent to ' b ' modulo ' m ' and denoted by

$$
N A \|=a \equiv b(\bmod m)
$$

Examples:

(i) $\mathrm{a}=8$,
$\mathrm{b}=5 \quad, \quad \mathrm{~m}=3$
$3|8-5 \quad \Rightarrow \quad 3| 3$
'a' is congruent to $5(\bmod 3)$ or $8 \equiv 5(\bmod 3)$
(ii) $\mathrm{a}=8, \mathrm{~b}=-5 \quad, \mathrm{~m}=3$
$3|8-(-5)=3| 8+5 \quad \Rightarrow \quad 3 \mid 13$
$8 \neq-5(\bmod 3)$
(iii) $\mathrm{a}=8, \mathrm{~b}=-10 \quad, \quad \mathrm{~m}=2$

$$
2|8-(-10)=2 \quad \Rightarrow \quad 2| 8+10=2 \mid 18 \quad \Rightarrow \quad 8 \equiv-10(\bmod 3)
$$

Collected by: Muhammad Saleem ${ }^{\circ}{ }^{\circ}{ }^{\circ}$ Composed by: Muzammil Tanveer

$$
\text { (iv) } \begin{array}{lll}
a=8 \quad, \quad b=-6 \\
& 2|8-(-6)=2| 8+6 \\
8 \equiv-6(\bmod 2) & &
\end{array}
$$

Theorem: Show that the relation of congruence between integers is an equivalence relation.

Proof:

(i) Reflexive: Let ' a ' be any integer and ' m ' be fix (positive) integer

$$
\begin{aligned}
\text { Since } & \mathrm{m} \mid \mathrm{a} \\
\Rightarrow & \mathrm{~m} \mid \mathrm{a}-\mathrm{a} \\
\Rightarrow & a \equiv a(\bmod \mathrm{~m})
\end{aligned}
$$

It means that relation of congruence between integer is reflexive.
(ii). Symmetric: Let ' a ' and ' b ' be any two integers and ' m ' be a fix (positive) integer.

Suppose $\square \cap a \equiv b(\bmod \mathrm{~m})$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{m}|\mathrm{a}-\mathrm{b}=\mathrm{m}|-(\mathrm{b}-\mathrm{a}) \\
\Rightarrow & \mathrm{m} \mid \mathrm{b}-\mathrm{a} \\
\Rightarrow & b \equiv a(\bmod \mathrm{~m})
\end{array}
$$

It means that relation of congruence between integers is symmetric.
(iii) Transitive: Let ' a ', ' b ' and ' c ' be any integers and ' m ' be any fix (positive) integer.

| Suppose | | $a \equiv b(\bmod \mathrm{~m})$ |
| ---: | :--- | ---: | :--- |
| And | | $b \equiv c(\bmod \mathrm{~m})$ |
| \Rightarrow | $\mathrm{m} \mid \mathrm{a}-\mathrm{b}$ and $\mathrm{m} \mid \mathrm{b}-\mathrm{c}$ | |

$$
\begin{array}{ll}
\Rightarrow & \mathrm{m} \mid \mathrm{a}-\mathrm{b}+\mathrm{b}-\mathrm{c} \\
\Rightarrow & \mathrm{~m} \mid \mathrm{a}-\mathrm{c} \\
\Rightarrow & a \equiv c(\bmod \mathrm{~m})
\end{array}
$$

It means that relation of congruence between integers is transitive. Since the relation is reflexive, symmetric and transitive. Therefore, the relation is equivalence.

Equivalence Class:

Since the relation of congruence between integer is an equivalence relation therefore it partitions set of integers into classes these classes are called Equivalence classes.

Example: $\mathrm{m}=2$

$$
\begin{aligned}
& {[0]=\{x \mid x=0(\bmod 2)\}} \\
& \quad=\{x \mid x(\bmod 2 \mid x-0)\} \\
& \Rightarrow[0]=\{ \pm 0, \pm 2, \pm 4, \ldots .\}
\end{aligned}
$$

And

$$
\begin{aligned}
{[1] } & =\{x \mid x=1(\bmod 2)\} \\
& =\{x \mid x(\bmod 2 \mid x-1)\} \\
\Rightarrow[1] & =\{ \pm 1, \pm 3, \pm 5, \ldots\}
\end{aligned}
$$

We note that

$$
[0] \cap[1]=0
$$

And

$$
[0] \cup[1]=\mathbb{Z}
$$

Lecture \# 9

Partition:

Let $\mathrm{A}=\{1,2,3,4\} \quad A_{1}$ and A_{2} are partition of A if
(i) $A_{1} \cup A_{2}=A$
(ii) $A_{1} \cap A_{2}=\phi$
(i) $\quad \mathbf{m}=\mathbf{2}$
[0],[1] are classes $\quad \because$ Re mainder 0,1
$[0]=\{x \mid x \equiv 0(\bmod 2)\}$
$[0]=\{x|2| x-0\}$
$[0]=\{0, \pm 2, \pm 4, \pm 6, \ldots \ldots\}$
$[1]=\{x \mid x \equiv 1(\bmod 2)\}$
$[1]=\{x|2| x-1\}$
$[1]=\{ \pm 1, \pm 3, \pm 5, \ldots \ldots$.
$[0] \cup[1]=\mathbb{Z}$
$[0] \cap[1]=\phi$
(ii) $\quad \mathrm{m}=3$
[0],[1],[2]
$[0]=\{x \mid x \equiv 0(\bmod 3)\}$
$[0]=\{x|3| x-0\}$
$[0]=\{0, \pm 3, \pm 6 \pm 9, \ldots \ldots\}$
$[1]=\{x \mid x \equiv 1(\bmod 3)\}$
$[1]=\{x|3| x-1\}$
$[1]=\{1,4,7,10, \ldots .,-2,-5,-8,-11, \ldots\}$
Collected by: Muhammad Saleem ${ }^{\circ}{ }^{\circ}$

$$
\begin{aligned}
& {[2]=\{x \mid x \equiv 2(\bmod 3)\}} \\
& {[2]=\{x|3| x-2\}} \\
& {[2]=\{2,5,8,11, \ldots .,-1,-4,-7,-10, \ldots\}} \\
& {[0] \cup[1] \cup[2]=\mathbb{Z}} \\
& {[0] \cap[1] \cap[2]=\phi}
\end{aligned}
$$

(iii) $\quad \mathbf{m}=\mathbf{4}$
[0],,[1],[2],[3]
$[0]=\{x \mid x \equiv 0(\bmod 4)\}$
$[0]=\{x|4| x-0\}$
$[0]=\{0, \pm 4, \pm 8 \pm 12, \ldots \ldots$.
$[1]=\{x \mid x \equiv 1(\bmod 4)\}$
$[1]=\{x|4| x-1\}$
$[1]=\{1,5,9,13,17 \ldots,-3,-7,-11,-15, \ldots\}$
$[2]=\{x \mid x \equiv 2(\bmod 4)\}$
$[2]=\{x|4| x-2\}$
$[2]=\{2,6,10,14,18 \ldots,-2,-6,-10,-14,-18 \ldots\}$
$[3]=\{x \mid x \equiv 3(\bmod 4)\}$
$[3]=\{x|4| x-3\}$
$[3]=\{3,7,11,15,19 \ldots,-1,-5,-9,-13,-17 \ldots\}$
$[0] \cup[1] \cup[2] \cup[3]=\mathbb{Z}$
$[0] \cap[1] \cap[2] \cap[3]=\phi$
(iv) $\quad m=5$
[0],[1],[2],[3],[4]
$[0]=\{x \mid x \equiv 0(\bmod 5)\}$
$[0]=\{x|5| x-0\}$
$[0]=\{0, \pm 5, \pm 10 \pm 15, \ldots \ldots$.
$[1]=\{x \mid x \equiv 1(\bmod 5)\}$

$$
\begin{aligned}
& {[1]=\{x|5| x-1\}} \\
& {[1]=\{1,6,11,16,21 \ldots,-4,-9,-14,-19, \ldots\}} \\
& {[2]=\{x \mid x \equiv 2(\bmod 5)\}} \\
& {[2]=\{x|5| x-2\}} \\
& {[2]=\{2,7,12,17,22 \ldots .,-3,-8,-13,-18,-23 \ldots\}} \\
& {[3]=\{x \mid x \equiv 3(\bmod 5)\}} \\
& {[3]=\{x|5| x-3\}} \\
& {[3]=\{3,8,13,18,23 \ldots,-2,-7,-12,-17,-22 \ldots\}} \\
& {[4]=\{x \mid x \equiv 4(\bmod 5)\}} \\
& {[4]=\{x|5| x-4\}} \\
& {[4]=\{4,9,14,19,24 \ldots \ldots,-1,-6,-11,-16,-21 \ldots\}} \\
& {[0] \cup[1] \cup[2] \cup[3] \cup[4]=\mathbb{Z}} \\
& {[0] \cap[1] \cap[2] \cap[3] \cap[4]=\phi}
\end{aligned}
$$

