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v Metric Spaces 
   Let X be a non-empty set and ¡  denotes the set of real numbers. A function 

:d X X× → ¡  is said to be metric if it satisfies the following axioms , ,x y z X∀ ∈ . 
[M1]  ( , ) 0d x y ≥    i.e.  d is finite and non-negative real valued function. 
[M2]  ( , ) 0d x y =  if and only if x = y. 
[M3]  ( , ) ( , )d x y d y x=      (Symmetric property) 
[M4]  ( , ) ( , ) ( , )d x z d x y d y z≤ +   (Triangular inequality) 
    The pair (X, d ) is then called metric space. 
d is also called distance function and d(x, y) is the distance from x to y. 

  Note: If (X, d) be a metric space then X is called underlying set. 

v Examples:  
i) Let X be a non-empty set. Then :d X X× → ¡  defined by 

    
1

( , )
0

if x y
d x y

if x y
≠

=  =
 

is a metric on X and is called trivial metric or discrete metric. 
 

ii) Let ¡  be the set of real number. Then :d × →¡ ¡ ¡  defined by 
       ( , )d x y x y= −   is a metric on ¡ .  

The space ( ),d¡  is called real line and d is called usual metric on ¡ . 
 

iii) Let X be a non-empty set and :d X X× → ¡  be a metric on X. Then :d X X′ × → ¡  
defined by  ( )( , ) min 1, ( , )d x y d x y′ =  is also a metric on X. 
Proof:  

[M1]  Since d is a metric so ( , ) 0d x y ≥   
          as ( , )d x y′  is either 1 or ( , )d x y  so ( , ) 0d x y′ ≥ . 
[M2]  If x = y  then ( , ) 0d x y =  and then ( , )d x y′  which is ( )min 1, ( , )d x y  will be        
          zero. 
         Conversely, suppose that ( , ) 0d x y′ =    ( )min 1, ( , ) 0d x y⇒ =  

  ( , ) 0d x y⇒ =  x y⇒ =    as d is metric. 
[M3]  ( ) ( )( , ) min 1, ( , ) min 1, ( , ) ( , )d x y d x y d y x d y x′ ′= = =          ( , ) ( , )d x y d y x=∵  
[M4]  We have ( )( , ) min 1, ( , )d x z d x z′ =  

( , ) 1d x z′⇒ ≤  or  ( , ) ( , )d x z d x z′ ≤  
         We wish to prove ( , ) ( , ) ( , )d x z d x y d y z′ ′ ′≤ +  
          now if ( , ) 1d x z ≥ , ( , ) 1d x y ≥   and ( , ) 1d y z ≥       

then ( , ) 1d x z′ = , ( , ) 1d x y′ =  and ( , ) 1d y z′ =    
and ( , ) ( , ) 1 1 2d x y d y z′ ′+ = + =   
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therefore ( , ) ( , ) ( , )d x z d x y d y z′ ′ ′⇒ ≤ +  
Now if ( , ) 1d x z < , ( , ) 1d x y <   and ( , ) 1d y z <  
Then ( , ) ( , )d x z d x z′ = , ( , ) ( , )d x y d x y′ =  and ( , ) ( , )d y z d y z′ =  
As d is metric therefore ( , ) ( , ) ( , )d x z d x y d y z≤ +  

 ( , ) ( , ) ( , )d x z d x y d y z′ ′ ′⇒ ≤ +     
Q.E.D 

 
iv) Let :d X X× → ¡  be a metric space. Then :d X X′ × → ¡  defined by 

( , )( , )
1 ( , )

d x yd x y
d x y

′ =
+

 is also a metric. 

Proof. 

[M1] Since ( , ) 0d x y ≥  therefore ( , ) ( , ) 0
1 ( , )

d x y d x y
d x y

′= ≥
+

 

[M2] Let ( , ) 0d x y′ =  ( , ) 0
1 ( , )

d x y
d x y

⇒ =
+

  ( , ) 0d x y⇒ =  x y⇒ =  

         Now conversely suppose x y=  then ( , ) 0d x y = . 

         Then 
( , ) 0( , ) 0

1 ( , ) 1 0
d x yd x y

d x y
′ = = =

+ +
 

[M3]  ( )( , ) ( , )( , ) ,
1 ( , ) 1 ( , )

d x y d y xd x y d y x
d x y d y x

′ ′= = =
+ +

  

[M4] Since d is metric therefore ( , ) ( , ) ( , )d x z d x y d y z≤ +  

         Now by using inequality  
1 1

a ba b
a b

< ⇒ <
+ +

. 

         We get    ( , ) ( , ) ( , )
1 ( , ) 1 ( , ) ( , )

d x z d x y d y z
d x z d x y d y z

+
≤

+ + +
 

                                 ( , ) ( , )( , )
1 ( , ) ( , ) 1 ( , ) ( , )

d x y d y zd x z
d x y d y z d x y d y z

′⇒ ≤ +
+ + + +

 

    ( , ) ( , )( , )
1 ( , ) 1 ( , )

d x y d y zd x z
d x y d y z

′⇒ ≤ +
+ +

 

  ( , ) ( , ) ( , )d x z d x y d y z′ ′ ′⇒ ≤ +  
Q.E.D 

 

v) The space C[a, b] is a metric space and the metric d is defined by 
( , ) max ( ) ( )

t J
d x y x t y t

∈
= −  

where  J = [a, b] and x, y are continuous real valued function defined on [a, b]. 
Proof. 

