Merging man and maths

MathCity.org

Metric Spaces

Available online @ http://www.mathcity.org/msc, Version: 2.0

Metric Spaces

Let *X* be a non-empty set and \mathbb{R} denotes the set of real numbers. A function $d: X \times X \to \mathbb{R}$ is said to be metric if it satisfies the following axioms $\forall x, y, z \in X$.

- [M₁] $d(x,y) \ge 0$ i.e. *d* is finite and non-negative real valued function.
- [M₂] d(x,y) = 0 if and only if x = y.
- $[\mathbf{M}_3] \ d(x, y) = d(y, x)$

- (Symmetric property)
- [M₄] $d(x,z) \le d(x,y) + d(y,z)$ (Triangular inequality)

The pair (X, d) is then called *metric space*.

d is also called *distance function* and d(x, y) is the distance from *x* to *y*. **NOTE:** If (X, d) be a metric space then *X* is called *underlying set*.

* Examples:

i) Let *X* be a non-empty set. Then $d: X \times X \to \mathbb{R}$ defined by

$$d(x, y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

is a metric on X and is called *trivial metric* or *discrete metric*.

ii) Let \mathbb{R} be the set of real number. Then $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by

d(x, y) = |x - y| is a metric on \mathbb{R} .

The space (\mathbb{R}, d) is called *real line* and *d* is called *usual metric on* \mathbb{R} .

iii) Let *X* be a non-empty set and $d: X \times X \to \mathbb{R}$ be a metric on *X*. Then $d': X \times X \to \mathbb{R}$ defined by $d'(x, y) = \min(1, d(x, y))$ is also a metric on *X*.

Proof:

- [M₁] Since *d* is a metric so $d(x, y) \ge 0$ as d'(x, y) is either 1 or d(x, y) so $d'(x, y) \ge 0$.
- [M₂] If x = y then d(x, y) = 0 and then d'(x, y) which is min(1, d(x, y)) will be zero.

Conversely, suppose that $d'(x, y)=0 \implies \min(1, d(x, y))=0$ $\implies d(x, y)=0 \implies x = y$ as *d* is metric.

 $[\mathbf{M}_3] \ d'(x,y) = \min(1, d(x,y)) = \min(1, d(y,x)) = d'(y,x) \qquad \because d(x,y) = d(y,x)$

$$[M_4] We have d'(x,z) = \min(1,d(x,z))$$

$$\Rightarrow d'(x,z) \le 1 \text{ or } d'(x,z) \le d(x,z)$$

We wish to prove $d'(x,z) \le d'(x,y) + d'(y,z)$
now if $d(x,z) \ge 1$, $d(x,y) \ge 1$ and $d(y,z) \ge 1$
then $d'(x,z) = 1$, $d'(x,y) = 1$ and $d'(y,z) = 1$
and $d'(x,y) + d'(y,z) = 1 + 1 = 2$

therefore
$$\Rightarrow d'(x,z) \le d'(x,y) + d'(y,z)$$

Now if $d(x,z) < 1$, $d(x,y) < 1$ and $d(y,z) < 1$
Then $d'(x,z) = d(x,z)$, $d'(x,y) = d(x,y)$ and $d'(y,z) = d(y,z)$
As d is metric therefore $d(x,z) \le d(x,y) + d(y,z)$
 $\Rightarrow d'(x,z) \le d'(x,y) + d'(y,z)$
Q.E.D

iv) Let $d: X \times X \to \mathbb{R}$ be a metric space. Then $d': X \times X \to \mathbb{R}$ defined by

$$d'(x, y) = \frac{d(x, y)}{1 + d(x, y)}$$
 is also a metric.

Proof.

$$[M_{1}] \text{ Since } d(x, y) \ge 0 \text{ therefore } \frac{d(x, y)}{1 + d(x, y)} = d'(x, y) \ge 0$$

$$[M_{2}] \text{ Let } d'(x, y) = 0 \implies \frac{d(x, y)}{1 + d(x, y)} = 0 \implies d(x, y) = 0 \implies x = y$$

Now conversely suppose $x = y$ then $d(x, y) = 0$.
Then $d'(x, y) = \frac{d(x, y)}{1 + d(x, y)} = \frac{0}{1 + 0} = 0$

$$[M_{3}] \quad d'(x, y) = \frac{d(x, y)}{1 + d(x, y)} = \frac{d(y, x)}{1 + d(y, x)} = d'(y, x)$$

$$[M_{4}] \text{ Since } d \text{ is metric therefore } d(x, z) \le d(x, y) + d(y, z)$$

Now by using inequality $a < b \implies \frac{a}{1 + a} < \frac{b}{1 + b}$.
We get $\frac{d(x, z)}{1 + d(x, z)} \le \frac{d(x, y) + d(y, z)}{1 + d(x, y) + d(y, z)}$
 $\implies d'(x, z) \le \frac{d(x, y)}{1 + d(x, y)} + \frac{d(y, z)}{1 + d(x, y) + d(y, z)}$
 $\implies d'(x, z) \le \frac{d(x, y)}{1 + d(x, y)} + \frac{d(y, z)}{1 + d(y, z)}$
 $\implies d'(x, z) \le \frac{d(x, y)}{1 + d(x, y)} + \frac{d(y, z)}{1 + d(y, z)}$
 $\implies d'(x, z) \le d'(x, y) + d'(y, z)$
 $(Q.E.D)$

v) The space **C**[*a*, *b*] is a metric space and the metric *d* is defined by $d(x, y) = \max_{t \in J} |x(t) - y(t)|$

where J = [a, b] and x, y are continuous real valued function defined on [a, b]. **Proof.**

$$[M_1] \text{ Since } |x(t) - y(t)| \ge 0 \text{ therefore } d(x, y) \ge 0.$$

$$[M_2] \text{ Let } d(x, y) = 0 \implies |x(t) - y(t)| = 0 \implies x(t) = y(t)$$

Conversely suppose $x = y$
Then $d(x, y) = \max_{t \in J} |x(t) - y(t)| = \max_{t \in J} |x(t) - x(t)| = 0$

Metric Spaces

$$\begin{bmatrix} M_3 \end{bmatrix} d(x, y) = \max_{t \in J} |x(t) - y(t)| = \max_{t \in J} |y(t) - x(t)| = d(y, x)$$

$$\begin{bmatrix} M_4 \end{bmatrix} d(x, z) = \max_{t \in J} |x(t) - z(t)| = \max_{t \in J} |x(t) - y(t) + y(t) - z(t)|$$

$$\leq \max_{t \in J} |x(t) - y(t)| + \max_{t \in J} |y(t) - z(t)|$$

$$= d(x, y) + d(y, z)$$

Q.E.D

vi) $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a metric, where \mathbb{R} is the set of real number and *d* defined by $d(x, y) = \sqrt{|x - y|}$

vii) Let $x = (x_1, y_1)$, $y = (x_2, y_2)$ we define $d(x, y) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ is a metric on \mathbb{R} and called *Euclidean metric on* \mathbb{R}^2 or *usual metric on* \mathbb{R}^2 .

viii) $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is not a metric, where \mathbb{R} is the set of real number and *d* defined by $d(x, y) = (x - y)^2$

Proof.