(v) $\quad \mathbf{m}=\mathbf{6}$

$$
[0],[1],[2],[3],[4],[5]
$$

$$
[0]=\{x \mid x \equiv 0(\bmod 6)\}
$$

$$
[0]=\{x|6| x-0\}
$$

$$
[0]=\{0, \pm 6, \pm 12 \pm 18, \ldots \ldots .\}
$$

$$
[1]=\{x \mid x \equiv 1(\bmod 6)\}
$$

$$
[1]=\{x|6| x-1\}
$$

$$
[1]=\{1,7,13,19,25 \ldots,-5,-11,-17,-23, \ldots\}
$$

$$
[2]=\{x \mid x \equiv 2(\bmod 6)\}
$$

$$
[2]=\{x|6| x-2\}
$$

$$
[2]=\{2,8,14,20,26 \ldots .,-4,-10,-16,-22,-28 \ldots\}
$$

$$
[3]=\{x \mid x \equiv 3(\bmod 6)\}
$$

$$
[3]=\{x|6| x-3\}
$$

$$
\left.\begin{array}{rl}
& {[3]=\{3,9,15,21,27 \ldots,-3,-9,-15,-21,-27 \ldots\}} \\
& {[4]} \\
& {[4]=\{x \mid x \equiv 4(\bmod 6)\}} \\
& {[4]=\{4,10,16,22,28 \ldots,-2,-8,-14,-20,-26 \ldots\}} \\
& {[5]=\{x \mid x \equiv 5(\bmod 6)\}} \\
& {[5]=\{x|6| x-5\}} \\
& {[5]=\{5,11,17,23,29 \ldots,-1,-7,-13,-19,-25 \ldots\}} \\
& {[0] \cup[1] \cup[2] \cup[3] \cup[4] \cup[5]=\mathbb{Z}} \\
& {[0] \cap[1] \cap[2] \cap[3] \cap[4] \cap[5]=\phi} \\
& \mathbf{m}=7 \\
& {[0],[1],[2],[3],[4],[5],[6]} \\
& {[0]=\{x \mid x \equiv 0(\bmod 7)\}} \\
& {[0]=\{x|7| x-0\}} \\
& {[0]=\{0, \pm 7, \pm 14 \pm 21, \ldots \ldots\}} \\
& {[1]=\{x \mid x \equiv 1(\bmod 7)\}} \\
& {[1]=\{x|7| x-1\}} \\
& {[1]=\{1,8,15,22,29 \ldots,-6,-13,-20,-27, \ldots\}} \\
& {[2]=\{x \mid x \equiv 2(\bmod 7)\}} \\
& {[2]=\{x|7| x-2\}} \\
& {[2]=\{2,9,16,23,30 \ldots,,-5,-12,-19,-26,-33 \ldots\}} \\
& {[3]=\{x \mid x \equiv 3(\bmod 7)\}} \\
& {[3]=\{x|7| x-3\}} \\
& {[3]=\{3,10,17,24,31 \ldots,--4,-11,-18,-25,-32 \ldots\}} \\
& {[4]}
\end{array}\right\}\{x \mid x \equiv 4(\bmod 7)\},
$$

$$
\begin{aligned}
& {[5]=\{x \mid x \equiv 5(\bmod 7)\}} \\
& {[5]=\{x|7| x-5\}} \\
& {[5]=\{5,12,19,26,33 \ldots .,-2,-9,-16,-23,-30 \ldots\}} \\
& {[6]=\{x \mid x \equiv 6(\bmod 7)\}} \\
& {[6]=\{x|7| x-6\}} \\
& {[6]=\{6,13,20,27,34 \ldots .,-1,-8,-15,-22,-29 \ldots\}} \\
& {[0] \cup[1] \cup[2] \cup[3] \cup[4] \cup[5] \cup[6]=\mathbb{Z}} \\
& {[0] \cap[1] \cap[2] \cap[3] \cap[4] \cap[5] \cap[6]=\phi} \\
& \text { (vii) } \quad m=8 \\
& \text { [0],[1],[2],[3],[4],[5],[6],[7] } \\
& {[0]=\{x \mid x \equiv 0(\bmod 8)\}} \\
& {[0]=\{x|8| x-0\}} \\
& {[0]=\{0, \pm 8, \pm 16 \pm 24, \ldots \ldots .\}} \\
& {[1]=\{x \mid x \equiv 1(\bmod 8)\}} \\
& {[1]=\{x|8| x-1\}} \\
& {[1]=\{1,9,17,25,33 \ldots .,-7,-15,-23,-31, \ldots\}} \\
& {[2]=\{x \mid x \equiv 2(\bmod 8)\}} \\
& {[2]=\{x|8| x-2\}} \\
& {[2]=\{2,10,18,26,34 \ldots .,-6,-14,-22,-30,-38 \ldots\}} \\
& {[3]=\{x \mid x \equiv 3(\bmod 8)\}} \\
& {[3]=\{x|8| x-3\}} \\
& {[3]=\{3,11,19,27,35 \ldots .,-5,-13,-21,-29,-37 \ldots\}} \\
& {[4]=\{x \mid x \equiv 4(\bmod 8)\}} \\
& {[4]=\{x|8| x-4\}} \\
& {[4]=\{4,12,20,28,36 \ldots .,-4,-12,-20,-28,-36 \ldots\}} \\
& {[5]=\{x \mid x \equiv 5(\bmod 8)\}}
\end{aligned}
$$

Collected by: Muhammad Saleem ${ }^{\circ}{ }^{\circ \circ}$ Composed by: Muzammil Tanveer

$$
\begin{aligned}
& {[5]=\{x|8| x-5\}} \\
& {[5]=\{5,13,21,29,37 \ldots .,-3,-11,-19,-27,-35 \ldots\}} \\
& {[6]=\{x \mid x \equiv 6(\bmod 8)\}} \\
& {[6]=\{x|8| x-6\}} \\
& {[6]=\{6,14,22,30,38 \ldots .,-2,-10,-18,-26,-34 \ldots\}} \\
& {[7]=\{x \mid x \equiv 7(\bmod 8)\}} \\
& {[7]=\{x|8| x-7\}} \\
& {[7]=\{7,15,23,31,39 \ldots,-1,-9,-17,-25,-33 \ldots\}} \\
& {[0] \cup[1] \cup[2] \cup[3] \cup[4] \cup[5] \cup[6] \cup[7]=\mathbb{Z}} \\
& {[0] \cap[1] \cap[2] \cap[3] \cap[4] \cap[5] \cap[6] \cap[7]=\phi} \\
& \text { (viii) } \quad \mathbf{m}=\mathbf{9} \\
& {[0],[1],[2],[3],[4],[5],[6],[7],[8]} \\
& {[0]=\{x \mid x \equiv 0(\bmod 9)\}} \\
& {[0]=\{x|9| x-0\}} \\
& {[0]=\{0, \pm 9, \pm 18 \pm 27, \ldots \ldots\}} \\
& {[1]=\{x \mid x \equiv 1(\bmod 9)\}} \\
& {[1]=\{x|9| x-1\}} \\
& {[1]=\{1,10,19,28,37 \ldots .,-8,-17,-26,-35, \ldots\}} \\
& {[2]=\{x \mid x \equiv 2(\bmod 9)\}} \\
& {[2]=\{x|9| x-2\}} \\
& {[2]=\{2,11,20,29,38 \ldots .,-7,-16,-25,-34,-43 \ldots\}} \\
& {[3]=\{x \mid x \equiv 3(\bmod 9)\}} \\
& {[3]=\{x|9| x-3\}} \\
& {[3]=\{3,12,21,30,39 \ldots,-6,-15,-24,-33,-42 \ldots\}} \\
& {[4]=\{x \mid x \equiv 4(\bmod 9)\}} \\
& {[4]=\{x|9| x-4\}}
\end{aligned}
$$