[M1] Since ( ) ( ) 0x t y t− ≥   therefore  ( , ) 0d x y ≥ . 
[M2] Let ( , ) 0d x y =  ( ) ( ) 0 ( ) ( )x t y t x t y t⇒ − = ⇒ =  
        Conversely suppose x y=  
        Then ( , ) max ( ) ( ) max ( ) ( ) 0

t J t J
d x y x t y t x t x t

∈ ∈
= − = − =   
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[M3] ( , ) max ( ) ( ) max ( ) ( ) ( , )
t J t J

d x y x t y t y t x t d y x
∈ ∈

= − = − =  

[M4] ( , ) max ( ) ( ) max ( ) ( ) ( ) ( )
t J t J

d x z x t z t x t y t y t z t
∈ ∈

= − = − + −  

                    max ( ) ( ) max ( ) ( )
t J t J

x t y t y t z t
∈ ∈

≤ − + −  

( , ) ( , )d x y d y z= +  
Q.E.D 

 

vi)  :d × →¡ ¡ ¡  is a metric, where ¡  is the set of real number and d defined by 
( , )d x y x y= −   

 

vii) Let 1 1( , )x x y=  , 2 2( , )y x y=  we define  

   2 2
1 2 1 2( , ) ( ) ( )d x y x x y y= − + −  is a metric on ¡   

and called Euclidean metric on 2¡  or  usual metric on 2¡ . 
 
viii) :d × →¡ ¡ ¡  is not a metric, where ¡  is the set of real number and d defined by 

2( , ) ( )d x y x y= −   
Proof. 

[M1] Square is always positive therefore 2( ) ( , ) 0x y d x y− = ≥  
[M2] Let ( , ) 0d x y =   2( ) 0x y⇒ − =    0x y⇒ − =    x y⇒ =  
        Conversely suppose that  x y=   
        then 2 2( , ) ( ) ( ) 0d x y x y x x= − = − =  
[M3] 2 2( , ) ( ) ( ) ( , )d x y x y y x d y x= − = − =  
[M4] Suppose that triangular inequality holds in d. then for any , ,x y z ∈¡  
           ( , ) ( ) ( , )d x z d x y d y z≤ − +  

     2 2 2( ) ( ) ( )x z x y y z⇒ − ≤ − + −  
        Since , ,x y z ∈¡  therefore consider 0, 1x y= =  and 2z = . 

    2 2 2(0 2) (0 1) (1 2)⇒ − ≤ − + −  
           4 1 1⇒ ≤ +    4 2⇒ ≤   

        which is not true so triangular inequality does not hold and d is not metric. 
 

ix)  Let 1 2( , )x x x=  , 2
1 2( , )y y y= ∈¡ . We define  

1 1 2 2( , )d x y x y x y= − + −   
is a metric on 2¡ , called Taxi-Cab metric on 2¡ . 

 

x)  Let n¡  be the set of all real n-tuples. For  
1 2( , ,..., )nx x x x=  and 1 2( , ,..., )ny y y y=  in n¡  

we define   2 2 2
1 1 2 2( , ) ( ) ( ) ... ( )n nd x y x y x y x y= − + − + + −  

          then d is metric on n¡ , called Euclidean metric on n¡  or usual metric on n¡ . 
 

xi) The space l∞ . As points we take bounded sequence 
1 2( , ,...)x x x= , also written as ( )ix x= , of complex numbers such that  
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1,2,3,...i xx C i≤ ∀ =  
where xC  is fixed real number. The metric is defined as 

( , ) sup i i
i

d x y x y
∈

= −
¥

  where ( )iy y=  
 

xii) The space pl , 1p ≥  is a real number, we take as member of pl , all sequence  

        ( )jx ξ=  of complex number such that 
1

p

j
j

ξ
∞

=

< ∞∑ . 

The metric is defined by  ( )
1

1
,

pp

j j
j

d x y ξ η
∞

=

 
= − 

 
∑  

       Where ( )jy η=  such that 
1

p

j
j

η
∞

=

< ∞∑  

Proof. 

[M1] Since 0j jξ η− ≥  therefore  ( )
1

1
, 0

pp

j j
j

d x yξ η
∞

=

 
− = ≥ 

 
∑ . 

[M2] If x y=  then  

 ( )
1 1 1

1 1 1
, 0 0

p p pp p p
j j j j

j j j
d x y ξ η ξ ξ

∞ ∞ ∞

= = =

     
= − = − == =     

     
∑ ∑ ∑  

  
Conversely, if ( ), 0d x y =  

       

1

1
0

pp

j j
j

ξ η
∞

=

 
⇒ − = 

 
∑   0j jξ η⇒ − =   ( ) ( )j jξ η⇒ =   x y⇒ =  

[M3]  ( ) ( )
1 1

1 1
, ,

p pp p

j j j j
j j

d x y d y xξ η η ξ
∞ ∞

= =

   
= − = − =   

   
∑ ∑  

[M4]  Let  ( )jz ζ= , such that  
1

p

j
j

ζ
∞

=

< ∞∑  

     then  ( )
1

1
,

pp

j j
j

d x z ξ ζ
∞

=

 
= − 

 
∑  

           

1

1

pp

j j j j
j

ξ η η ζ
∞

=

 
= − + − 

 
∑  

Using *Minkowski’s Inequality 
1 1

1 1

p pp p

j j j j
j j

ξ η η ζ
∞ ∞

= =

   
≤ − + −   

   
∑ ∑  

( ) ( ), ,d x y d y z= +    
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Q.E.D 
 

v Pseudometric 
Let X be a non-empty set. A function :d X X× → ¡  is called pseudometric 

if and only if 
i) ( , ) 0d x x =   for all  x X∈ . 
ii) ( , ) ( , )d x y d y x=   for all  ,x y X∈ . 
iii) ( , ) ( , ) ( , )d x z d x y d y z≤ +   for all  , ,x y z X∈ . 