 $[M_{1}] \text{ Square is always positive therefore } (x - y)^{2} = d(x, y) \ge 0$ $[M_{2}] \text{ Let } d(x, y) = 0 \implies (x - y)^{2} = 0 \implies x - y = 0 \implies x = y$ Conversely suppose that x = ythen $d(x, y) = (x - y)^{2} = (x - x)^{2} = 0$ $[M_{3}] d(x, y) = (x - y)^{2} = (y - x)^{2} = d(y, x)$ $[M_{4}] \text{ Suppose that triangular inequality holds in d. then for any } x, y, z \in \mathbb{R}$ $d(x, z) \le d(x - y) + d(y, z)$ $\Rightarrow (x - z)^{2} \le (x - y)^{2} + (y - z)^{2}$ Since $x, y, z \in \mathbb{R}$ therefore consider x = 0, y = 1 and z = 2. $\Rightarrow (0 - 2)^{2} \le (0 - 1)^{2} + (1 - 2)^{2}$ $\Rightarrow 4 \le 1 + 1 \implies 4 \le 2$ which is not true so triangular inequality does not hold and d is not true.

which is not true so triangular inequality does not hold and d is not metric.

ix) Let
$$x = (x_1, x_2)$$
, $y = (y_1, y_2) \in \mathbb{R}^2$. We define
 $d(x, y) = |x_1 - y_1| + |x_2 - y_2|$
is a metric on \mathbb{R}^2 , called *Taxi-Cab metric* on \mathbb{R}^2

x) Let \mathbb{R}^n be the set of all real *n*-tuples. For

$$x = (x_1, x_2, ..., x_n) \text{ and } y = (y_1, y_2, ..., y_n) \text{ in } \mathbb{R}^n$$

we define $d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + ... + (x_n - y_n)^2}$

then *d* is metric on \mathbb{R}^n , called *Euclidean metric on* \mathbb{R}^n or *usual metric on* \mathbb{R}^n .

xi) The space l^{∞} . As points we take bounded sequence $x = (x_1, x_2, ...)$, also written as $x = (x_i)$, of complex numbers such that

$$\left| x_{i} \right| \leq C_{x} \quad \forall i=1,2,3,\dots$$

where C_x is fixed real number. The metric is defined as

$$d(x, y) = \sup_{i \in \mathbb{N}} |x_i - y_i| \quad \text{where } y = (y_i)$$

xii) The space l^p , $p \ge 1$ is a real number, we take as member of l^p , all sequence

$$x = (\xi_j) \text{ of complex number such that } \sum_{j=1}^{\infty} |\xi_j|^p < \infty.$$

The metric is defined by $d(x, y) = \left(\sum_{j=1}^{\infty} |\xi_j - \eta_j|^p\right)^{\frac{1}{p}}$
Where $y = (\eta_j)$ such that $\sum_{j=1}^{\infty} |\eta_j|^p < \infty$

Proof.

[M₁] Since
$$\left|\xi_{j} - \eta_{j}\right| \ge 0$$
 therefore $\left(\sum_{j=1}^{\infty} \left|\xi_{j} - \eta_{j}\right|^{p}\right)^{\frac{1}{p}} = d(x, y) \ge 0$.

$$[M_2]$$
 If $x = y$ then

$$d(x,y) = \left(\sum_{j=1}^{\infty} \left|\xi_{j} - \eta_{j}\right|^{p}\right)^{\frac{1}{p}} = \left(\sum_{j=1}^{\infty} \left|\xi_{j} - \xi_{j}\right|^{p}\right)^{\frac{1}{p}} = \left(\sum_{j=1}^{\infty} \left|0\right|^{p}\right)^{\frac{1}{p}} = 0$$

Conversely, if d(x, y) = 0 $\Rightarrow \left(\sum_{j=1}^{\infty} |\xi_j - \eta_j|^p\right)^{\frac{1}{p}} = 0 \Rightarrow |\xi_j - \eta_j| = 0 \Rightarrow (\xi_j) = (\eta_j) \Rightarrow x = y$ $[M_3] \quad d(x, y) = \left(\sum_{j=1}^{\infty} |\xi_j - \eta_j|^p\right)^{\frac{1}{p}} = \left(\sum_{j=1}^{\infty} |\eta_j - \xi_j|^p\right)^{\frac{1}{p}} = d(y, x)$ $[M_4] \quad \text{Let} \quad z = (\zeta_j), \text{ such that } \sum_{j=1}^{\infty} |\zeta_j|^p < \infty$ $\text{then } d(x, z) = \left(\sum_{j=1}^{\infty} |\xi_j - \zeta_j|^p\right)^{\frac{1}{p}}$ $= \left(\sum_{j=1}^{\infty} |\xi_j - \eta_j + \eta_j - \zeta_j|^p\right)^{\frac{1}{p}}$

Using *Minkowski's Inequality

$$\leq \left(\sum_{j=1}^{\infty} \left| \xi_{j} - \eta_{j} \right|^{p} \right)^{\frac{1}{p}} + \left(\sum_{j=1}^{\infty} \left| \eta_{j} - \zeta_{j} \right|^{p} \right)^{\frac{1}{p}}$$
$$= d(x, y) + d(y, z)$$

Available at http://www.MathCity.org

Q.E.D

* Pseudometric

Let *X* be a non-empty set. A function $d: X \times X \rightarrow \mathbb{R}$ is called pseudometric if and only if

i) d(x,x) = 0 for all $x \in X$. ii) d(x,y) = d(y,x) for all $x, y \in X$. iii) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$. OR

A pseudometric satisfies all axioms of a metric except d(x, y) = 0may not imply x = y but x = y implies d(x, y) = 0.

Example

Let $x, y \in \mathbb{R}^2$ and $x = (x_1, x_2)$, $y = (y_1, y_2)$ Then $d(x, y) = |x_1 - y_1|$ is a pseudometric on \mathbb{R}^2 . Let x = (2,3) and y = (2,5)Then d(x, y) = |2-2| = 0 but $x \neq y$

NOTE: Every metric is a pseudometric, but pseudometric is not metric.

* Minkowski's Inequality

If
$$\xi_i = (\xi_1, \xi_2, ..., \xi_n)$$
 and $\eta_i = (\eta_1, \eta_2, ..., \eta_n)$ are in \mathbb{R}^n and $p > 1$, then

$$\left(\sum_{i=1}^{\infty} |\xi_i + \eta_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{\infty} |\xi_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{\infty} |\eta_i|^p\right)^{\frac{1}{p}}$$

* Distance between sets

Let (X,d) be a metric space and $A, B \subset X$. The distance between A and B denoted by d(A,B) is defined as $d(A,B)=\inf \{d(a,b) | a \in A, b \in B\}$

If $A = \{x\}$ is a singleton subset of *X*, then d(A, B) is written as d(x, B) and is called distance of point *x* from the set *B*.

* Theorem

Let (X,d) be a metric space. Then for any $x, y \in X$ $|d(x,A)-d(y,A)| \le d(x,y)$

Proof.

Let
$$z \in A$$
 then $d(x, z) \le d(x, y) + d(y, z)$
then $d(x, A) = \inf_{z \in A} d(x, z) \le d(x, y) + \inf_{z \in A} d(y, z)$
 $= d(x, y) + d(y, A)$
 $\Rightarrow d(x, A) - d(y, A) \le d(x, y) \cdots (i)$

Next

$$d(y,A) = \inf_{z \in A} d(y,z) \le d(y,x) + \inf_{z \in A} d(x,z)$$

= $d(y,x) + d(x,A)$
 $\Rightarrow -d(x,A) + d(y,A) \le d(y,x)$
 $\Rightarrow -(d(x,A) - d(y,A)) \le d(x,y) \cdots (ii)$ $\therefore d(x,y) = d(y,x)$
Combining equation (i) and (ii)
 $|d(x,A) - d(y,A)| \le d(x,y)$ Q.E.D

* Diameter of a set

Let (X,d) be a metric space and $A \subset X$, we define diameter of A denoted by

$$d(A) = \sup_{a, b \in A} d(a, b)$$

NOTE: For an empty set φ , following convention are adopted

(i) $d(\varphi) = -\infty$, some authors take $d(\varphi)$ also as 0.

(ii) $d(p,\varphi) = \infty$ i.e distance of a point p from empty set is ∞ .

(iii) $d(A, \varphi) = \infty$, where A is any non-empty set.

* Bounded Set

Let (X,d) be a metric space and $A \subset X$, we say *A* is bounded if diameter of *A* is finite i.e. $d(A) < \infty$.

* Theorem

The union of two bounded set is bounded.

Proof.

Let (X,d) be a metric space and $A, B \subset X$ be bounded. We wish to prove $A \cup B$ is bounded.

Let $x, y \in A \cup B$

If $x, y \in A$ then since A is bounded therefore $d(x, y) < \infty$

and hence $d(A \cup B) = \sup_{x, y \in A \cup B} d(x, y) < \infty$ then $A \cup B$ is bounded.

Similarity if $x, y \in B$ then $A \cup B$ is bounded.

Now if $x \in A$ and $y \in B$ then

$$d(x, y) \le d(x, a) + d(a, b) + d(b, y)$$
 where $a \in A, b \in B$.