$$
\begin{aligned}
& {[4]=\{4,13,22,31,40 \ldots .,-5,-14,-23,-32,-41 \ldots\}} \\
& {[5]=\{x \mid x \equiv 5(\bmod 9)\}} \\
& {[5]=\{x|9| x-5\}} \\
& {[5]=\{5,14,23,32,41 \ldots,-4,-13,-22,-31,-40 \ldots\}} \\
& {[6]=\{x \mid x \equiv 6(\bmod 9)\}} \\
& {[6]=\{x|9| x-6\}} \\
& {[6]=\{6,15,24,33,42 \ldots,-3,-12,-21,-30,-39 \ldots\}} \\
& {[7]=\{x \mid x \equiv 7(\bmod 9)\}} \\
& {[7]=\{x|9| x-7\}} \\
& {[7]=\{7,16,24,33,42 \ldots,-2,-11,-20,-29,-38 \ldots\}} \\
& {[8]=\{x \mid x \equiv 8(\bmod 9)\}} \\
& {[8]=\{x|9| x-8\}} \\
& {[8]=\{8,17,26,35,44 \ldots,-1,-10,-19,-28,-37 \ldots\}} \\
& {[0] \cup[1] \cup[2] \cup[3] \cup[4] \cup[5] \cup[6] \cup[7] \cup[8]=\mathbb{Z}} \\
& {[0] \cap[1] \cap[2] \cap[3] \cap[4] \cap[5] \cap[6] \cap[7] \cap[8]=\phi} \\
& \text { (ix) } \quad \mathbf{m}=\mathbf{1 0} \\
& {[0],[1],[2],[3],[4],[5],[6],[7],[8],[9]} \\
& {[0]=\{x \mid x \equiv 0(\bmod 10)\}} \\
& {[0]=\{x|10| x-0\}} \\
& {[0]=\{0, \pm 10, \pm 20 \pm 30, \ldots \ldots .\}} \\
& {[1]=\{x \mid x \equiv 1(\bmod 10)\}} \\
& {[1]=\{x|10| x-1\}} \\
& {[1]=\{1,11,21,31,41 \ldots .,-9,-19,-29,-39, \ldots\}} \\
& {[2]=\{x \mid x \equiv 2(\bmod 10)\}} \\
& {[2]=\{x|10| x-2\}} \\
& {[2]=\{2,12,22,32,42 \ldots,-8,-18,-28,-38,-48 \ldots\}}
\end{aligned}
$$

$$
\begin{aligned}
& {[3]=\{x \mid x \equiv 3(\bmod 10)\}} \\
& {[3]=\{x|10| x-3\}} \\
& {[3]=\{3,13,23,33,43 \ldots,-7,-17,-27,-37,-47 \ldots\}} \\
& {[4]=\{x \mid x \equiv 4(\bmod 10)\}} \\
& {[4]=\{x|10| x-4\}} \\
& {[4]=\{4,14,24,34,44 \ldots,-6,-16,-26,-36,-46 \ldots\}} \\
& {[5]=\{x \mid x \equiv 5(\bmod 10)\}} \\
& {[5]=\{x|10| x-5\}} \\
& {[5]=\{5,15,25,35,45 \ldots,-5,-15,-25,-35,-45 \ldots\}} \\
& {[6]=\{x \mid x \equiv 6(\bmod 10)\}} \\
& {[6]=\{x|10| x-6\}} \\
& {[6]=\{6,16,26,36,46 \ldots,-4,-14,-24,-34,-44 \ldots\}} \\
& {[7]=\{x \mid x \equiv 7(\bmod 10)\}} \\
& {[7]=\{x|10| x-7\}} \\
& {[7]=\{7,17,27,37,47 \ldots,-3,-13,-23,-33,-43 \ldots\}} \\
& {[8]=\{x \mid x \equiv 8(\bmod 10)\}}
\end{aligned}
$$

$$
[8]=\{x|10| x-8\}
$$

$$
[8]=\{8,18,28,38,48 \ldots .,-2,-12,-22,-32,-42 \ldots\}
$$

$$
[9]=\{x \mid x \equiv 9(\bmod 10)\}
$$

$$
[9]=\{x|10| x-9\}
$$

$$
[9]=\{9,19,29,39,49 \ldots,-1,-11,-21,-31,-41 \ldots\}
$$

$$
[0] \cup[1] \cup[2] \cup[3] \cup[4] \cup[5] \cup[6] \cup[7] \cup[8] \cup[9]=\mathbb{Z}
$$

$$
[0] \cap[1] \cap[2] \cap[3] \cap[4] \cap[5] \cap[6] \cap[7] \cap[8] \cup[9]=\phi
$$

Theorem: Let ' a ', ' b ', ' c ' and ' d ' be any integers and ' m ' be fixed positive integer. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Then
(i) $\quad a+c \equiv b+d(\bmod m)$
(ii) $\quad a-c \equiv b-d(\bmod m)$
(iii) $\quad a c \equiv b d(\bmod m)$

Proof: (i) Given

$$
a \equiv b(\bmod m) \quad, \quad c \equiv d(\bmod m)
$$

By definition of congruence

$$
\begin{aligned}
& \Rightarrow \quad m \mid a-b \quad \text { and } \quad m \mid c-d \\
& \Rightarrow \quad m \mid a-b+c-d \\
& \Rightarrow \quad m \mid(a+c)-(b+d) \\
& \Rightarrow \quad a+c \equiv b+d(\bmod m)
\end{aligned}
$$

(ii). Given

$$
a \equiv b(\bmod m) \quad, \quad c \equiv d(\bmod m)
$$

By definition of congruence

$$
\begin{aligned}
& \Rightarrow \quad m \mid a-b \quad \text { and } \quad m \mid c-d \\
& \Rightarrow \quad m \mid a-b-(c-d) \\
& \Rightarrow \quad m \mid a-b-c+d \\
& \Rightarrow \quad m \mid(a-c)-(b-d) \\
& \Rightarrow \quad a-c \equiv b-d(\bmod m)
\end{aligned}
$$

(iii). Given

$$
a \equiv b(\bmod m) \quad, \quad c \equiv d(\bmod m)
$$

By definition of congruence

$$
\begin{aligned}
& \Rightarrow \quad m \mid a-b \quad \text { and } \quad m \mid c-d \\
& \Rightarrow \quad m \mid(a-b) c \quad \text { and } \quad m \mid(c-d) b \\
& \Rightarrow \quad m|a c-b c \quad, \quad m| b c-b d \\
& \Rightarrow \quad m \mid a c-b c+b c+b d \\
& \Rightarrow \quad m \mid a c-b d \\
& \Rightarrow \quad a c \equiv b d(\bmod m)
\end{aligned}
$$

Theorem: If $a \equiv b(\bmod m)$ then show that $a^{n} \equiv b^{n}(\bmod m)$

Proof: Given

$$
a \equiv b(\bmod m)
$$

By definition of congruence

$$
\begin{aligned}
& \Rightarrow \quad m \mid a-b \\
& \Rightarrow \quad m \mid(a-b)\left(a^{n-1}+a^{n-2} b+\ldots .+b^{n-1}\right) \\
& \Rightarrow \quad m \mid a^{n}-b^{n} \\
& \Rightarrow \quad a^{n} \equiv b^{n}(\bmod m)
\end{aligned}
$$

Remark: The converse of above theorem is not true in general.
e.g. $\quad a=8, b=4, m=3, n=2$

$$
\Rightarrow 8^{2} \equiv 4^{2}(\bmod 3) \quad \text { But } \quad \Rightarrow \quad 8 \not \equiv 4(\bmod 3)
$$

Some formula's $a^{2}-b^{2}=(a-b)(a+b), a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
$a^{4}-b^{4}=(a-b)\left(a^{3}+a^{2} b+a b^{2}+b^{3}\right), a^{5}-b^{5}=(a-b)\left(a^{4}+a^{3} b+a^{2} b^{2}+a b^{3}+b^{4}\right)$, $a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\ldots . .+b^{n-1}\right)$

Lecture \# 10
Question: Find remainder when 2^{57} is divisible by 13
Solution: \quad Since $\quad 64 \equiv-1(\bmod 13)$

$$
\begin{aligned}
& \Rightarrow 2^{6} \equiv-1(\bmod 13) \\
& \Rightarrow\left(2^{6}\right)^{9} \equiv(-1)^{9}(\bmod 13) \\
& \Rightarrow 2^{54} \equiv-1(\bmod 13) \\
& \Rightarrow 2^{3} \cdot 2^{54} \equiv-1.2^{3}(\bmod 13) \\
& \Rightarrow 2^{57} \equiv-8(\bmod 13) \\
& \Rightarrow 2^{57} \equiv 5(\bmod 13) \quad \because-8+13=5 \\
& \Rightarrow \text { Remainder }=5
\end{aligned}
$$

Question: Find remainder when 5^{48} is divisible by 12
Solution: \quad Since $\quad 25 \equiv 1(\bmod 12)$

$$
\begin{aligned}
\mathbb{V} U Z \mathrm{Z} & \Rightarrow 5^{2} \equiv 1(\bmod 12) \\
& \Rightarrow\left(5^{2}\right)^{24} \equiv(1)^{24}(\bmod 12) \\
& \Rightarrow 5^{48} \equiv 1(\bmod 12) \\
& \Rightarrow \text { Remainder }=1
\end{aligned}
$$