OR 
A pseudometric satisfies all axioms of a metric except ( , ) 0d x y =  

may not imply x = y but x = y implies ( , ) 0d x y = . 

Example 

Let 2,x y ∈ ¡  and 1 2( , )x x x=  , 1 2( , )y y y=  
Then 1 1( , )d x y x y= −  is a pseudometric on 2¡ . 
Let (2,3)x =  and  (2,5)y =  
Then ( , ) 2 2 0d x y = − =  but x y≠  

Note: Every metric is a pseudometric, but pseudometric is not metric. 
 
∗ Minkowski’s Inequality 
      If ( )1 2, ,...,i nξ ξ ξ ξ=  and ( )1 2, ,...,i nη η η η=  are in n¡  and 1p > , then 

1 1 1

1 1 1

p p pp p p

i i i i
i i i

ξ η ξ η
∞ ∞ ∞

= = =

     
+ ≤ +          

     
∑ ∑ ∑  

v Distance between sets 
Let ( , )X d  be a metric space and ,A B X⊂ . The distance between A and B denoted 

by ( , )d A B  is defined as { }( , ) inf ( , ) | ,d A B d a b a A b B= ∈ ∈  
If { }A x=  is a singleton subset of X, then ( , )d A B  is written as ( , )d x B  and is called 

distance of point x from the set B. 
 

v Theorem 
Let ( , )X d  be a metric space. Then for any ,x y X∈   

( , ) ( , ) ( , )d x A d y A d x y− ≤  
Proof. 

Let z A∈  then ( , ) ( , ) ( , )d x z d x y d y z≤ +  
       then ( , ) inf ( , ) ( , ) inf ( , )

z A z A
d x A d x z d x y d y z

∈ ∈
= ≤ +   

      ( , ) ( , )d x y d y A= +  
   ( , ) ( , ) ( , ) ( )d x A d y A d x y i⇒ − ≤ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

Next  
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( , ) inf ( , ) ( , ) inf ( , )
z A z A

d y A d y z d y x d x z
∈ ∈

= ≤ +  
  ( , ) ( , )d y x d x A= +  

      ( , ) ( , ) ( , )d x A d y A d y x⇒ − + ≤  
      ( )( , ) ( , ) ( , ) ( )d x A d y A d x y ii⇒ − − ≤ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   ( , ) ( , )d x y d y x=∵  
Combining equation (i) and (ii) 

( , ) ( , ) ( , )d x A d y A d x y− ≤    Q.E.D 
 

v Diameter of a set 
          Let ( , )X d  be a metric space and A X⊂ , we define diameter of A denoted by  

,
( ) sup ( , )

a b A
d A d a b

∈
=  

Note: For an empty set ϕ , following convention are adopted 
(i) ( )d ϕ = − ∞ ,  some authors take ( )d ϕ  also as 0. 
(ii) ( , )d p ϕ = ∞   i.e distance of a point p from empty set is ∞ . 
(iii) ( , )d A ϕ = ∞ ,  where A is any non-empty set. 

 

v Bounded Set 
 Let ( , )X d  be a metric space and A X⊂ , we say A is bounded if diameter of A is 

finite i.e. ( )d A < ∞ . 
 

v Theorem 
The union of two bounded set is bounded. 

Proof. 
Let ( , )X d  be a metric space and ,A B X⊂  be bounded. We wish to prove A B∪  

is bounded. 
   Let ,x y A B∈ ∪   
   If ,x y A∈  then since A is bounded therefore ( , )d x y < ∞  
and hence 

,
( ) sup ( , )

x y A B
d A B d x y

∈ ∪
∪ = < ∞  then A B∪  is bounded. 

   Similarity if ,x y B∈  then A B∪  is bounded. 
   Now if x A∈  and y B∈  then  

( , ) ( , ) ( , ) ( , )d x y d x a d a b d b y≤ + +   where ,a A b B∈ ∈ . 
   Since ( , ), ( , )d x a d a b  and ( , )d b y  are finite  
   Therefore ( , )d x y < ∞  i.e A B∪  is bounded.     Q.E.D 

v Open Ball 
Let ( , )X d  be a metric space. An open ball in ( , )X d  is denoted by 

   { }0 0( ; ) | ( , )B x r x X d x x r= ∈ <  

0x  is called centre of the ball and r is called radius of ball and 0r ≥ . 
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v Closed Ball 

The set { }0 0( ; ) | ( , )B x r x X d x x r= ∈ ≤  is called closed ball in ( , )X d .  

v Sphere  
The set { }0 0( ; ) | ( , )S x r x X d x x r= ∈ =  is called sphere in ( , )X d . 

v Examples 
Consider the set of real numbers with usual metric d x y= −  ,x y∀ ∈¡  
then { }( ; ) | ( , )B x r x d x x r= ∈ <o o¡  
i.e.  { }( ; ) :B x r x x x r= ∈ − <o o¡  

  i.e.   0x r x x r− < < + = 0 0( , )x r x r− +  
i.e. open ball is the real line with usual metric is an open interval. 
And { }0( ; ) :B x r x x x r= ∈ − ≤o ¡   
i.e.  0 0x r x x r− ≤ ≤ + = 0 0[ , ]x r x r− +  
i.e.  closed ball in a real line is a closed interval. 
And { }0( ; ) :S x r x x x r= ∈ − =o ¡ ={ }0 0,x r x r− +   
i.e.  two point 0x r−  and 0x r+  only. 

v Open Set 
Let ( , )X d  be a metric space and set G is called open in X  if for every x G∈ , there 

exists an open ball ( ; )B x r G⊂ . 
 

v Theorem  
An open ball in metric space X is open. 