Since d(x,a), d(a,b) and d(b, y) are finite

Therefore $d(x, y) < \infty$ i.e $A \cup B$ is bounded. Q.E.D

* Open Ball

Let (X,d) be a metric space. An open ball in (X,d) is denoted by

$$B(x_0; r) = \{x \in X \mid d(x_0, x) < r\}$$

 x_0 is called centre of the ball and *r* is called radius of ball and $r \ge 0$.

Closed Ball

The set $\overline{B}(x_0; r) = \{x \in X \mid d(x_0, x) \le r\}$ is called closed ball in (X, d).

* Sphere

The set $S(x_0;r) = \{x \in X \mid d(x_0,x) = r\}$ is called sphere in (X,d).

* Examples

Consider the set of real numbers with usual metric $d = |x - y| \quad \forall x, y \in \mathbb{R}$ then $B(x_o;r) = \{x \in \mathbb{R} \mid d(x_o, x) < r\}$ i.e. $B(x_o;r) = \{x \in \mathbb{R} : |x - x_o| < r\}$ i.e. $x_0 - r < x < x + r = (x_0 - r, x_0 + r)$ i.e. open ball is the real line with usual metric is an open interval. And $\overline{B}(x_o;r) = \{x \in \mathbb{R} : |x - x_0| \le r\}$ i.e. $x_0 - r \le x \le x_0 + r = [x_0 - r, x_0 + r]$ i.e. closed ball in a real line is a closed interval. And $S(x_o;r) = \{x \in \mathbb{R} : |x - x_0| = r\} = \{x_0 - r, x_0 + r\}$ i.e. two point $x_0 - r$ and $x_0 + r$ only.

* Open Set

Let (X,d) be a metric space and set *G* is called open in *X* if for every $x \in G$, there exists an open ball $B(x; r) \subset G$.

* Theorem

An open ball in metric space *X* is open.

Proof.

Let $B(x_0; r)$ be an open ball in (X, d). Let $y \in B(x_0; r)$ then $d(x_0, y) = r_1 < r$ Let $r_2 < r - r_1$, then $B(y; r_2) \subset B(x_0; r)$ Hence $B(x_0; r)$ is an open set.

ALTERNATIVE:

Let $B(x_0; r)$ be an open ball in (X, d). Let $x \in B(x_0; r)$ then $d(x_0, x) = r_1 < r$ Take $r_2 = r - r_1$ and consider the open ball $B(x; r_2)$ we show that $B(x; r_2) \subset B(x; r)$. For this let $y \in B(x; r_2)$ then $d(x, y) < r_2$ and $d(x_0, y) \le d(x_0, x) + d(x, y)$ $< r_1 + r_2 = r$ hence $y \in B(x_0; r)$ so that $B(x; r_2) \subset B(x_0; r)$. Thus $B(x_0; r)$ is an open. Q.E.D **NOTE:** Let (X, d) be a metric space then

- i) X and φ are open sets.
- ii) Union of any number of open sets is open.
- iii) Intersection of a finite number of open sets is open.

* Limit point of a set

Let (X,d) be a metric space and $A \subset X$, then $x \in X$ is called a *limit point* or *accumulation point* of *A* if for every open ball B(x;r) with centre *x*,

$$B(x;r) \cap \{A - \{x\}\} \neq \varphi.$$

i.e. every open ball contain a point of *A* other than *x*.

* Closed Set

A subset *A* of metric space *X* is *closed* if it contains every limit point of itself. The set of all limit points of *A* is called the *derived set of A* and denoted by A'.

* Theorem

A subset A of a metric space is closed if and only if its complement A^c is open. **Proof.**

Suppose A is closed, we prove A^c is open.

Let $x \in A^c$ then $x \notin A$.

 \Rightarrow x is not a limit point of A.

then by definition of a limit point there exists an open ball B(x;r) such that

 $B(x;r) \cap A = \varphi .$

This implies $B(x;r) \subset A^c$. Since x is an arbitrary point of A^c . So A^c is open.

Conversely, assume that A^c is an open then we prove A is closed.

i.e. A contain all of its limit points.

Let *x* be an accumulation point of *A*. and suppose $x \in A^c$.

then there exists an open ball $B(x;r) \subset A^c \implies B(x;r) \cap A = \varphi$.

This shows that x is not a limit point of A. this is a contradiction to our assumption. Hence $x \in A$. Accordingly A is closed.

The proof is complete.

* Theorem

A closed ball is a closed set.

Proof.

Let $\overline{B}(x;r)$ be a closed ball. We prove $\overline{B}^c(x;r) = C$ (say) is an open ball. Let $y \in C$ then d(x, y) > r.

Let $r_1 = d(x, y)$ then $r_1 > r$. And take $r_2 = r_1 - r$

Consider the open ball
$$B\left(y;\frac{r_2}{2}\right)$$
 we prove $B\left(y;\frac{r_2}{2}\right) \subset C$.

For this let $z \in B\left(y; \frac{r_2}{2}\right)$ then $d(z, y) < \frac{r_2}{2}$

By the triangular inequality

$$d(x, y) \leq d(x, z) + d(z, y)$$

$$\Rightarrow d(x, y) \leq d(z, x) + d(z, y) \qquad \because d(y, z) = d(z, y)$$

$$\Rightarrow d(z, x) \geq d(x, y) - d(z, y)$$

$$\Rightarrow d(z, x) > r_1 - \frac{r_2}{2} = \frac{2r_1 - r_2}{2} = \frac{2r_1 - r_1 + r}{2} = \frac{r_1 + r}{2} \qquad \because r_2 = r_1 - r$$

$$\Rightarrow d(z, x) > \frac{r + r}{2} = r \qquad \because r_1 - r = r_2 > 0 \qquad \therefore r_1 > r$$

$$\Rightarrow z \notin \overline{B}(x; r) \text{ This shows that } z \in C$$

$$\Rightarrow B\left(y; \frac{r_2}{2}\right) \subset C$$

Hence C is an open set and consequently $\overline{B}(x;r)$ is closed. Q.E.D

Theorem

Let (X,d) be a metric space and $A \subset X$. If $x \in X$ is a limit point of A. then every open ball B(x;r) with centre x contain an infinite numbers of point of A. **Proof.**

Suppose B(x;r) contain only a finite number of points of A.

Let $a_1, a_2, ..., a_n$ be those points.

and let $d(x, a_i) = r_i$ where i = 1, 2, ..., n.

also consider $r' = \min(r_1, r_2, ..., r_n)$

Then the open ball B(x;r') contain no point of A other than x. then x is not limit point of A. This is a contradiction therefore B(x;r) must contain infinite numbers of point of A.

* Closure of a Set

Let (X,d) be a metric space and $M \subset X$. Then *closure of* M is denoted by $\overline{M} = M \cup M'$ where M' is the set of all limit points of M. It is the smallest closed superset of M.

* Dense Set

Let (X, d) be a metric space the a set $M \subset X$ is called dense in X if $\overline{M} = X$.

* Countable Set

A set *A* is *countable* if it is finite or there exists a function $f : A \to \mathbb{N}$ which is oneone and onto, where \mathbb{N} is the set of natural numbers.

e.g. \mathbb{N},\mathbb{Q} and \mathbb{Z} are countable sets . The set of real numbers, the set of irrational numbers and any interval are not countable sets.

* Separable Space

A space *X* is said to be *separable* if it contains a countable dense subsets.

Available at http://www.MathCity.org

e.g. the real line \mathbb{R} is separable since it contain the set \mathbb{Q} of rational numbers, which is dense is \mathbb{R} .

Theorem

Let (X, d) be a metric space, $A \subset X$ is dense if and only if A has non-empty intersection with any open subset of X. **Proof.**

Assume that A is dense in X. then A = X. Suppose there is an open set $G \subset X$ such that $A \cap G = \varphi$. Then if $x \in G$ then $A \cap (G - \{x\}) = \varphi$ which show that *x* is not a limit point of A. This implies $x \notin A$ but $x \in X \implies A \neq X$ This is a contradiction. Consequently $A \cap G \neq \varphi$ for any open $G \subset X$. Conversely suppose that $A \cap G \neq \varphi$ for any open $G \subset X$. We prove $\overline{A} = X$, for this let $x \in X$. If $x \in A$ then $x \in A \cup A' = \overline{A}$ then $X = \overline{A}$. If $x \notin A$ then let $\{G_i\}$ be the family of all the open subset of X such that $x \in G_i$ for every *i*. Then by hypothesis $A \cap G_i \neq \varphi$ for any *i*. i.e. G_i contain point of A other then *x*. This implies that x is an accumulation point of A. i.e. $x \in A'$ Accordingly $x \in A \cup A' = \overline{A}$ and $X = \overline{A}$.