Question: Find remainder when 3^{101} is divisible by 10
Solution: \quad Since $\quad 81 \equiv 1(\bmod 10)$

$$
\begin{aligned}
& \Rightarrow 3^{4} \equiv 1(\bmod 10) \\
& \Rightarrow \quad\left(3^{4}\right)^{25} \equiv(1)^{25}(\bmod 10) \\
& \Rightarrow 3^{100} \equiv 1(\bmod 10)
\end{aligned}
$$

Collected by: Muhammad Saleem ${ }^{\circ}{ }^{\circ}$ Composed by: Muzammil Tanveer

$$
\begin{aligned}
& \Rightarrow 3.3^{100} \equiv 1.3(\bmod 10) \\
& \Rightarrow 3^{101} \equiv 3(\bmod 10) \\
& \Rightarrow \text { Remainder }=3
\end{aligned}
$$

Question: Find remainder when 2^{47} is divisible by 3
Solution: \quad Since $\quad 4 \equiv 1(\bmod 3)$

$$
\begin{aligned}
& \Rightarrow 2^{2} \equiv 1(\bmod 3) \\
& \Rightarrow\left(2^{2}\right)^{23} \equiv(1)^{23}(\bmod 3) \\
& \Rightarrow 2^{46} \equiv 1(\bmod 3) \\
& \Rightarrow 2.2^{46} \equiv 1.2(\bmod 3) \\
& \Rightarrow 2^{47} \equiv 2(\bmod 3) \\
& \Rightarrow \text { Remainder }=2
\end{aligned}
$$

Question: Find the remainder when sum of the given series is divisible by 4

$$
\text { MuZる円 } 1!+2!+3!+\ldots+100!
$$

Solution: Since

$$
\begin{aligned}
& 4!\equiv 0(\bmod 4) \\
\Rightarrow & 4!+5!+6!+\ldots .+100!\equiv 0(\bmod 4) \\
\Rightarrow & 1!+2!+3!+4!+\ldots .+100!\equiv 1!+2!+3!(\bmod 4) \\
\Rightarrow & 1!+2!+3!+4!+\ldots .+100!\equiv 9(\bmod 4) \\
\Rightarrow & 1!+2!+3!+4!+\ldots .+100!\equiv 1(\bmod 4)
\end{aligned}
$$

Question: Find the remainder when sum of the given series is divisible by 15

$$
1!+2!+3!+\ldots .+1000!
$$

Solution: Since $\quad 5!\equiv 0(\bmod 15)$
$\Rightarrow 5!+6!+\ldots .+1000!\equiv 0(\bmod 15)$
$\Rightarrow 1!+2!+3!+4!+5!+6!+\ldots .+1000!\equiv 1!+2!+3!+4!(\bmod 15)$
$\Rightarrow 1!+2!+3!+\ldots .+1000!\equiv 33(\bmod 15)$
$\Rightarrow 1!+2!+3!+\ldots .+1000!\equiv 3(\bmod 15)$
Remainder $=3$

Muzammil Tanveer

Lecture \# 11
Theorem: If $a \equiv b(\bmod m)$ then show that $f(a) \equiv f(b)(\bmod m)$
Proof: Given that

$$
\begin{gather*}
a \equiv b(\bmod m) \tag{i}\\
\Rightarrow a x \equiv b x(\bmod m) \tag{ii}\\
\Rightarrow a x^{2} \equiv b x^{2}(\bmod m) \tag{iii}\\
\cdot \tag{iv}\\
\cdot \\
\cdot \\
\Rightarrow a x^{n-1} \equiv b x^{n-1}(\bmod m)
\end{gather*}
$$

From (i), (ii), (iii) and (iv) we have

$$
\begin{aligned}
& a+a x+a x^{2}+\ldots+a x^{n-1} \equiv b+b x+b x^{2}+\ldots+b x^{n-1} \\
& f(a) \equiv f(b)(\bmod m) \\
& \because f(a)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{n-1} x^{n-1}
\end{aligned}
$$

Theorem: If $a \equiv b\left(\bmod m_{1}\right)$ and $a \equiv b\left(\bmod m_{2}\right)$ then show that $a \equiv b\left(\bmod <m_{1}, m_{2}>\right)$ where $<m_{1}, m_{2}>$ is called L.C.M of x_{1}, x_{2}

Proof: Since $\quad a \equiv b\left(\bmod m_{1}\right)$ and $a \equiv b\left(\bmod m_{2}\right)$

$$
\Rightarrow \quad m_{1}\left|a-b \quad, \quad m_{2}\right| a-b
$$

Multiplying by m_{2}

$$
\begin{aligned}
& \Rightarrow \quad m_{1} m_{2} \mid m_{2}(a-b) \\
& \Rightarrow<m_{1}, m_{2}>\mid(a-b) \\
& \Rightarrow \quad a \equiv b\left(\bmod <m_{1}, m_{2}>\right)
\end{aligned}
$$

Complete Residue System (CRS)

Let $\left\{a_{1}, a_{2}, \ldots, \mathrm{a}_{k}\right\}$ be a set of integers and m be a fixed positive integer we say that the set $\left\{a_{1}, a_{2}, \ldots, \mathrm{a}_{k}\right\}$ forms a complete Residue system modulo m (denoted by CRS $(\bmod m)$) if
(i) $\quad \Rightarrow a_{i} \not \equiv a_{j}(\bmod m) \quad \forall i \neq j$
(ii) For any integer n there exist a unique a_{i} such that

$$
n \equiv a_{i}(\bmod m)
$$

Example: Check the set forms CRS $\{11,12,13\}, \mathrm{m}=3$
Solution: (i) Condition

$$
\begin{array}{ll}
11 \not \equiv 12(\bmod 3) & \because 3 \dagger 11-12 \\
12 \not \equiv 13(\bmod 3) & \because 3 \dagger 12-13 \\
11 \not \equiv 13(\bmod 3) & \because 3 \dagger 11-13
\end{array}
$$

$1^{\text {st }}$ condition satisfied
(ii). For $2^{\text {nd }}$ condition for any other integer

$$
25 \equiv 13(\bmod 3) \quad[\because 3 \mid 25-13
$$

Example: Show that the set $\{6,7,8,9\}, m=4$ from CRS.
Solution: (i) $1^{\text {st }}$ condition

$$
\begin{aligned}
& 6 \not \equiv 7(\bmod 4) \\
& 6 \not \equiv 8(\bmod 4) \\
& 6 \not \equiv 9(\bmod 4) \\
& 7 \not \equiv 8(\bmod 4) \\
& 7 \not \equiv 9(\bmod 4) \\
& 8 \equiv 9(\bmod 4)
\end{aligned}
$$

(ii). $2^{\text {nd }}$ condition

For any other integer

$$
10 \equiv 6(\bmod 4)
$$

Example: Show that the set $\{6,7,10,9\}, \mathrm{m}=4$ forms CRS.
Solution: ${ }^{\text {st }}$ condition

$$
\begin{aligned}
& 6 \equiv \equiv 7(\bmod 4) \\
& 6 \equiv 10(\bmod 4)
\end{aligned}
$$

Which is not true. The given set not forms CRS.
Theorem: Let $\mathrm{A}=\left\{a_{1}, a_{2}, \ldots, \mathrm{a}_{k}\right\}$ be a set of integers then 'A' forms CRS (mod $m)$ if $k=m$.

Proof: We know $\{0,1,2, \ldots, m-1\}$ forms a CRS (mod m) hence for each j, $1 \leq \mathrm{j} \leq \mathrm{k} \exists$ unique i such that $0 \leq \mathrm{i} \leq \mathrm{m}-1$ and

$$
a_{j} \equiv i(\bmod m)
$$

Thus $\mathrm{k} \leq \mathrm{m}$. But then $\left\{a_{1}, a_{2}, \ldots, \mathrm{a}_{k}\right\}$ is also a CRS $(\bmod \mathrm{m})$. Hence $\forall \mathrm{i}$ $0 \leq \mathrm{i} \leq \mathrm{m}-1, \exists$ unique $\mathrm{j} 1 \leq \mathrm{j} \leq \mathrm{k}$ such that

$$
\begin{aligned}
& i \equiv a_{j}(\bmod m) \\
\Rightarrow & \mathrm{m} \leq \mathrm{k}
\end{aligned}
$$

By combining the above result i.e. $\mathrm{k} \leq \mathrm{m} \& \mathrm{~m} \leq \mathrm{k}$

$$
\Rightarrow \quad \mathrm{m}=\mathrm{k}
$$

Alternate definition:

The set $\mathrm{A}=\left\{a_{1}, a_{2}, \ldots, \mathrm{a}_{k}\right\}$ forms a CRS $(\bmod \mathrm{m})$ if
(i) A contain exactly m elements
(ii) $\quad a_{i} \not \equiv a_{j}(\bmod m) \quad \forall i \neq j$