Proof. 
Let 0( ; )B x r  be an open ball in ( , )X d . 

Let 0( ; )y B x r∈  then 0 1( , )d x y r r= <  
Let 2 1r r r< − , then 2 0( ; ) ( ; )B y r B x r⊂  

Hence 0( ; )B x r  is an open set. 
Alternative:  

Let 0( ; )B x r  be an open ball in ( , )X d . 
Let 0( ; )x B x r∈  then 0 1( , )d x x r r= <  
Take 2 1r r r= −  and consider the open ball 2( ; )B x r   
we show that 2( ; ) ( ; )B x r B x r⊂ . 
For this let 2( ; )y B x r∈  then 2( , )d x y r<   
and  0 0( , ) ( , ) ( , )d x y d x x d x y≤ +  

          1 2r r< +  r=  
hence 0( ; )y B x r∈  so that 2 0( ; ) ( ; )B x r B x r⊂ . Thus 0( ; )B x r  is an open. 

Q.E.D 
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Note: Let ( ),X d be a metric space then 
i)   X and ϕ  are open sets. 
ii)  Union of any number of open sets is open. 
iii) Intersection of a finite number of open sets is open. 

 

v Limit point of a set 
Let ( , )X d  be a metric space and A X⊂ , then x X∈  is called a limit point  or 

accumulation point of A if for every open ball ( ; )B x r  with centre x, 
   { }( ; ) { }B x r A x ϕ∩ − ≠ . 

i.e. every open ball contain a point of A other than x. 

v Closed Set 
A subset A of metric space X is closed if it contains every limit point of itself. 

The set of all limit points of A is called the derived set of A and denoted by A′ . 
 

v Theorem 

A subset A of a metric space is closed if and only if its complement cA  is open. 
Proof. 

Suppose A is closed, we prove cA  is open. 
Let cx A∈  then x A∉ . 

x⇒  is not a limit point of A. 
then by definition of a limit point there exists an open ball ( ; )B x r  such that  

( ; )B x r A ϕ∩ = . 
This implies ( ; ) cB x r A⊂ . Since x is an arbitrary point of cA . So cA  is open. 

Conversely, assume that cA  is an open then we prove A is closed. 
i.e.  A contain all of its limit points. 
Let x be an accumulation point of A. and suppose cx A∈ . 
then there exists an open ball ( ; ) cB x r A⊂    ( ; )B x r A ϕ⇒ ∩ = .  
This shows that x is not a limit point of A. this is a contradiction to our assumption. 
Hence x A∈ . Accordingly A is closed. 

The proof is complete. 
 

v Theorem 
A closed ball is a closed set. 

Proof. 
Let ( ; )B x r  be a closed ball. We prove  ( ; )

c
B x r C=  (say) is an open ball. 

Let y C∈  then  ( , )d x y r> . 
Let 1 ( , )r d x y=  then  1r r> . And take 2 1r r r= −  

Consider the open ball 2;
2
rB y 

 
 

 we prove 2;
2
rB y C  ⊂ 

 
. 
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For this let 2;
2
rz B y ∈  

 
 then 2( , )

2
rd z y <  

By the triangular inequality  
( , ) ( , ) ( , )d x y d x z d z y≤ +  

    ( , ) ( , ) ( , )d x y d z x d z y⇒ ≤ +    ( , ) ( , )d y z d z y=∵  
    ( , ) ( , ) ( , )d z x d x y d z y⇒ ≥ −  

    2 1 2 1 1 1
1

2 2( , )
2 2 2 2
r r r r r r r rd z x r − − + +

⇒ > − = = =   2 1r r r= −∵  

    ( , )
2

r rd z x r+
⇒ > =                1 2 10r r r r r− = > ∴ >∵  

    ( ; )z B x r⇒ ∉  This shows that z C∈  

    2;
2
rB y C ⇒ ⊂ 

 
 

  Hence C is an open set and consequently ( ; )B x r  is closed.       Q.E.D 

v Theorem 
Let ( , )X d  be a metric space and A X⊂ . If x X∈  is a limit point of A. then every 

open ball ( ; )B x r with centre x contain an infinite numbers of point of A. 
Proof. 

Suppose ( ; )B x r contain only a finite number of points of A. 
Let 1 2, ,..., na a a  be those points.  
and let ( , )i id x a r=  where 1,2,...,i n= . 
also consider 1 2min( , ,..., )nr r r r′ =  
Then the open ball ( ; )B x r′  contain no point of A other than x. then x is not limit point of 
A. This is a contradiction therefore ( ; )B x r  must contain infinite numbers of point of A. 

v Closure of a Set 
Let ( , )X d  be a metric space and M X⊂ . Then closure of M is denoted by 

M M M ′= ∪  where M ′  is the set of all limit points of M. It is the smallest closed 
superset of M. 

v Dense Set 

Let (X, d) be a metric space the a set M X⊂  is called dense in X if M X= . 
 

v Countable Set 
A set A is countable if it is finite or there exists a function :f A → ¥  which is one-

one and onto, where ¥  is the set of natural numbers. 
e.g. ,¥ ¤  and ¢  are countable sets . The set of real numbers, the set of irrational 

numbers and any interval are not countable sets. 

v Separable Space 
A space X is said to be separable if it contains a countable dense subsets. 
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 e.g. the real line ¡  is separable since it contain the set ¤  of rational numbers, which is 
dense is ¡ . 

v Theorem 
Let (X, d) be a metric space, A X⊂  is dense if and only if A has non-empty 

intersection with any open subset of X. 
Proof. 