The proof is complete.

Neighbourhood of a Point

Let (X, d) be a metric space and $x_0 \in X$ and a subset $N \subset X$ is called a *neighbourhood of* x_0 if there exists an open ball $B(x_0;\varepsilon)$ with centre x_0 such that $B(x_0;\varepsilon) \subset N$.

Shortly "neighbourhood" is written as "nhood".

Interior Point

Let (X, d) be a metric space and $A \subset X$, a point $x_0 \in X$ is called an *interior point* of A if there is an open ball $B(x_0;r)$ with centre x_0 such that $B(x_0;r) \subset A$. The set of all interior points of A is called *interior of A* and is denoted by *int*(A) or A° . It is the largest open set contain in A. i.e. $A^{\circ} \subset A$.

* Continuity

A function $f:(X,d) \to (Y,d')$ is called continuous at a point $x_0 \in X$ if for any $\varepsilon > 0$ there is a $\delta > 0$ such that $d'(f(x), f(x_0)) < \varepsilon$ for all x satisfying $d(x, x_0) < \delta$. **ALTERNATIVE:**

$$f: X \to Y$$
 is continuous at $x_0 \in X$ if for any $\varepsilon > 0$, there is a $\delta > 0$ such that $x \in B(x_0; \delta) \implies f(x) \in B(f(x_0); \varepsilon)$.

* Theorem

 $f:(X,d) \to (Y,d')$ is continuous at $x_0 \in X$ if and only if $f^{-1}(G)$ is open is X. wherever G is open in Y.

NOTE: Before proving this theorem note that if $f: X \to Y$, $f^{-1}: Y \to X$ and $A \subset X$, $B \subset Y$ then $f^{-1}f(A) \supset A$ and $ff^{-1}(B) \subset B$ **Proof.**

Assume that $f: X \to Y$ is continuous and $G \subset Y$ is open. We will prove $f^{-1}(G)$ is open in *X*.

Let $x \in f^{-1}(G) \implies f(x) \in f f^{-1}(G) \subset G$

When G is open, there is an open ball $B(f(x);\varepsilon) \subset G$.

Since $f: X \to Y$ is continuous, therefore for $\varepsilon > 0$ there is a $\delta > 0$ such that

 $y \in B(x;\delta) \implies f(y) \in B(f(x);\varepsilon) \subset G \text{ then } y \in f^{-1}f(G) \subset f^{-1}(G)$

Since y is an arbitrary point of $B(x;\delta) \subset f^{-1}(G)$. Also x was arbitrary, this show that $f^{-1}(G)$ is open in X.

Conversely, for any $G \subset Y$ we prove $f: X \to Y$ is continuous.

For this let $x \in X$ and $\varepsilon > 0$ be given. Now $f(x) \in Y$ and let $B(f(x);\varepsilon)$ be an open ball in *Y*. then by hypothesis $f^{-1}(B(f(x);\varepsilon))$ is open in *X* and $x \in f^{-1}(B(f(x);\varepsilon))$

As $y \in B(x;\delta) \subset f^{-1}(B(f(x);\varepsilon))$

 $\Rightarrow f(y) \in f f^{-1} \Big(B \Big(f(x); \varepsilon \Big) \Big) \subset B \Big(f(x); \varepsilon \Big) \text{ i.e. } f(y) \in B \Big(f(x); \varepsilon \Big)$

Consequently $f: X \to Y$ is continuous.

The proof is complete.

***** Convergence of Sequence:

Let $(x_n) = (x_1, x_2, ...)$ be a sequence in a metric space (X, d), we say (x_n) converges to $x \in X$ if $\lim_{n \to \infty} d(x_n, x) = 0$.

We write $\lim_{n \to \infty} x_n = x$ or simply $x_n \to x$ as $n \to \infty$.

Alternatively, we say $x_n \to x$ if for every $\varepsilon > 0$ there is an $n_0 \in \mathbb{N}$, such that

$$n > n_0, \quad d(x_n, x) < \varepsilon.$$

* Theorem

If (x_n) is converges then limit of (x_n) is unique.

Proof.

Suppose $x_n \to a$ and $x_n \to b$,

Then $0 \le d(a,b) \le d(a,x_n) + d(x_n,b) \to 0 + 0$ as $n \to \infty \implies d(a,b) = 0 \implies a = b$ Hence the limit is unique.

ALTERNATIVE

Suppose that a sequence (x_n) converges to two distinct limits *a* and *b*. and d(a,b) = r > 0

Since $x_n \to a$, given any $\varepsilon > 0$, there is a natural number n_1 depending on ε

such that

$$d(x_n, a) < \frac{\varepsilon}{2}$$
 whenever $n > n_1$

Also $x_n \to b$, given any $\varepsilon > 0$, there is a natural number n_2 depending on ε such that

$$d(x_n, b) < \frac{\varepsilon}{2}$$
 whenever $n > n_2$

Take $n_0 = \max(n_1, n_2)$ then

$$d(x_n, a) < \frac{\varepsilon}{2}$$
 and $d(x_n, b) < \frac{\varepsilon}{2}$ whenever $n > n_0$

Since ε is arbitrary, take $\varepsilon = r$ then

$$r = d(a,b) \le d(a,x_n) + d(x_n,b)$$

$$< \frac{r}{2} + \frac{r}{2} = r$$
 $\therefore d(a, x_n) = d(x_n, a) < \frac{\varepsilon}{2}$

Which is a contradiction, Hence a = b i.e. limit is unique.

* Theorem

i) A convergent sequence is bounded.

ii) If $x_n \to x$ and $y_n \to y$ then $d(x_n, y_n) \to d(x, y)$.

Proof.

(i) Suppose $x_n \to x$, therefore for any $\varepsilon > 0$ there is $n_0 \in \mathbb{N}$ such that

 $\forall n > n_0, \quad d(x_n, x) < \varepsilon$

Let $a = \max \{ d(x_1, x), d(x_2, x), \dots, d(x_n, x) \}$ and $k = \max \{ \varepsilon, a \}$ Then by using triangular inequality for arbitrary $x_i, x_j \in (x_n)$

$$0 \le d\left(x_i, x_j\right) \le d\left(x_i, x\right) + d\left(x, x_j\right)$$
$$\le k + k = 2k$$

Hence (x_n) is bounded.

(ii) By using triangular inequality

$$d(x_{n}, y_{n}) \leq d(x_{n}, x) + d(x, y) + d(y, y_{n})$$

$$d(x_{n}, y_{n}) - d(x, y) \leq d(x_{n}, x) + d(y, y_{n}) \to 0 + 0 \quad \text{as} \quad n \to \infty \dots (i)$$

$$d(x, y) \leq d(x, x_{n}) + d(x_{n}, y_{n}) + d(y_{n}, y)$$

Next

From (i) and (ii)

 \Rightarrow

$$\left| d(x_n, y_n) - d(x, y) \right| \rightarrow 0 \text{ as } n \rightarrow \infty$$

Hence

$$\lim_{n\to\infty} d(x_n, y_n) = d(x, y) \qquad \mathbf{Q.E.D}$$

* Cauchy Sequence

A sequence (x_n) in a metric space (X,d) is called *Cauchy* if any $\varepsilon > 0$ there is a $n_0 \in \mathbb{N}$ such that $\forall m, n > n_0$, $d(x_m, x_n) < \varepsilon$.

* Theorem

A convergent sequence in a metric space (X,d) is Cauchy.

Proof.

Let $x_n \to x \in X$, therefore any $\varepsilon > 0$ there is $n_0 \in \mathbb{N}$ such that

$$\forall m, n > n_0, \quad d(x_n, x) < \frac{\varepsilon}{2} \quad \text{and} \quad d(x_m, x) < \frac{\varepsilon}{2}$$

Then by using triangular inequality

$$d(x_m, x_n) \leq d(x_m, x) + d(x, x_n)$$

$$\leq d(x_m, x) + d(x_n, x) \qquad \because d(x, y) = d(y, x)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Thus every convergent sequence in a metric space is Cauchy.