Example: Show that the set $\{81,82,83,84\}, m=4$ forms CRS.
Solution: (i) Observe that A contains exactly 4 elements. Condition (i) satisfied.

$$
\text { (ii). } \begin{array}{ll}
81 \not \equiv 82(\bmod 4) \\
& 81 \not \equiv 83(\bmod 4) \\
81 \not \equiv 84(\bmod 4) \\
& 82 \not \equiv 83(\bmod 4) \\
& 82 \neq 84(\bmod 4) \\
83 \not \equiv 84(\bmod 4)
\end{array}
$$

Condition (ii) satisfied. Hence the given set forms CRS.
Exercise: Let $\left\{x_{1}, x_{2}, \ldots . x_{m}\right\}$ be a CRS $(\bmod m)$ and $\mathrm{a}, \mathrm{b} \in \mathrm{Z}$ such that $(\mathrm{a}, \mathrm{m})=1$ then show that the set $A=\left\{a x_{1}+b, a x_{2}+\mathrm{b}, \ldots . . \mathrm{a} x_{m}+b\right\}$ forms CRS (mod m)

Solution: (i) Observe that A contain exactly m elements.
(ii). Now we show

$$
a x_{i}+b \not \equiv a x_{j}+b(\bmod m) \quad \forall i \neq j
$$

Suppose

$$
a \overline{x_{i}}+b \equiv a x_{j}+b(\bmod m) \quad \forall i \neq j
$$

$$
\Rightarrow \quad a x_{i} \equiv a x_{j}(\bmod m) \quad \forall i \neq j
$$

Since $\quad(a, m)=1 \quad$ then

$$
x_{i} \equiv x_{j}(\bmod m) \quad \forall i \neq j
$$

A contradiction against the fact that the given set $\left\{x_{1}, x_{2}, \ldots . x_{m}\right\}$ forms a CRS $(\bmod m)$. So our supposition is wrong. Thus

$$
a x_{i}+b \neq a x_{j}+b(\bmod m) \quad \forall i \neq j
$$

Hence set A forms CRS (mod m)
Remark: The set $\{0,1,2, \ldots, n-1\}$ always form a CRS $(\bmod n)$

Example: $A=\{81,82,83,84\}, \mathrm{m}=4$
The least residues of $\mathrm{A}(\bmod 4)$ are $\{1,2,3,0\}$
By using remark, the given set forms CRS $(\bmod 4)$
Example: $\mathrm{A}=\{81,82,84,88\}, \mathrm{m}=4$
Solution: The least residues of A $(\bmod 4)$ are $\{1,2,0,0\}$ which are not remainder of 4 i.e $\{0,1,2,3\}$. Hence the given set not forms $C R S ~(\bmod 4)$.

Lecture \# 12

Reduced Residue System (RRS)

A set of integers $\left\{a_{1}, a_{2}, \ldots, \mathrm{a}_{k}\right\}$ forms a Residue system modulo ' m ' (denoted by $\operatorname{RRS}(\bmod m)$) if
(i) $\quad\left(a_{i}, m\right)=1 \quad \forall i$
(ii) $\quad a_{i} \neq a_{j}(\bmod m) \forall i \neq j$
(iii) For any integer n where $(\mathrm{n}, \mathrm{m})=1$ there exist a unique a_{i} such that

$$
n \equiv a_{i}(\bmod m)
$$

Example: Check the set forms $\operatorname{RRS}\{1,3,5,7\}, m=8$
Solution: (i) Since $(1,8)=(3,8)=(5,8)=(7,8)=1$
(ii).

$$
\begin{aligned}
& 1 \not \equiv 3(\bmod 8) \\
& 1 \neq 5(\bmod 8) \\
& 1 \not \equiv 7(\bmod 8) \\
& 3 \neq 5(\bmod 8) \\
& 3 \not \equiv 7(\bmod 8) \\
& 5 \not \equiv 7(\bmod 8)
\end{aligned}
$$

$$
\text { (iii). } \mathrm{n}=15 \quad \Rightarrow(15,8)=1
$$

And

$$
15 \equiv 7(\bmod 8)
$$

Hence the given set makes RRS.

Euler ϕ function:

Let n be $\mathrm{a}+$ ve integer $(\mathrm{n} \geq 1)$ we define Euler ϕ function as follows

$$
\phi(n)=\left\{\begin{array}{l}
n \quad \text { if } \quad n=1 \\
\text { The number of }+v e \text { int egers less than } \\
\text { and co }- \text { prime to } n \text { if } n>1
\end{array}\right.
$$

e.g. If $\mathrm{n}=1$ then $\phi(1)=1$

If $\mathrm{n}=2$
$(0,2)=2,(1,2)=1$
$1 \& 2$ are co-prime
$\phi(2)=1$
If $\mathrm{n}=3$

$$
(0,3)=3,(1,3)=1,(2,3)=1
$$

$1 \& 3$ and $2 \& 3$ are relatively prime

$$
\phi(3)=2
$$

If $\mathrm{n}=4$

$$
\phi(4)=2
$$

If $\mathrm{n}=5$

$$
\phi(5)=4
$$

If $\mathrm{n}=13$

$$
\phi(13)=12
$$

Remark : (i) If P is prime number then $\phi(\mathrm{P})=\mathrm{P}-1$
(ii). The set $\{1,2,3, . ., \mathrm{P}-1\}$ always forms a Reduced Residue system (mod P$)$ where P is a prime number.

Theorem: If $\left\{a_{1}, a_{2}, \ldots, \mathrm{a}_{k}\right\}$ is a Reduced Residue system $(\bmod m)$ then $\mathrm{k}=\phi(\mathrm{m})$.

Proof: $t_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\phi(m)}$ be the $\phi(\mathrm{m})$ integers that are less than m and co-prime to m . We show $\left\{t_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\phi(m)}\right\}$ is a RRS $(\bmod \mathrm{m})$

Suppose $t_{i} \equiv t_{j}(\bmod m) \quad 1 \leq t_{i}, \mathrm{t}_{j}<m$

$$
\begin{equation*}
\because m \mid t_{i}-t_{j} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { But } 1 \leq t_{i}, t_{j}<m \\
\Rightarrow \quad & t_{i}-t_{j}<\mathrm{m} \quad \text { hence (i) cannot be possible unless } t_{i}-t_{j}=0
\end{aligned}
$$

Next, let ' b ' be an integer such that $(\mathrm{n}, \mathrm{m})=1$. By division algorithm

$$
\mathrm{n}=\mathrm{qm}+\mathrm{r} ; \quad 0 \leq \mathrm{r}<\mathrm{m}
$$

And the quotient $\mathrm{q}=0$ if $\mathrm{n}<\mathrm{m}$ and $\mathrm{q} \geq 1$ if $\mathrm{n}>\mathrm{m}$. Also $(\mathrm{r}, \mathrm{m})=1$. Hence $r=t_{i}$
for some i $1 \leq \mathrm{i} \leq \phi(\mathrm{m})$ and $n \equiv r \equiv t_{i}(\bmod m)$
Since $\forall \mathrm{i} \quad 1 \leq \mathrm{i} \leq \mathrm{k} \quad\left(a_{i}, m\right)=1 \exists$ a unique ${ }^{l} \quad 1 \leq b \leq \phi(\mathrm{m}) \ni a_{i} \equiv t_{i}(\bmod m)$

$$
\therefore k \leq \phi(m)
$$

Similarly, $\quad \phi(m) \leq k$

$$
\Rightarrow \quad \mathrm{k}=\phi(\mathrm{m})
$$

Alternative definition:

A set $\left\{a_{1}, a_{2}, \ldots, \mathrm{a}_{k}\right\}$ forms Reduced Residue system $(\bmod \mathrm{m})$ if
(i) $\mathrm{k}=\phi(\mathrm{m})$
(ii) $\left(a_{i}, m\right)=1 \quad \forall i$
(iii) $\quad a_{i} \not \equiv a_{j}(\bmod m) \quad \forall i \neq j$

Example: Check the set forms RRS $\{1,3,5,7\}, m=8$
Solution: (i) Since $\phi(m)=4$
(ii). $1 \neq 3(\bmod 8)$

$$
1 \neq 5(\bmod 8)
$$

$$
1 \not \equiv 7(\bmod 8)
$$

$$
3 \neq 5(\bmod 8)
$$

$$
3 \equiv 7(\bmod 8)
$$

$$
5 \equiv 7(\bmod 8)
$$

Hence the given set form RRS.
Exercise: If $\left\{x_{1}, x_{2}, \ldots \ldots x_{\phi(m)}\right\}$ is a RRS $(\bmod m)$ and $a \in Z$ such that $(\mathrm{a}, \mathrm{m})=1$.
Then show that the set $\mathrm{A}=\left\{a x_{1}, \mathrm{a} x_{2}, \ldots \ldots \mathrm{a} x_{\phi(m)}\right\}$ forms RRS (mod m)
Solution: (i) Observe that the given set has exactly $\phi(m)$ elements
(ii). Since $\left\{x_{1}, x_{2}, \ldots \ldots x_{\phi(m)}\right\}$ forms RRS (modm)