Assume that A is dense in X. then A X= . 
Suppose there is an open set G X⊂  such that A G ϕ∩ = . 
Then if x G∈  then ( ){ }A G x ϕ∩ − =  
which show that x is not a limit point of A. 
This implies x A∉  but x X∈   A X⇒ ≠  
This is a contradiction. 
Consequently A G ϕ∩ ≠  for any open G X⊂ . 

Conversely suppose that A G ϕ∩ ≠  for any open G X⊂ . 
We prove A X= , for this let x X∈ . 
If x A∈  then x A A A′∈ ∪ =  then X A= . 
If x A∉  then let { }iG  be the family of all the open subset of X such that ix G∈  for every i. 
Then by hypothesis iA G ϕ∩ ≠  for any i. i.e iG contain point of A other then x. 
This implies that x is an accumulation point of A. i.e.  x A′∈  
Accordingly x A A A′∈ ∪ =  and X A= . 
The proof is complete. 

v Neighbourhood of a Point 
Let (X, d) be a metric space and  0x X∈  and a subset N X⊂  is called a 

neighbourhood of 0x  if there exists an open ball 0( ; )B x ε  with centre 0x  such that 
0( ; )B x Nε ⊂ . 

Shortly “neighbourhood ”  is written as  “nhood ”. 
 

v Interior Point 
Let (X, d) be a metric space and A X⊂ , a point 0x X∈  is called an interior point of 

A if there is an open ball 0( ; )B x r  with centre 0x  such that 0( ; )B x r A⊂ . 
The set of all interior points of A is called interior of A and is denoted by int(A) or Ao . 
It is the largest open set contain in A. i.e. A A⊂o . 
 

v Continuity 
A function  ( ) ( ): , ,f X d Y d ′→  is called continuous at a point 0x X∈  if for any 

0ε >  there is a  0δ >  such that  ( )0( ), ( )d f x f x ε′ <   for all x satisfying 0( , )d x x δ< . 
Alternative: 

:f X Y→  is continuous at 0x X∈  if for any 0ε > , there is a 0δ >  such that  
   0( ; )x B x δ∈      ( )0( ) ( );f x B f x ε⇒ ∈ . 
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v Theorem 

:( , ) ( , )f X d Y d ′→  is continuous at 0x X∈  if and only if 1( )f G−  is open is X. 
wherever G is open in Y. 
Note : Before proving this theorem note that if :f X Y→  , 1 :f Y X− →  and A X⊂ , 
B Y⊂  then 1 ( )f f A A− ⊃  and 1( )f f B B− ⊂  
Proof. 

Assume that :f X Y→  is continuous and G Y⊂  is open. We will prove 1( )f G−  is 
open in X. 
   Let 1( )x f G−∈   1( ) ( )f x f f G G−⇒ ∈ ⊂  
When G is open, there is an open ball ( )( );B f x Gε ⊂ . 
   Since :f X Y→  is continuous, therefore for 0ε >  there is a  0δ >  such that     
              ( ; )y B x δ∈   ( )( ) ( );f y B f x Gε⇒ ∈ ⊂   then  1 1( ) ( )y f f G f G− −∈ ⊂  
   Since y is an arbitrary point of  1( ; ) ( )B x f Gδ −⊂ . Also x was arbitrary, this show that 

1( )f G−  is open in X. 
   Conversely, for any G Y⊂  we prove :f X Y→  is continuous. 
   For this let x X∈  and 0ε >  be given. Now ( )f x Y∈  and let ( )( );B f x ε  be an open ball 
in Y.  then by hypothesis  ( )( )1 ( );f B f x ε−   is open in X  and ( )( )1 ( );x f B f x ε−∈  
   As  ( ) ( )( )1; ( );y B x f B f xδ ε−∈ ⊂  

( )( ) ( )1( ) ( ); ( );f y f f B f x B f xε ε−⇒ ∈ ⊂   i.e.  ( )( ) ( );f y B f x ε∈  
  Consequently :f X Y→  is continuous. 
The proof is complete. 

v Convergence of Sequence: 
Let 1 2( ) ( , ,...)nx x x=  be a sequence in a metric space ( , )X d , we say ( )nx  converges 

to x X∈  if  lim ( , ) 0nn
d x x

→∞
= . 

We write lim nn
x x

→∞
=  or simply nx x→   as  n → ∞ . 

Alternatively, we say nx x→  if for every 0ε >  there is an  0n ∈¥ , such that  
  0n n∀ > ,  ( , )nd x x ε< . 

v Theorem 
If ( )nx  is converges then limit of ( )nx  is unique. 