* Example

Let (x_n) be a sequence in the discrete space (X,d). If (x_n) be a Cauchy sequence, then for $\varepsilon = \frac{1}{2}$, there is a natural number n_0 depending on ε such that

$$d(x_m, x_n) < \frac{1}{2} \qquad \forall \ m, n \ge n_0$$

Since in discrete space *d* is either 0 or 1 therefore $d(x_m, x_n) = 0 \implies x_m = x_n = x$ (say) Thus a Cauchy sequence in (X, d) become constant after a finite number of terms,

i.e. $(x_n) = (x_1, x_2, ..., x_{n_0}, x, x, x, ...)$

* Subsequence

Let $(a_1, a_2, a_3, ...)$ be a sequence (X, d) and let $(i_1, i_2, i_3, ...)$ be a sequence of positive integers such that $i_1 < i_2 < i_3 < ...$ then $(a_{i_1}, a_{i_2}, a_{i_3}, ...)$ is called *subsequence* of $(a_n : n \in \mathbb{N})$.

* Theorem

(i) Let (x_n) be a Cauchy sequence in (X,d), then (x_n) converges to a point $x \in X$ if and only if (x_n) has a convergent subsequence (x_{n_k}) which converges to $x \in X$.

(ii) If (x_n) converges to $x \in X$, then every subsequence (x_{n_k}) also converges to $x \in X$. **Proof.**

(i) Suppose $x_n \to x \in X$ then (x_n) itself is a subsequence which converges to $x \in X$. Conversely, assume that (x_{n_k}) is a subsequence of (x_n) which converges to x.

Then for any $\varepsilon > 0$ there is $n_0 \in \mathbb{N}$ such that $\forall n_k > n_0, d(x_{n_k}, x) < \frac{\varepsilon}{2}$. Further more (x_n) is Cauchy sequence

Then for the $\varepsilon > 0$ there is $n_1 \in \mathbb{N}$ such that $\forall m, n > n_1, d(x_m, x_n) < \frac{\varepsilon}{2}$.

Suppose $n_2 = \max(n_0, n_1)$ then by using the triangular inequality we have

$$d(x_n, x) \le d(x_n, x_{n_k}) + d(x_{n_k}, x)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \qquad \forall \ n_k, n > n_2$$

This show that $x_n \to x$.

(ii) $x_n \to x$ implies for any $\varepsilon > 0 \exists n_0 \in \mathbb{N}$ such that $d(x_n, x) < \varepsilon$ Then in particular $d(x_{n_k}, x) < \varepsilon \quad \forall n_k > n_0$

Hence $x_{n_k} \to x \in X$.

* Example

Let X = (0,1) then $(x_n) = (x_1, x_2, x_3, ...) = (\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...)$ is a sequence in X. Then $x_n \to 0$ but 0 is not a point of X.

* Theorem

Let (X,d) be a metric space and $M \subset X$.

- (i) Then $x \in \overline{M}$ if and only if there is a sequence (x_n) in M such that $x_n \to x$.
- (ii) If for any sequence (x_n) in M, $x_n \to x \Rightarrow x \in M$, then M is closed.

Proof.

(i) Suppose $x \in \overline{M} = M \cup M'$

If $x \in M$, then there is a sequence (x, x, x, ...) in M which converges to x.

If $x \notin M$, then $x \in M'$ i.e. x is an accumulation point of M, therefore each $n \in \mathbb{N}$ the open ball $B\left(x;\frac{1}{n}\right)$ contain infinite number of point of M.

We choose $x_n \in M$ from each $B\left(x;\frac{1}{n}\right)$

Then we obtain a sequence (x_n) of points of *M* and since $\frac{1}{n} \to 0$ as $n \to \infty$.

Then $x_n \to x$ as $n \to \infty$.

Conversely, suppose (x_n) such that $x_n \to x$.

We prove $x \in \overline{M}$

If
$$x \in M$$
 then $x \in \overline{M}$. $\therefore \overline{M} = M \cup M'$

If $x \notin M$, then every neighbourhood of x contain infinite number of terms of (x_n) . Then x is a limit point of M i.e. $x \in M'$

Hence
$$x \in M = M \cup M'$$

(ii) If (x_n) is in M and $x_n \to x$, then $x \in \overline{M}$ then by hypothesis $M = \overline{M}$, then M is closed.

* Complete Space

A metric space (X,d) is called *complete* if every Cauchy sequence in X converges to a point of X.

* Subspace

Let (X,d) be a metric space and $Y \subset X$ then Y is called *subspace* if Y is itself a metric space under the metric d.

* Theorem

A subspace of a complete metric space (X,d) is complete if and only if Y is closed in X.

Proof.

Assume that *Y* is complete we prove *Y* is closed.

Let $x \in \overline{Y}$ then there is a sequence (x_n) in Y such that $x_n \to x$.

Since convergent sequence is a Cauchy and *Y* is complete then $x_n \rightarrow x \in Y$.

Since x was arbitrary point of $Y \implies \overline{Y} \subset Y$

Therefore $\overline{Y} = Y$

 $\therefore Y \subset \overline{Y}$

Consequently Y is closed.

Conversely, suppose *Y* is closed and (x_n) is a Cauchy sequence. Then (x_n) is Cauchy in *X* and since *X* is complete so $x_n \rightarrow x \in X$.

Also $x \in \overline{Y}$ and $\overline{Y} \subset X$. Since *Y* is closed i.e. $Y = \overline{Y}$ therefore $x \in Y$. Hence *Y* is complete. \odot

* Nested Sequence:

A sequence sets A_1, A_2, A_3, \dots is called *nested* if $A_1 \supset A_2 \supset A_3 \supset \dots$

* Theorem (Cantor's Intersection Theorem)

A metric space (X,d) is complete if and only if every nested sequence of nonempty closed subset of X, whose diameter tends to zero, has a non-empty intersection. **Proof.**

Suppose (X,d) is complete and let $A_1 \supset A_2 \supset A_3 \supset ...$ be a nested sequence of closed subsets of *X*.

Since A_i is non-empty we choose a point a_n from each A_n . And then we will prove $(a_1, a_2, a_3, ...)$ is Cauchy in X.

Let $\varepsilon > 0$ be given, since $\lim_{n \to \infty} d(A_n) = 0$ then there is $n_0 \in \mathbb{N}$ such that $d(A_{n_0}) < 0$ Then for $m, n > n_0$, $d(a_m, a_n) < \varepsilon$. This shows that (a_n) is Cauchy in X. Since X is complete so $a_n \to p \in X$ (say) We prove $p \in \bigcap_n A_n$, Suppose the contrary that $p \notin \bigcap A_n$ then \exists a $k \in \mathbb{N}$ such that $p \notin A_k$.

Since A_k is closed, $d(p, A_k) = \delta > 0$.

Consider the open ball $B\left(p;\frac{\delta}{2}\right)$ then A_k and $B\left(p;\frac{\delta}{2}\right)$ are disjoint

Now $a_k, a_{k+1}, a_{k+2}, \dots$ all belong to A_k then all these points do not belong to $B\left(p; \frac{\delta}{2}\right)$. This is a contradiction as *n* is the limit point of (a_k) .

This is a contradiction as *p* is the limit point of (a_n) .

Hence $p \in \bigcap_n A_n$.