So $\quad\left(x_{1}, m\right)=\left(x_{2}, m\right)=\ldots,\left(x_{\phi(m)}, m\right)=1$
Then $\left(a x_{1}, m\right)=\left(a x_{2}, m\right)=\ldots .,\left(a x_{\phi(m)}, m\right)=1 \quad \because(a, m)=1$
(iii). Since $\left\{x_{1}, x_{2}, \ldots \ldots x_{\phi(m)}\right\}$ forms RRS (mod $\left.m\right)$

So $\quad x_{1} \not \equiv x_{2}(\bmod m)$

$$
x_{2} \not \equiv x_{3}(\bmod m)
$$

$$
x_{\phi(m)-1} \equiv x_{\phi(m)}(\bmod m)
$$

Then

$$
\begin{gathered}
a x_{1} \not \equiv a x_{2}(\bmod m) \\
a x_{2} \not \equiv a x_{3}(\bmod m) \\
\cdot \\
\cdot \\
a x_{\phi(m)-1} \neq a x_{\phi(m)}(\bmod m)
\end{gathered}
$$

Since all conditions are satisfied. Hence the given set forms RRS (mod m)

Prime Number:

A positive integer $\mathrm{n}>1$ is called prime if ' n ' has exactly two integer divisors namely 1 and ' n ' itself otherwise ' n ' is called composite number.

Composite Number:

A positive number $n>1$ is called composite if ' n ' has at least three positive divisors.

Perfect Number:

A positive integer ' n ' is called perfect if the sum of its positive divisor is twice of the number ' n '.

Examples $n=6$
Divisor of $6=1,2,3,6$
Sum of divisor $=1+2+3+6=12=2(6)$
$\Rightarrow \quad 6$ is perfect number

$$
\mathrm{n}=28
$$

divisor of $28=1,2,4,7,14,28$
Sum of divisor $=1+2+4+7+14+28=56=2(28)$
$\Rightarrow 28$ is perfect number.

Twin Primes:

Let ' n ' be a positive integer, if $n-1$ and $n+1$ are prime number then these prime number are called twin primes.
$\mathrm{n}=4$
$\mathrm{n}-1=3$ is prime number
$\mathrm{n}+1=5$ is prime number
$\Rightarrow \quad 3$ and 5 are twin primes.

Prime Triplet:

Let ' P ' be a prime number if $\mathrm{P}+2$ and $\mathrm{P}+4$ are prime then the triplet $(\mathrm{P}, \mathrm{P}+2, \mathrm{P}+4)$ is called Prime Triplet
e.g.

$$
\begin{gathered}
\mathrm{P}=3 \\
\mathrm{P}+2=5 \\
\mathrm{P}+4=7
\end{gathered}
$$

$(3,5,7)$ is called Prime Triplet.

Powerful integer:

A positive integer ' n ' is powerful if whenever a prime ' P ' divides ' n '. P^{2} also divides ' n '.
e.g.

$$
\begin{aligned}
& \mathrm{n}=8 \\
& \mathrm{P}=2 \quad, \quad 2 \mid 8 \\
& \mathrm{P}^{2}=4 \quad, \quad 4 \mid 8 \quad \Rightarrow \quad 8 \text { is powerful. }
\end{aligned}
$$

Exercise: The smallest divisor of an integer is prime.
Solution: Let $d>1$ be the smallest divisor of an integer ' n '.
Let d_{1} be any divisor of ' d '. Then $1 \leq d_{1} \leq d$. Suppose $d_{1} \neq 1$. Then $d_{1} \mid d$ and $d \mid n$ $\Rightarrow \mathrm{d}_{1} \mid \mathrm{n}$ but $\mathrm{d}_{1} \leq \mathrm{d} \Rightarrow \mathrm{d}_{1}=\mathrm{d}$. Hence only divisors of ' d ' are 1 and ' d ' itself.
\Rightarrow ' d ' is prime. Hence the smallest divisor of an integer is prime.

Exercise: Let P be a prime and 'a' be any integer then show that either $\mathrm{P} \mid \mathrm{a}$ or $(\mathrm{a}, \mathrm{P})=1$.

Solution: If $\mathrm{P} \mid$ a we have nothing to prove. But if $P \dagger a$ then we show that $(\mathrm{a}, \mathrm{P})=1$

Let $\mathrm{d}=(\mathrm{a}, \mathrm{P}) \Rightarrow \mathrm{d} \mid \mathrm{a}$ and $\mathrm{d} \mid \mathrm{P}$
Since P is prime $d=1$ or $d=P$. If $d=P$ then $P \mid a$, not possible. Hence $d=1$
$\Rightarrow(\mathrm{a}, \mathrm{P})=1$
Exercise: Fundamental theorem of Arithmetic
OR
"Every integer can be decomposed as a product of prime number."
Proof: Suppose there exist an integer $\mathrm{n}>1$ which is not a product of primes. Let ' m ' be the smallest then ' m ' is not a prime and hence $m=a b ; 1<a, b<m$. But then by choice of ' m ' both ' a ' and ' b ' are products of primes. So, ' m ' is a product pf primes. A contradiction, hence every integer can be decomposed as a product of prime number.
Muzammil Tanveer

Lecture \# 13
Question: Let ' m ' be a positive integer, ' a ' and ' b ' any integers. The Linear congruence $a x \equiv b(\bmod m)$ has a solution if and only if $\mathrm{d} \mid \mathrm{b}, \mathrm{d}=(\mathrm{a}, \mathrm{m})$.

Solution: Suppose the linear congruence $a x \equiv b(\bmod m)$ has solution exist

$$
\begin{aligned}
& \quad a x \equiv b(\bmod m) \\
& \Rightarrow \quad m \mid a x-b \quad \because \text { by definition of congruence } \\
& \Rightarrow \quad a x-b=m y \\
& \Rightarrow \quad a x+m y=b \\
& \text { If }(\mathrm{a}, \mathrm{~m})=\mathrm{d} \text { then } \mathrm{d} \mid \mathrm{b}
\end{aligned}
$$

Conversely: If $\mathrm{d} \mid \mathrm{b}$ then we show $a x \equiv b(\bmod m)$ has solution exist
Let x_{0} be the solution of $a x \equiv b(\bmod m)$ then

$$
\begin{equation*}
a x_{0} \equiv b(\bmod m) \tag{i}
\end{equation*}
$$

\qquad
Let x^{\prime} be another solution of $a x \equiv b(\bmod m)$ then

$$
\begin{equation*}
a x^{\prime} \equiv b(\bmod m) \tag{ii}
\end{equation*}
$$

\qquad
From (i) and (ii)

$$
\begin{equation*}
a x^{\prime} \equiv a x_{0}(\bmod m) \tag{iii}
\end{equation*}
$$

\qquad
Since $\quad(a, m)=d$

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{d} \mid \mathrm{a} \quad \text { and } \quad \mathrm{d} \mid \mathrm{m} \\
& \Rightarrow \mathrm{a}=\mathrm{dr} \quad \text { and } \quad \mathrm{m}=\mathrm{ds} \quad \text { where }(\mathrm{r}, \mathrm{~s})=1
\end{aligned}
$$

Put in (iii)

$$
\begin{array}{ll}
\Rightarrow & d r x^{\prime} \equiv d r x_{0}(\bmod d s) \\
\Rightarrow & d s \mid d r x^{\prime}-d r x_{0}
\end{array}
$$

$$
\begin{align*}
& \Rightarrow \quad d s \mid d r\left(x^{\prime}-x_{0}\right) \\
& \Rightarrow \quad s \mid r\left(x^{\prime}-x_{0}\right) \\
& \text { Since }(\mathrm{r}, \mathrm{~s})=1 \quad \text { only possible if } \\
& s \mid x^{\prime}-x_{0} \\
& \Rightarrow \quad x^{\prime}-x_{0}=h s \\
& \Rightarrow \quad x^{\prime}=x_{0}+h s \tag{iv}\\
& \text { By Division Algorithm } \\
& \mathrm{h}=\mathrm{dq}+\mathrm{t} \quad ; \quad 0 \leq \mathrm{t}<\mathrm{d} \\
& \text { (iv) } \Rightarrow \quad x^{\prime}=x_{0}+d q s+t s \\
& x^{\prime}=x_{0}+m q+\frac{t m}{d} \quad \because d s=m, s=\frac{m}{d} \\
& x^{\prime}=x_{0}+t \cdot \frac{m}{d}
\end{align*}
$$

Therefore, the congruence $a x \equiv b(\bmod m)$ has solution x_{0}. Hence solution exist.