Proof. 
Suppose nx a→  and nx b→ ,  

Then 0 ( , ) ( , ) ( , ) 0 0n nd a b d a x d x b≤ ≤ + → +    as n → ∞       ( , ) 0d a b⇒ =  a b⇒ =  
   Hence the limit is unique.  8 
Alternative 

Suppose that a sequence ( )nx  converges to two distinct limits  a and  b.  
and ( , ) 0d a b r= >  
   Since nx a→ , given any 0ε > , there is a natural number 1n  depending on ε  
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 such that  

( , )
2nd x a ε

<   whenever  1n n>  

   Also nx b→ , given any 0ε > , there is a natural number 2n  depending on ε  
 such that  

( , )
2nd x b ε

<   whenever  2n n>  

Take 0 1 2max( , )n n n=  then 

( , )
2nd x a ε

<      and    ( , )
2nd x b ε

<  whenever 0n n>  

Since ε  is arbitrary, take rε =  then 
   ( , ) ( , ) ( , )n nr d a b d a x d x b= ≤ +  

                 
2 2
r r r< + =    ( , ) ( , )

2n nd a x d x a ε
= <∵  

Which is a contradiction, Hence a b=   i.e. limit is unique. 

v Theorem 
i) A convergent sequence is bounded. 
ii) If nx x→  and ny y→   then  ( , ) ( , )n nd x y d x y→ . 

Proof. 
     (i) Suppose  nx x→ , therefore for any 0ε >  there is 0n ∈¥  such that  

0n n∀ > ,    ( , )nd x x ε<  
   Let  { }1 2max ( , ), ( , ),............, ( , )na d x x d x x d x x=   and  { }max ,k aε=  
   Then by using triangular inequality for arbitrary ( ),i j nx x x∈  

( )0 , ( , ) ( , )i j i jd x x d x x d x x≤ ≤ +  
2k k k≤ + =  

   Hence ( )nx  is bounded. 
   (ii)  By using triangular inequality  

( ) ( ) ( ) ( ), , , ,n n n nd x y d x x d x y d y y≤ + +  
    ( ) ( ) ( ) ( ), , , , 0 0n n n nd x y d x y d x x d y y⇒ − ≤ + → +     as   n → ∞  ...........( )i  

   Next          ( ) ( ) ( ) ( ), , , ,n n n nd x y d x x d x y d y y≤ + +  
    ( ) ( ) ( ) ( ), , , , 0 0n n n nd x y d x y d x x d y y⇒ − ≤ + → +     as   n → ∞  ..........( )ii  

   From (i) and (ii) 
( ) ( ), , 0n nd x y d x y− →  as n → ∞  

   Hence  
( )lim , ( , )n nn

d x y d x y
→∞

=  Q.E.D  

v Cauchy Sequence 
A sequence ( )nx  in a metric space ( , )X d  is called Cauchy if any 0ε >  there is a 

0n ∈¥   such that  0, , ( , )m nm n n d x x ε∀ > < . 
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v Theorem 
A convergent sequence in a metric space ( , )X d  is Cauchy. 

Proof. 
Let  nx x X→ ∈ ,  therefore any 0ε >  there is 0n ∈¥  such that  

0,m n n∀ > ,    ( , )
2nd x x ε

<    and   ( , )
2md x x ε

< . 

   Then by using triangular inequality  
( ) ( ) ( ), , ,m n m nd x x d x x d x x≤ +  

     ( ) ( ), ,m nd x x d x x≤ +    ( , ) ( , )d x y d y x=∵  

    
2 2
ε ε ε< + =  

   Thus every convergent sequence in a metric space is Cauchy. 

v Example 
Let ( )nx  be a sequence in the discrete space ( , )X d . If ( )nx  be a Cauchy sequence, then 
for 1

2ε = , there is a natural number 0n  depending on ε  such that  
1

2( , )m nd x x <  0,m n n∀ ≥  
Since in discrete space d is either 0 or 1 therefore ( , ) 0m nd x x =   m nx x x⇒ = = (say) 
Thus a Cauchy sequence in ( , )X d  become constant after a finite number of terms,  

 i.e.   ( ) ( )01 2, ,..., , , , ,...n nx x x x x x x=  

v Subsequence 
Let  1 2 3( , , ,...)a a a   be a sequence  ( , )X d   and let  1 2 3( , , ,...)i i i   be a sequence of 

positive integers such that 1 2 3 ...i i i< < <  then  ( )1 2 3
, , ,...i i ia a a  is called subsequence of 

( ):na n∈¥ . 

v Theorem 
(i) Let ( )nx be a Cauchy sequence in ( , )X d , then ( )nx  converges to a point x X∈  if 

and only if ( )nx  has a convergent subsequence ( )knx  which converges to x X∈ . 

(ii) If ( )nx  converges to x X∈ , then every subsequence ( )knx  also converges to x X∈ . 
Proof. 
   (i) Suppose nx x X→ ∈  then ( )nx  itself is a subsequence which converges to x X∈ . 

   Conversely, assume that ( )knx  is a subsequence of ( )nx  which converges to x. 

   Then for any 0ε >  there is 0n ∈¥  such that  0kn n∀ > ,  ( ),
2knd x x ε

< . 

   Further more ( )nx  is Cauchy sequence  

   Then for the 0ε >  there is 1n ∈¥  such that 1,m n n∀ > ,  ( ),
2m nd x x ε

< . 