Conversely, assume that every nested sequence of closed subset of *X* has a non-empty intersection. Let (x_n) be Cauchy in *X*, where $(x_n) = (x_1, x_2, x_3, ...)$

Consider the sets

$$A_{1} = \{x_{1}, x_{2}, x_{3}, ...\}$$

$$A_{2} = \{x_{2}, x_{3}, x_{4}, ...\}$$

$$...$$

$$A_{k} = \{x_{n} : n \ge k\}$$

Then we have $A_1 \supset A_2 \supset A_3 \supset ...$ We prove $\lim_{n \to \infty} d(A_n) = 0$

Since (x_n) is Cauchy, therefore $\exists n_0 \in \mathbb{N}$ such that $\forall m, n > n, d(x_n, x_n) < \varepsilon$, i.e. $\lim d(A_n) = 0$

$$m, n > n_0, \quad d(x_m, x_n) < \varepsilon, \quad \text{i.e.} \quad \lim_{n \to \infty} d(A_n) = 0$$

Now $d(\overline{A_n}) = d(A_n)$ then $\lim_{n \to \infty} d(A_n) = \lim_{n \to \infty} d(\overline{A_n}) = 0$ Also $\overline{A_1} \supset \overline{A_2} \supset \overline{A_3} \supset \dots$ Then by hypothesis $\bigcap_n \overline{A_n} \neq \varphi$. Let $p \in \bigcap_n \overline{A_n}$ We prove $x_n \to p \in X$ Since $\lim_{n \to \infty} d(\overline{A_n}) = 0$ therefore $\exists k_0 \in \mathbb{N}$ such that $d(\overline{A_{k_0}}) < \varepsilon$ Then for $n > k_0$, $x_n, p \in \overline{A_n} \implies d(x_n, p) < \varepsilon \quad \forall n > k_0$ This proves that $x_n \to p \in X$. The proof is complete.

Complete Space (Examples)

(*i*) The discrete space is complete.

Since in discrete space a Cauchy sequence becomes constant after finite terms i.e. (x_n) is Cauchy in discrete space if it is of the form

$$(x_1, x_2, x_3, \dots, x_n = b, b, b, \dots)$$

(*ii*) The set $\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}$ of integers with usual metric is complete.

(*iii*) The set of rational numbers with usual metric is not complete.

Metric Spaces

: (1.1,1.41,1.412,...) is a Cauchy sequence of rational numbers but its limit is $\sqrt{2}$, which is not rational.

(*iv*) The space of irrational number with usual metric is not complete.

We take $(-1,1), (-\frac{1}{2}, \frac{1}{2}), (-\frac{1}{3}, \frac{1}{3}), \dots, (-\frac{1}{n}, \frac{1}{n})$

We choose one irrational number from each interval and these irrational tends to zero as we goes toward infinity, as zero is a rational so space of irrational is not complete.

* Theorem

The real line is complete.

Proof.

Let (x_n) be any Cauchy sequence of real numbers.

We first prove that (x_n) is bounded.

Let $\varepsilon = 1 > 0$ then $\exists n_0 \in \mathbb{N}$ such that $\forall m, n \ge n_0$, $d(x_m, x_n) = |x_m - x_n| < 1$ In particular for $n \ge n_0$ we have

$$|x_{n_0} - x_n| \le 1 \implies x_{n_0} - 1 \le x_n \le x_{n_0} + 1$$

Let $\alpha = \max \{x_1, x_2, ..., x_{n_0} + 1\}$ and $\beta = \min \{x_1, x_2, ..., x_{n_0} - 1\}$ then $\beta \le x_n \le \alpha \quad \forall n$.

this shows that (x_n) is bounded with β as lower bound and α as upper bound. Secondly we prove (x_n) has convergent subsequence (x_{n_i}) .

If the range of the sequence is $\{x_n\} = \{x_1, x_2, x_3, ...\}$ is finite, then one of the term is the sequence say *b* will repeat infinitely i.e. *b*, *b*, *b*,

Then (b, b, b, ...) is a convergent subsequence which converges to b.

If the range is infinite then by the Bolzano Weirestrass theorem, the bounded infinite set $\{x_n\}$ has a limit point, say *b*.

Then each of the open interval $S_1 = (b-1, b+1)$, $S_2 = (b - \frac{1}{2}, b + \frac{1}{2})$,

 $S_2 = (b - \frac{1}{3}, b + \frac{1}{3}), \dots$ has an infinite numbers of points of the set $\{x_n\}$.

i.e. there are infinite numbers of terms of the sequence (x_n) in every open interval S_n .

We choose a point x_{i_1} from S_1 , then we choose a point x_{i_2} from S_2 such that $i_1 < i_2$ i.e. the terms x_{i_2} comes after x_{i_1} in the original sequence (x_n) . Then we choose a term x_{i_3} such that $i_2 < i_3$, continuing in this manner we obtain a subsequence

$$(x_{i_n}) = (x_{i_1}, x_{i_2}, x_{i_3}, \ldots).$$

It is always possible to choose a term because every interval contain an infinite numbers of terms of the sequence (x_n) .

Since $b - \frac{1}{n} \to b$ and $b + \frac{1}{n} \to b$ as $n \to \infty$. Hence we have convergent subsequence (x_{i_n}) whose limit is b.

Lastly we prove that $x_n \to b \in \mathbb{R}$.

Since (x_n) is a Cauchy therefore for any $\varepsilon > 0$ there is $n_0 \in \mathbb{N}$ such that

$$\forall m, n > n_0 \quad \left| x_m - x_n \right| < \frac{\varepsilon}{2}$$

Also since $x_{i_n} \rightarrow b$ there is a natural number i_m such that $i_m > n_0$ Then $\forall m, n, i_m > n_0$

$$d(x_n, b) = |x_n - b| = |x_n - x_{i_m} + x_{i_m} - b|$$

$$\leq |x_n - x_{i_m}| + |x_{i_m} - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Hence $x_n \to b \in \mathbb{R}$ and the proof is complete.

* Theorem

The Euclidean space \mathbb{R}^n is complete.

Proof.

Let (x_m) be any Cauchy sequence in \mathbb{R}^n .

Then for any $\varepsilon > 0$, there is $n_0 \in \mathbb{N}$ such that $\forall m, r > n_0$

Squaring both sided of (*i*) we obtain

$$\sum \begin{pmatrix} {m \choose \xi_j} - {\xi_j} \\ {\xi_j} - {\xi_j} \end{pmatrix}^2 < \varepsilon^2$$

$$\Rightarrow \left| {\xi_j}^{(m)} - {\xi_j} \\ {\xi_j} - {\xi_j} \\$$

This implies $\binom{m}{\xi_j} = \binom{1}{\xi_j} \binom{j}{\xi_j} = \binom{j}{\xi_j} \binom{j}{\xi_j} \binom{j}{\xi_j} \cdots$ is a Cauchy sequence of real numbers for every $j = 1, 2, 3, \dots, n$.

Since \mathbb{R} is complete therefore $\overset{(m)}{\xi_j} \rightarrow \xi_j \in \mathbb{R}$ (say) Using these *n* limits we define

$$x = (\xi_j) = (\xi_1, \xi_2, \xi_3, \dots, \xi_n)$$
 then clearly $x \in \mathbb{R}^n$.

We prove $x_m \to x$

In (*i*) as $r \to \infty$, $d(x_m, x) < \varepsilon \quad \forall m > n_0$ which show that $x_m \to x \in \mathbb{R}^n$ And the proof is complete.

NOTE: In the above theorem if we take n = 2 then we see complex plane $\mathbb{C} = \mathbb{R}^2$ is complete. Moreover the unitary space \mathbb{C}^n is complete.

Theorem

The space l^{∞} is complete.

Proof.

Let (x_m) be any Cauchy sequence in l^{∞} . Then for any $\varepsilon > 0$ there is $n_0 > \mathbb{N}$ such that $\forall m, n > n_0$

$$d(x_{m}, x_{n}) = \sup_{j} \begin{vmatrix} x_{j} & x_{j} \\ \xi_{j} & \xi_{j} \\ \xi_{j} & \xi_{j} \end{vmatrix} < \mathcal{E} \dots \dots \dots (i)$$

Where $x_{m} = \begin{pmatrix} x_{m} \\ \xi_{j} \\ \xi_{j} \end{pmatrix} = \begin{pmatrix} x_{m} & x_{m} \\ \xi_{j} \\ \xi_{$

Then from (i)

$$\left| \begin{array}{cc} {}^{(m)}_{\xi_j} - {}^{(n)}_{\xi_j} \right| < \varepsilon \dots \dots \dots (ii) \qquad \forall \quad j = 1, 2, 3, \dots \text{ and } \quad \forall \quad m, n > n_0$$

It means $\binom{m}{\xi_j} = \binom{j}{\xi_j} = \binom{j}{\xi_j} \binom{j}{\xi_j} \binom{j}{\xi_j} \cdots$ is a Cauchy sequence of real or complex numbers for every $j = 1, 2, 3, \dots$

And since \mathbb{R} and \mathbb{C} are complete therefore $\xi_j^{(m)} \to \xi_j \in \mathbb{R}$ or \mathbb{C} (say). Using these infinitely many limits we define $x = (\xi_j) = (\xi_1, \xi_2, \xi_3, ...)$.