Question: Under what conditions solution the system of linear congruence having monic leading coefficients. Justify your answer?

Solution: A general system of simultaneous linear congruences

$$
\begin{aligned}
& a_{1} x \equiv b_{1}\left(\operatorname{modn}_{1}\right) \\
& a_{2} x \equiv b_{2}\left(\operatorname{modn}_{2}\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
& a_{r} x \equiv b_{r}\left(\operatorname{modn}_{r}\right)
\end{aligned}
$$

can be simplified to form

$$
\begin{aligned}
& x \equiv c_{1}\left(\bmod m_{1}\right) \\
& x \equiv c_{2}\left(\bmod m_{2}\right)
\end{aligned}
$$

$$
x \equiv c_{r}\left(\bmod m_{r}\right)
$$

by dividing each congruence through by $\left(a_{i}, n_{i}\right)$ then multiplying by the inverse $\bmod \quad m_{i}=\frac{n_{i}}{\left(a_{i}, n_{i}\right)}$ of the coefficient $\frac{a_{i}}{\left(a_{i}, n_{i}\right)}$. The simplified system may or may not be solvable but in any case, it must have the same set of solution as the original system. Hence, the linear congruence having monic leading coefficients.

Example: The system $x \equiv 8(\bmod 12), x \equiv 6(\bmod 9)$ has no solutions. Since, the first congruence implies that $x \equiv 8 \equiv 2(\bmod 3)$ but the second implies that $x \equiv 6 \equiv 0(\bmod 3)$ and these are incompatible with each other.

Question: Solve the system of linear congruence

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 4(\bmod 5) \\
& x \equiv 5(\bmod 6)
\end{aligned}
$$

Solution: $\quad \operatorname{Gcd}(5,3)=1|5-3=1| 2$
$\operatorname{Gcd}(6,5)=1|6-5=1| 1$
$\operatorname{Gcd}(6,3)=3|6-3=3| 3$

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
\Rightarrow \quad & 3 \mid \mathrm{x}-2
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{x}-2=3 \mathrm{k} \quad \text { where } \mathrm{k} \text { is integer } \\
& \Rightarrow \quad \mathrm{x}=2+3 \mathrm{k} \\
& x \equiv 4(\bmod 5) \\
& 2+3 k \equiv 4(\bmod 5) \\
& 3 k \equiv 4-2(\bmod 5) \\
& 3 k \equiv 2(\bmod 5) \\
& -2 k \equiv 2(\bmod 5) \\
& k \equiv-1(\bmod 5) \\
& k \equiv 4(\bmod 5) \\
& 5 \mid \mathrm{k}-4 \\
& \Rightarrow \quad k-4 \equiv 5 k^{\prime} \quad \text { where } k^{\prime} \text { is any integer } \\
& k \equiv 4+5 k^{\prime} \quad \text { put in }(i) \\
& x \equiv 2+3\left(4+5 k^{\prime}\right) \\
& x \equiv 2+12+15 k^{\prime} \\
& x \equiv 14+15 k^{\prime} \\
& x \equiv 5(\bmod 6) \\
& 14+15 k^{\prime} \equiv 5(\bmod 6) \\
& 15 k^{\prime} \equiv-9(\bmod 6) \\
& 15 k^{\prime} \equiv 3(\bmod 6) \\
& 3 k^{\prime} \equiv 3(\bmod 6) \\
& k^{\prime} \equiv 1(\bmod 6)
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & 6 \mid k^{\prime}-1 \\
\Rightarrow & k^{\prime}-1=6 k^{\prime \prime} \\
\Rightarrow & k^{\prime}=1+6 k^{\prime \prime} \quad \text { put in }(i i) \\
& x=14+15\left(1+6 k^{\prime \prime}\right) \\
& x=14+15+90 k^{\prime \prime} \\
& x=29+90 k^{\prime \prime} \\
& x-29=90 k^{\prime \prime} \\
& \Rightarrow 90 \mid x-29 \\
& x \equiv 29(\bmod 90)
\end{array}
$$

Question: Solve the system of linear congruence

$$
\begin{array}{r}
x \equiv 5(\bmod 6) \\
x \equiv 4(\bmod 11) \\
x \equiv 3(\bmod 17)
\end{array}
$$

Solution: $\quad \operatorname{Gcd}(6,11)=1|11-6=1| 5$
$\operatorname{Gcd}(11,17)=1|17-11=1| 6$
$\operatorname{Gcd}(6,17)=1|17-6=1| 11$

$$
\begin{array}{ll}
& x \equiv 5(\bmod 6) \\
\Rightarrow & 6 \mid \mathrm{x}-5 \\
\Rightarrow & \mathrm{x}-5=6 \mathrm{k} \\
\Rightarrow & \mathrm{x}=5+6 \mathrm{k}
\end{array}
$$

$$
\Rightarrow \quad \mathrm{x}-5=6 \mathrm{k} \quad \text { where } \mathrm{k} \text { is integer }
$$

$$
x \equiv 4(\bmod 11)
$$

$$
5+6 k \equiv 4(\bmod 11)
$$

Collected by: Muhammad Saleem

$$
\begin{aligned}
& 6 k \equiv 4-5(\bmod 11) \\
& 6 k \equiv-1(\bmod 11) \\
& 6 k \equiv 10(\bmod 11) \\
& -5 k \equiv 10(\bmod 11) \\
& k \equiv-2(\bmod 11) \\
& k \equiv 9(\bmod 11) \\
& \Rightarrow \quad 11 \mid \mathrm{k}-9 \\
& \Rightarrow \quad k-9 \equiv 11 k^{\prime} \quad \text { where } k^{\prime} \text { is any integer } \\
& k \equiv 9+11 k^{\prime} \quad \text { put in }(i) \\
& x \equiv 5+6\left(9+11 k^{\prime}\right) \\
& x \equiv 5+54+66 k^{\prime} \\
& x \equiv 59+66 k^{\prime} \\
& \text { V U O n } x \equiv 3(\bmod 17) \\
& 59+66 k^{\prime} \equiv 3(\bmod 17) \\
& 66 k^{\prime} \equiv 3-59(\bmod 17) \\
& 66 k^{\prime} \equiv-56(\bmod 17) \\
& 66 k^{\prime} \equiv 12(\bmod 17) \\
& 15 k^{\prime} \equiv 12(\bmod 17) \\
& -2 k^{\prime} \equiv 12(\bmod 17) \\
& k^{\prime} \equiv-6(\bmod 17) \\
& k^{\prime} \equiv 11(\bmod 17)
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & 17 \mid k^{\prime}-11 \\
\Rightarrow & k^{\prime}-11=17 k^{\prime \prime} \\
\Rightarrow & k^{\prime}=11+17 k^{\prime \prime} \quad \text { put in }(i i) \\
& x \equiv 59+66\left(11+17 k^{\prime \prime}\right) \\
& x=59+726+1122 k^{\prime \prime} \\
& x=785+1122 k^{\prime \prime} \\
& x-785=1122 k^{\prime \prime} \\
& \Rightarrow 1122 \mid x-785 \\
& x \equiv 785(\bmod 1122)
\end{array}
$$

Question: State and prove Wilson's theorem.
Statement: An integer P is prime if and only if $(P-1)!\equiv-1(\bmod \mathrm{P})$
Proof: Suppose P is prime. Let ' a ' be an integer such that $1 \leq a \leq P-1$. Then $(\mathrm{a}, \mathrm{p})=1$. Hence the congruence $a x \equiv 1(\bmod \mathrm{P})$ has a unique solution $(\bmod \mathrm{P})$ (say) b

$$
\because a b \equiv 1(\bmod \mathrm{P})
$$

Also, if

$$
\begin{aligned}
& b \equiv a(\bmod \mathrm{P}) \text { then } \\
& a^{2} \equiv 1(\bmod \mathrm{P}) \\
& \Rightarrow P\left|a^{2}-1 \quad P\right| a-1 \quad \text { or } \quad P \mid a+1
\end{aligned}
$$

Thus for each integer $\mathrm{b} \in\{2,3, \ldots, \mathrm{P}-2\}$ such that $b c \equiv 1(\bmod \mathrm{P})$
Therefore, by pairing bs $1<\mathrm{b}<\mathrm{P}-1$ with $\mathrm{cs} 1<\mathrm{c}<\mathrm{P}-1 \ni b c \equiv 1(\bmod \mathrm{P})$ we get

$$
\begin{array}{r}
1.2 .3 \ldots \ldots(P-1) \equiv 1 .(P-1)(\bmod P) \\
1.2 .3 \ldots \ldots .(P-1) \equiv-1(\bmod P)
\end{array}
$$

$$
\Rightarrow \quad(P-1)!\equiv-1(\bmod P)
$$

Conversely: Suppose that $\Rightarrow(P-1)!\equiv-1(\bmod P)$ and $\mathrm{d} \mid \mathrm{P} \quad 1 \leq \mathrm{d}<\mathrm{P}$
Clearly dis a factor of $(P-1)$!