   Suppose 2 0 1max( , )n n n=  then by using the triangular inequality we have 
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( ) ( ) ( ), , ,
k kn n n nd x x d x x d x x≤ +  

                 
2 2
ε ε ε< + =   2,kn n n∀ >  

    
   This show that nx x→ . 
   (ii)  nx x→   implies for any  0ε >   0n∃ ∈¥   such that  ( ),nd x x ε<  

   Then in particular ( ),
knd x x ε<     0kn n∀ >  

   Hence
knx x X→ ∈ . 

v Example 
Let ( )0,1X =  then ( ) ( ) ( )1 1 1

2 3 41 2 3, , ,... , , ,...nx x x x= =  is a sequence in X. 
Then 0nx →  but 0 is not a point of X. 

v Theorem 
Let ( , )X d  be a metric space and M X⊂ . 
(i) Then x M∈  if and only if there is a sequence ( )nx  in M such that nx x→ . 
(ii) If for any sequence ( )nx  in M, nx x x M→ ⇒ ∈ , then M is closed. 

Proof. 
   (i)  Suppose x M M M ′∈ = ∪  
   If x M∈ , then there is a sequence ( , , ,...)x x x  in M which converges to x. 
   If x M∉ , then x M ′∈   i.e.  x is an accumulation point of M, therefore each n∈¥  the 

open ball 1;B x
n

 
 
 

 contain infinite number of point of M. 

   We choose nx M∈  from each 1;B x
n

 
 
 

 

   Then we obtain a sequence ( )nx  of points of M and since  1 0
n

→   as  n → ∞ . 

   Then  nx x→   as  n → ∞ . 
   Conversely, suppose  ( )nx   such that  nx x→ . 
   We prove  x M∈  
   If x M∈   then  x M∈ .   M M M ′= ∪∵  
   If x M∉ , then every neighbourhood of x contain infinite number of terms of ( )nx . 
   Then x is a limit point of M    i.e.  x M ′∈  
   Hence  x M M M ′∈ = ∪ . 
   (ii) If ( )nx  is in M and nx x→ , then  x M∈   then by hypothesis  M M= , then M is 
closed. 

v Complete Space  
A metric space ( , )X d  is called complete if every Cauchy sequence in X converges 

to a point of  X. 
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v Subspace 
Let ( , )X d  be a metric space and Y X⊂  then Y is called subspace if Y is itself a 

metric space under the metric  d. 

v Theorem 
A subspace of a complete metric space ( , )X d  is complete if and only if Y is closed 

in X. 
Proof. 

Assume that Y  is complete we prove Y is closed.  
   Let x Y∈  then there is a sequence ( )nx  in Y  such that nx x→ . 
  Since convergent sequence is a Cauchy and Y is complete then nx x Y→ ∈ . 
   Since x was arbitrary point of Y     Y Y⇒ ⊂  
    
   Therefore Y Y=         Y Y⊂∵  
   Consequently Y is closed. 
   Conversely, suppose Y is closed and ( )nx  is a Cauchy sequence. Then ( )nx  is Cauchy in 
X  and since X  is complete so  nx x X→ ∈ .  
   Also  x Y∈    and  Y X⊂ . 
   Since Y is closed   i.e.  Y Y=   therefore  x Y∈ . 
   Hence Y is complete.  8 

v Nested Sequence: 
A sequence sets 1 2 3, , ,...A A A  is called nested if 1 2 3 ...A A A⊃ ⊃ ⊃  

v Theorem (Cantor’s Intersection Theorem) 
A metric space ( , )X d  is complete if and only if every nested sequence of non-

empty closed subset of X, whose diameter tends to zero, has a non-empty intersection. 
Proof. 

Suppose ( , )X d  is complete and let  1 2 3 ...A A A⊃ ⊃ ⊃  be a nested sequence of 
closed subsets of  X. 
   Since iA  is non-empty we choose a point na  from each  nA . And then we will prove 

1 2 3( , , ,...)a a a   is Cauchy in X. 
   Let  0ε >   be given, since  lim ( ) 0nn

d A
→∞

=   then there is 0n ∈¥  such that  ( )0
0nd A <  

   Then for  0,m n n> ,   ( , )m nd a a ε< . 
   This shows that ( )na  is Cauchy in X. 
   Since X is complete so  na p X→ ∈ (say) 
   We prove  n

n

p A∈∩ ,  

   Suppose the contrary that  n
n

p A∉∩   then ∃  a  k ∈¥  such that  kp A∉ . 

   Since kA  is closed, ( , ) 0kd p A δ= > . 
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   Consider the open ball ;
2

B p δ 
 
 

  then kA  and  ;
2

B p δ 
 
 

 are disjoint 

Now 1 2, , ,...k k ka a a+ +  all belong to kA  then all these points do not belong to ;
2

B p δ 
 
 

 

   This is a contradiction as p is the limit point of  ( )na . 
   Hence  n

n

p A∈∩ . 

   Conversely, assume that every nested sequence of closed subset of X has a non-empty 
intersection. Let ( )nx  be Cauchy in X, where 1 2 3( ) ( , , ,...)nx x x x=  
   Consider the sets 

{ }1 1 2 3, , ,...A x x x=  
{ }2 2 3 4, , ,...A x x x=  

  ………………… 
  ………………… 
  ………………… 

{ }:k nA x n k= ≥  
   Then we have 1 2 3 ...A A A⊃ ⊃ ⊃  
   We prove lim ( ) 0nn

d A
→∞

=  

   Since ( )nx  is Cauchy, therefore  ∃ 0n ∈¥  such that 
    0,m n n∀ > ,  ( , )m nd x x ε< ,    i.e.    lim ( ) 0nn

d A
→∞

= . 