We prove $x \in l^{\infty}$ and $x_m \to x$.

In (i) as
$$n \to \infty$$
 we obtain $\left| \xi_{j}^{(m)} - \xi_{j} \right| < \varepsilon$ (iii) $\forall m > n_{0}$

We prove *x* is bounded.

By using the triangular inequality

$$\left|\xi_{j}\right| = \left|\xi_{j} - \xi_{j}^{(m)} + \xi_{j}^{(m)}\right| \le \left|\xi_{j} - \xi_{j}^{(m)}\right| + \left|\xi_{j}^{(m)}\right| < \varepsilon + k_{n}$$

Where $\begin{vmatrix} {m \atop \xi_j} \end{vmatrix} < k_m$ as x_m is bounded.

Hence $(\xi_j) = x$ is bounded.

This shows that $x_n \to x \in l^{\infty}$. And the proof is complete.

* Theorem

The space C of all convergent sequence of complex number is complete. Note: It is subspace of l^{∞} .

Proof.

First we prove **C** is closed in l^{∞} . Let $x = (\xi_j) \in \overline{\mathbf{C}}$, then there is a sequence (x_n) in **C** such that $x_n \to x$,

where
$$x_n = \begin{pmatrix} {}^{(n)} \\ \xi_j \end{pmatrix} = \begin{pmatrix} {}^{(n)} & {}^{(n)} & {}^{(n)} \\ \xi_1, \xi_2, \xi_3, \dots \end{pmatrix}$$
.

Then for any $\varepsilon > 0$, there is $n_0 \in \mathbb{N}$ such that $\forall n \ge n_0$

$$d(x_n, x) = \sup_{j} \left| \xi_j^{(n)} - \xi_j \right| < \frac{\varepsilon}{3}$$

Then in particular for $n = n_0$ and $\forall j = 1, 2, 3, \dots$

$$\left| \begin{array}{c} {}^{(n_0)} \\ \xi_j - \xi_j \end{array} \right| < \frac{\varepsilon}{3}$$

Now $x_{n_0} \in \mathbb{C}$ then x_{n_0} is a convergent sequence therefore $\exists n_1 \in \mathbb{N}$ such that $\forall j, k > n_1$

$$\left| \begin{array}{c} {}^{(n_0)}_{\xi_j} - {}^{(n_0)}_{\xi_k} \right| < \frac{\varepsilon}{3}$$

Then by using triangular inequality we have

$$\begin{aligned} \xi_{j} - \xi_{k} &| = \left| \xi_{j} - \xi_{j}^{(n_{0})} + \xi_{j}^{(n_{0})} + \xi_{k}^{(n_{0})} + \xi_{k}^{(n_{0})$$

Hence x is Cauchy in l^{∞} and x is convergent

Therefore $x \in \mathbf{C}$ and $\Rightarrow \overline{\mathbf{C}} = \mathbf{C}$.

i.e. C is closed in l^{∞} and l^{∞} is complete.

Since we know that a subspace of complete space is complete if and only if it is closed in the space.

Consequently C is complete.

* Theorem

The space l^p , $p \ge 1$ is a real number, is complete.

Proof.

Let (x_n) be any Cauchy sequence in l^p . Then for every $\varepsilon > 0$, there is $n_0 \in \mathbb{N}$ such that $\forall m, n > n_0$

$$d\left(x_{m}, x_{n}\right) = \left(\sum_{j=1}^{\infty} \left| \xi_{j}^{(m)} - \xi_{j}^{(n)} \right|^{p} \right)^{\frac{1}{p}} < \varepsilon \qquad (i)$$

where $x_m = \begin{pmatrix} m \\ \xi_j \end{pmatrix} = \begin{pmatrix} m & m \\ \xi_1, \xi_2, \xi_3, \dots \end{pmatrix}$

Then from (*i*) $\begin{vmatrix} m \\ \xi_j \\ -\xi_j \end{vmatrix} < \varepsilon \dots (ii) \quad \forall \ m, n > n_0 \text{ and for any fixed } j.$ This shows that $\begin{pmatrix} m \\ \xi_j \end{pmatrix}$ is a Cauchy sequence of numbers for the fixed j.

Since \mathbb{R} and \mathbb{C} are complete therefore $\overset{(m)}{\xi_j} \to \xi_j \in \mathbb{R}$ or \mathbb{C} (say) as $m \to \infty$. Using these infinite many limits we define $x = (\xi_j) = (\xi_1, \xi_2, \xi_3, ...)$. We prove $x \in l^p$ and $x_m \to x$ as $m \to \infty$.

From (i) we have

Taking as $n \to \infty$, we get

$$\sum_{j=1}^{k} \left| \frac{\xi_{j}^{(m)}}{\xi_{j}} - \xi_{j} \right|^{p} < \varepsilon^{p} , \qquad k = 1, 2, 3, \dots$$

Now taking $k \to \infty$, we obtain

$$\sum_{j=1,2,3,\dots,n} \left| \begin{array}{c} \sum_{j=1,2,3,\dots,n} \\ \sum_{j=1,2,\dots,n} \\ \sum_{j=1,2$$

This shows that $(x_m - x) \in l^p$

Now l^p is a vector space and $x_m \in l^p$, $x - x_m \in l^p$ then $x_m + (x - x_m) = x \in l^p$. Also from (*iv*) we see that

$$(d(x_m, x))^p < \varepsilon^p \qquad \forall m > n_0$$

i.e. $d(x_m, x) < \varepsilon \qquad \forall m > n_0$

This shows that $x_m \to x \in l^p$ as $x \to \infty$. And the proof is complete

And the proof is complete.

* Theorem

The space $\mathbf{C}[a, b]$ is complete.

Proof.

Let (x_n) be a Cauchy sequence in $\mathbb{C}[a, b]$.

Therefore for every $\varepsilon > 0$, there is $n_0 \in \mathbb{N}$ such that $\forall m, n > n_0$

$$d(x_m, x_n) = \max_{t \in I} |x_m(t) - x_n(t)| < \varepsilon \quad \dots \dots \quad (i) \quad \text{where } J = [a, b].$$

Then for any fix $t = t_0 \in J$

$$|x_m(t_0) - x_n(t_0)| < \varepsilon \qquad \forall m, n > n_0$$

It means $(x_1(t_0), x_2(t_0), x_3(t_0), ...)$ is a Cauchy sequence of real numbers. And since \mathbb{R} is complete therefore $x_m(t_0) \rightarrow x(t_0) \in \mathbb{R}$ (say) as $m \rightarrow \infty$.

In this way for every $t \in J$, we can associate a unique real number x(t) with $x_n(t)$. This defines a function x(t) on J.

We prove $x(t) \in \mathbb{C}[a, b]$ and $x_m(t) \to x(t)$ as $m \to \infty$.

From (*i*) we see that

 $|x_m(t) - x_n(t)| < \varepsilon$ for every $t \in J$ and $\forall m, n > n_0$.

Letting $n \to \infty$, we obtain for all $t \in J$

$$x_m(t) - x(t) | < \varepsilon \quad \forall m < n_0.$$

Since the convergence is uniform and the x_n 's are continuous, the limit function x(t) is continuous, as it is well known from the calculus.

Then x(t) is continuous.

Hence $x(t) \in \mathbb{C}[a,b]$, also $|x_m(t) - x(t)| < \varepsilon$ as $m \to \infty$ Therefore $x_m(t) \to x(t) \in \mathbb{C}[a,b]$. The proof is complete.

* Theorem

If (X, d_1) and (Y, d_2) are complete then $X \times Y$ is complete.

NOTE: The metric d (say) on $X \times Y$ is defined as $d(x, y) = \max(d_1(\xi_1, \xi_2), d_2(\eta_1, \eta_2))$ where $x = (\xi_1, \eta_1), y = (\xi_2, \eta_2)$ and $\xi_1, \xi_2 \in X, \eta_1, \eta_2 \in Y$.

Proof.

Let (x_n) be a Cauchy sequence in $X \times Y$.