$$
\begin{aligned}
& \Rightarrow d \mid(P-1)! \\
& \text { As } \\
& \begin{array}{l}
(P-1)!\equiv-1(\bmod P) \\
\Rightarrow \quad P \mid(P-1)!+1 \\
\Rightarrow \quad d \mid(P-1)!+1 \\
\Rightarrow \quad d \mid 1 \\
\Rightarrow \quad d=1 \quad \text { Hence } \mathrm{P} \text { is prime }
\end{array}
\end{aligned}
$$

Question: State and prove Chinese Remainder theorem?
Statement: The linear system of congruence $x \equiv a_{i}\left(\bmod m_{i}\right)$ where the moduli are pair wise relatively prime and $1 \leq \mathrm{i} \leq \mathrm{k}$ has unique solution $m_{1}, m_{2}, \ldots m_{k}$

Proof: The proof consists of two parts. First, we will construct a solution and then show that it is unique modulo $m_{1}, m_{2}, \ldots m_{k}$
(i) Let $M=m_{1}, m_{2}, \ldots m_{k}$ and $M_{i}=M \mid m_{i} \quad$ where $1 \leq i \leq k$

Since $\operatorname{Gcd} \quad\left(M_{i}, m_{i}\right)=1 \quad \forall i$
Also $\quad M_{i} \equiv 0(\bmod j) \quad$ where $i \neq j$
Since $\quad\left(M_{i}, \mathrm{~m}_{i}\right)=1$
So $\quad M_{i} y_{i} \equiv 1\left(\bmod m_{i}\right)$
has a unique solution say $y_{i}\left(y_{i}\right.$ is in fact the inverse of M_{i} modulo $\left.m_{i}\right)$
Let $x=a_{1} M_{i} y_{1}+a_{2} M_{2} y_{2}+\ldots .+a_{k} M_{k} y_{k}$
To show M is a solution of linear system we have

$$
\begin{aligned}
& x=\sum_{\substack{i=1 \\
i \neq j}}^{k} a_{i} M_{i} y_{i}+a_{j} M_{j} y_{j} \\
& x=\sum_{i \neq j}^{k} a_{i} \cdot 0+a_{j} \cdot 1 \quad(\bmod j) \\
& x=0+a_{j} \quad \bmod j \\
& x=a_{j} \quad(\bmod j) \quad 1 \leq j \leq k
\end{aligned}
$$

(ii) To show that solution is unique.

Let x_{0} and x_{1} be two solutions of the system. We shall show that

$$
\begin{array}{ll}
& x_{0} \equiv x_{1}(\operatorname{Mod} M) \\
\text { Since } & x_{0} \equiv a_{j}\left(\bmod m_{j}\right) \\
\text { And } & x_{1} \equiv a_{j}\left(\bmod m_{j}\right) \quad \text { for } 1 \leq j \leq k \\
& x_{1}-x_{0} \equiv a_{j}-a_{j} \quad\left(\bmod m_{j}\right) \\
& x_{1}-x_{0} \equiv 0 \quad\left(\bmod m_{j}\right) \\
& m_{j} \mid\left(x_{1}-x_{0}\right)-0 \\
& m_{j} \mid x_{1}-x_{0} \\
& m_{1}, m_{2}, \ldots m_{k} \mid x_{1}-x_{0} \\
& w h e r e M=m_{1}, m_{2}, \ldots m_{k} \\
& \Rightarrow M \mid x_{1}-x_{0} \\
& \Rightarrow x_{1}-x_{0} \equiv 0 \quad(\operatorname{Mod} M) \\
& \Rightarrow x_{1} \equiv x_{0}(\operatorname{Mod} M)
\end{array}
$$

Thus any two solution of linear system are congruent modulo M , so the solution is unique modulo M .

Question: Let ' a ' and ' b ' be any two integers and ' m ' be a positive integer show that of $n a \equiv n b(\bmod m)$ then $a \equiv b(\bmod m)$ where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$

Solution: Given that $\quad n a \equiv n b(\bmod m)$

$$
\Rightarrow \quad m \mid n a-n b \quad \because \text { by definition of congruence }
$$

$$
\begin{aligned}
& \Rightarrow \quad m \mid n(a-b) \\
& \Rightarrow \quad m \mid a-b \\
& \Rightarrow \quad a \equiv b(\bmod m)
\end{aligned}
$$

Question: Let ' a ' and ' b ' be any two integers and ' m ' be a positive integer. Show that if $a \equiv b(\bmod m)$ then $a^{n} \equiv b^{n}(\bmod m)$

Solution: Given that $a \equiv b(\bmod m)$
By definition of congruence

$$
\begin{aligned}
& \Rightarrow \quad m \mid a-b \\
& \Rightarrow \quad m \mid(a-b)\left(a^{n-1}+a^{n-2} b+\ldots+b^{n-1}\right) \\
& \Rightarrow \quad m \mid a^{n}-b^{n} \\
& \Rightarrow \quad a^{n} \equiv b^{n}(\bmod m)
\end{aligned}
$$

Question: Define Fermat numbers and show that any two Fermat numbers are relatively primes.

Fermat numbers: The number of the form 2^{k+1} is a prime then $k=2^{m}$ for some integer m ; so that $2^{k+1}=2^{2^{m}}+1=F_{m}$ the number of this form is called Fermat number.

Take any two distinct Fermat numbers, say $F_{a}<F_{b}$
Let $d=\operatorname{gcd}\left(F_{a}, F_{b}\right) . \quad$ We know $F_{a} \mid F_{b}-2$
Using the definition of $d, d \mid F_{a}$ and hence $d \mid F_{b}-2$
Since we also know that $d \mid F_{b}$ it follows that $d \mid F_{b}-\left(F_{b}-2\right)$

$$
\Rightarrow \mathrm{d} \mid 2
$$

But all Fermat number are odd and therefore d cannot be 2 . $\mathrm{So}, \mathrm{d}=1$ and the numbers F_{a} and F_{b} are relatively prime.

Collected by: Muhammad Saleem ${ }^{69}$ Composed by: Muzammil Tanveer

Question: State and prove Unique Factorization theorem.
Statement: Every integer $\mathrm{n}>1$ can be expressed as a product of primes and this representation is unique except for the order in which they are written.

Proof: We prove the theorem by induction on ' n '
For $\mathrm{n}=2 \quad \Rightarrow \quad 2=2$ (true)
Let us suppose that the statement is true for $\mathrm{n}=2,3,4, \ldots, \mathrm{k}$
Now prove it for $\mathrm{n}=\mathrm{k}+1$
If $\mathrm{k}+1$ is prime. Then the induction is complete. If $\mathrm{k}+1$ is composite. Then it can be written as

$$
k+1=k_{1} k_{2}
$$

Then by induction hypothesis $k_{1} k_{2}$ can be expressed as product of prime. So, induction is complete and theorem is true i.e. $n=P_{1} P_{2} P_{3}, \ldots . P_{r}$ where P_{i} for $\mathrm{i}=1,2,3, \ldots, \mathrm{r}$ are primes

For uniqueness
Let $n=P_{1} P_{2} P_{3}, \ldots . P_{r}$ where $\mathrm{i}=1,2,3, \ldots, \mathrm{r}$
And $n=q_{1} q_{2} q_{3}, \ldots . \mathrm{q}_{s}$ where $\mathrm{j}=1,2,3, \ldots, \mathrm{~s}$
Then

$$
\begin{equation*}
q_{1} q_{2} q_{3}, \ldots . \mathrm{q}_{s}=P_{1} P_{2} P_{3}, \ldots . P_{r} \tag{1}
\end{equation*}
$$

Then we cancelled common factors from both sides of (1) we obtained

$$
\begin{equation*}
q_{1} q_{2} q_{3}, \ldots . \mathrm{q}_{i}=P_{1} P_{2} P_{3}, \ldots . P_{j} \tag{2}
\end{equation*}
$$

Then by result, If $P \mid P_{1} P_{2} P_{3}, \ldots . P_{k}$ where P_{i} for $i=1,2,3, \ldots \mathrm{k}$ are the primes then $P=P_{i} \quad$ for $i=1,2,3, \ldots \mathrm{k} \quad \because q_{1} \mid q_{1} q_{2} q_{3}, \ldots . \mathrm{q}_{i}$

Therefor $q_{1} \mid P_{1} P_{2} P_{3}, \ldots . \mathrm{P}_{j} \quad \because$ by (2)
Then by above result $q_{1}=P_{j} \quad$ for $i=1,2,3, \ldots \mathrm{j} \quad$ which is contradiction. Hence this prove the uniqueness theorem.