Then for any $\varepsilon > 0$, there is $n_0 \in \mathbb{N}$ such that $\forall m, n > n_0$

$$d(x_{m}, x_{n}) = \max\left(d_{1}\begin{pmatrix} m & n \\ \xi, \xi \end{pmatrix}, d_{2}\begin{pmatrix} m & n \\ \eta, \eta \end{pmatrix}\right) < \varepsilon$$
$$\Rightarrow d_{1}\begin{pmatrix} m & n \\ \xi, \xi \end{pmatrix} < \varepsilon \text{ and } d_{2}\begin{pmatrix} m & n \\ \eta, \eta \end{pmatrix} < \varepsilon \quad \forall m, n > n_{0}$$

This implies $\binom{(m)}{\xi} = \binom{(1)}{\xi} \cdot \binom{(2)}{\xi} \cdot \binom{(3)}{\xi} \dots$ is a Cauchy sequence in *X*. and $\binom{(m)}{\eta} = \binom{(1)}{\eta} \cdot \binom{(2)}{\eta} \cdot \binom{(3)}{\eta} \dots$ is a Cauchy sequence in *Y*.

Since *X* and *Y* are complete therefore $\stackrel{(m)}{\xi} \to \xi \in X$ (say) and $\stackrel{(m)}{\eta} \to \eta \in Y$ (say) Let $x = (\xi, \mu)$ then $x \in X \times Y$.

Also
$$d(x_m, x) = \max\left(d_1\begin{pmatrix} m \\ \xi \end{pmatrix}, d_2\begin{pmatrix} m \\ \eta \end{pmatrix}\right) \to 0 \text{ as } n \to \infty$$

Hence $x_m \to x \in X \times Y$.

This proves completeness of $X \times Y$.

* Theorem

 $f:(X,d) \to (Y,d')$ is continuous at $x_0 \in X$ if and only if $x_n \to x$ implies $f(x_n) \to f(x_0)$.

Proof.

Assume that *f* is continuous at $x_0 \in X$ then for given $\varepsilon > 0$ there is a $\delta > 0$ such that

$$d(x,x_0) < \delta \implies d'(f(x),f(x_0)) < \varepsilon$$
.

Let $x_n \to x_0$, then for our $\delta > 0$ there is $n_0 \in \mathbb{N}$ such that

$$d(x_n, x_0) < \delta, \quad \forall \ n > n$$

Then by hypothesis $d'(f(x_n), f(x_0)) < \varepsilon$, $\forall n > n_0$ i.e. $f(x_n) \rightarrow f(x_0)$

Conversely, assume that $x_n \to x_0 \implies f(x_n) \to f(x_0)$ We prove $f: X \to Y$ is continuous at $x_0 \in X$, suppose this is false

Available at http://www.MathCity.org

Then there is an $\varepsilon > 0$ such that for every $\delta > 0$ there is an $x \in X$ such that $d(x, x_0) < \delta$ but $d'(f(x), f(x_0)) \ge \varepsilon$

In particular when $\delta = \frac{1}{n}$, there is $x_n \in X$ such that

$$d(x_n, x_0) < \delta$$
 but $d(f(x_n), f(x_0)) \ge \varepsilon$.

This shows that $x_n \to x_0$ but $f(x_n) \not\prec f(x_0)$ as $n \to \infty$.

This is a contradiction.

Consequently $f: X \to Y$ is continuous at $x_0 \in X$.

The proof is complete.

Rare (or nowhere dense in X)

Let X be a metric, a subset $M \subset X$ is called *rare* (or *nowhere dense in X*) if \overline{M} has no interior point i.e. $\operatorname{int}(\overline{M}) = \varphi$.

* Meager (or of the first category)

Let X be a metric, a subset $M \subset X$ is called *meager* (or *of the first category*) if M can be expressed as a union of countably many rare subset of X.

* Non-meager (or of the second category)

Let *X* be a metric, a subset $M \subset X$ is called *non-meager* (or *of the second category*) if it is not meager (of the first category) in *X*.

* Example:

Consider the set \mathbb{Q} of rationales as a subset of a real line \mathbb{R} . Let $q \in \mathbb{Q}$, then $\{q\} = \overline{\{q\}}$ because $\mathbb{R} - \{q\} = (-\infty, q) \cup (q, \infty)$ is open. Clearly $\{q\}$ contain no open ball. Hence \mathbb{Q} is nowhere dense in \mathbb{R} as well as in \mathbb{Q} . Also since \mathbb{Q} is countable, it is the countable union of subsets $\{q\}, q \in \mathbb{Q}$. Thus \mathbb{Q} is of the first category.

* Bair's Category Theorem

If $X \neq \varphi$ is complete then it is non-meager in itself.

OR

A complete metric space is of second category.

Proof.

Suppose that X is meager in itself then $X = \bigcup_{k=1}^{\infty} M_k$, where each M_k is rare in X.

Since M_1 is rare then $int(M) = M^\circ = \varphi$

i.e. $\overline{M_1}$ has non-empty open subset

But X has a non-empty open subset (i.e. X itself) then $\overline{M_1} \neq X$.

This implies $\overline{M_1}^c = X - \overline{M_1}$ is a non-empty and open.

We choose a point $p_1 \in \overline{M_1}^c$ and an open ball $B_1 = B(p_1; \varepsilon_1) \subset \overline{M_1}^c$, where $\varepsilon_1 < \frac{1}{2}$.

Now $\overline{M_2}^c$ is non-empty and open

Then \exists a point $p_2 \in \overline{M_2}^c$ and open ball $B_2 = B(p_2; \varepsilon_2) \in \overline{M_2}^c \cap B(p_1; \frac{1}{2}\varepsilon_1)$

 $(\overline{M_2} \text{ has no non-empty open subset then } \overline{M_2}^c \cap B\left(p_1; \frac{1}{2}\varepsilon_1\right) \text{ is non-empty and open.)}$

So we have chosen a point p_2 from the set $\overline{M_2}^c \cap B\left(p_1; \frac{1}{2}\varepsilon_1\right)$ and an open ball

 $B(p_2,\varepsilon_2)$ around it, where $\varepsilon_2 < \frac{1}{2}\varepsilon_1 < \frac{1}{2} \cdot \frac{1}{2} < 2^{-1}$.

Proceeding in this way we obtain a sequence of balls B_k such that

$$B_{k+1} \subset B\left(p_k; \frac{1}{2}\varepsilon_k\right) \subset B_k$$
 where $B_k = B\left(p_k; \varepsilon_k\right) \quad \forall \ k = 1, 2, 3, \dots$

Then the sequence of centres p_k is such that for m > n

$$d(p_m, p_n) < \frac{1}{2}\varepsilon_m < \frac{1}{2^{m+1}} \to 0 \text{ as } m \to \infty$$

Hence the sequence (p_k) is Cauchy.

Since X is complete therefore $p_k \to p \in X$ (say) as $k \to \infty$. Also

$$d(p_{m}, p) \leq d(p_{m}, p_{n}) + d(p_{n}, p)$$

$$< \frac{1}{2}\varepsilon_{m} + d(p_{n}, p)$$

$$< \varepsilon_{m} + d(p_{n}, p) \rightarrow \varepsilon_{m} + 0 \quad \text{as} \quad n \rightarrow \infty.$$

$$\Rightarrow p \in B_{m} \quad \forall m \quad \text{i.e.} \quad p \in \overline{M_{m}}^{c} \quad \forall m \qquad \because B_{m} = \overline{M_{2}}^{c} \cap B(p_{m-1}; \frac{1}{2}\varepsilon_{m-1})$$

$$\Rightarrow B_{m} \subset \overline{M_{m}}^{c} \quad \Rightarrow B_{m} \cap M_{m} = \varphi$$

$$\Rightarrow p \notin M_{m} \quad \forall m \quad \Rightarrow p \notin X$$
This is a contradiction.
Bair's Theorem is proof.

References: (1) Lectures (2003-04)

Prof. Muhammad Ashfaq Ex Chairman, Department of Mathematics. University of Sargodha, Sargodha.

(2) Book

Introductory Functional Analysis with Applications By Erwin Kreyszig (John Wiley & Sons. Inc., 1989.)

These notes are available online at http://www.mathcity.org in PDF Format. Last update: July 01, 2011.

This