   
    Now ( ) ( )n nd A d A=   then  lim ( ) lim ( ) 0n nn n

d A d A
→∞ →∞

= =  

   Also  1 2 3 ...A A A⊃ ⊃ ⊃  
   Then by hypothesis  n

n

A ϕ≠∩ . Let n
n

p A∈∩  

   We prove nx p X→ ∈  
   Since lim ( ) 0nn

d A
→∞

=  therefore  ∃  0k ∈¥  such that  ( )0kd A ε<  

   Then for  0n k> ,  ,n nx p A∈     ( , )nd x p ε⇒ <   0n k∀ >  
   This proves that  nx p X→ ∈ . 
   The proof is complete. 

v Complete Space (Examples) 
(i) The discrete space is complete. 

   Since in discrete space a Cauchy sequence becomes constant after finite terms 
   i.e. ( )nx  is Cauchy in discrete space if it is of the form  

1 2 3( , , ,..., , , ,...)nx x x x b b b=  
 
    (ii) The set { }0, 1, 2,...= ± ±¢  of integers with usual metric is complete. 
 

(iii) The set of rational numbers with usual metric is not complete. 
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   (1.1,1.41,1.412,...)∵  is a Cauchy sequence of rational numbers but its limit is 2 , 
which is not rational. 
 

(iv) The space of irrational number with usual metric is not complete. 
   We take ( ) ( ) ( ) ( )1 1 1 1 1 1

2 2 3 31,1 , , , , ,..., ,n n− − − −  
   We choose one irrational number from each interval and these irrational tends to zero  as 
we goes toward infinity, as zero is a rational so space of irrational is not complete. 

v Theorem 
The real line is complete. 

Proof. 
Let ( )nx  be any Cauchy sequence of real numbers. 

   We first prove that ( )nx  is bounded. 
  Let 1 0ε = >   then  0n∃ ∈¥   such that  0,m n n∀ ≥ ,  ( , ) 1m n m nd x x x x= − <  
In particular for 0n n≥  we have 

0
1n nx x− ≤    

0 0
1 1n n nx x x⇒ − ≤ ≤ +  

   Let { }01 2max , ,..., 1nx x xα = +   and  { }01 2min , ,..., 1nx x xβ = −  
   then  nx nβ α≤ ≤ ∀ . 
   this shows that ( )nx  is bounded with β   as lower bound and α   as upper bound. 
   Secondly we prove ( )nx  has convergent subsequence ( )

inx . 
   If the range of the sequence is { } { }1 2 3, , ,...nx x x x=  is finite, then one of the term is the 
sequence say  b  will repeat infinitely  i.e.   b, b ,b ,……….  
   Then ( , , ,...)b b b  is a convergent subsequence which converges to  b. 
   If the range is infinite then by the Bolzano Weirestrass theorem, the bounded infinite set 
{ }nx  has a limit point, say b. 
   Then each of the open interval 1 ( 1, 1)S b b= − + , ( )2

1 1
2 2,S b b= − +  , 

( )2
1 1

3 3,S b b= − + , … has an infinite numbers of points of the set { }nx .  
  i.e.  there are infinite numbers of terms of the sequence ( )nx  in every open interval nS . 
  We choose a point 

1i
x  from 1S , then we choose a point 

2i
x  from 2S  such that 1 2i i<  

 i.e. the terms 
2i

x  comes after 
1i

x  in the original sequence ( )nx . Then we choose a term 
3i

x  
such that  2 3i i< , continuing in this manner we obtain a subsequence 

( ) ( )1 2 3
, , ,

ni i i ix x x x= … . 
   It is always possible to choose a term because every interval contain an infinite numbers 
of terms of the sequence ( )nx . 
   Since 1nb b− →  and 1nb b+ →   as n → ∞ . Hence we have convergent subsequence 

( )ni
x  whose limit is  b. 

   Lastly we prove that  nx b→ ∈¡ . 
   Since ( )nx  is a Cauchy therefore for any  0ε >  there is  0n ∈¥  such that 
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0,m n n∀ >     
2m nx x ε

− <  

   Also since 
ni

x b→  there is a natural number mi  such that 0mi n>  
   Then 0, , mm n i n∀ >    

( ),
m mn n n i id x b x b x x x b= − = − + −  

                        
2 2m mn i ix x x b ε ε ε≤ − + − < + =  

   Hence  nx b→ ∈¡   and the proof is complete. 

v Theorem 

The Euclidean space n¡  is complete. 
Proof. 

Let ( )mx  be any Cauchy sequence in  n¡ . 
   Then for any 0ε > , there is 0n ∈¥  such that  0,m r n∀ >  

1
2 2( ) ( )

( , ) ..............( )
m r

m r j jd x x iξ ξ ε
  = − <     
∑  

   where 
( ) ( ) ( ) ( ) ( )

1 2 3, , , ,
m m m m m

m j nx ξ ξ ξ ξ ξ   = =   
   

…    and 
( ) ( ) ( ) ( ) ( )

1 2 3, , , ,
r r r r r

r j nx ξ ξ ξ ξ ξ   = =   
   

…  

   Squaring both sided of (i) we obtain 
2( ) ( )

2
m r

j jξ ξ ε − < 
 

∑  

       
( ) ( )

1,2,3, ,
m r

j j j nξ ξ ε⇒ − < ∀ = …  

   This implies  
( ) (1) (2) (3)

, , ,
m

j j j jξ ξ ξ ξ   =   
   

…  is a Cauchy sequence of real numbers for every 

1,2,3, ,j n= … . 

   Since ¡  is complete therefore 
( )m

j jξ ξ→ ∈¡  (say)  
   Using these n limits we define  

( ) ( )1 2 3, , , ,j nx ξ ξ ξ ξ ξ= = …   then clearly nx∈¡ . 
   We prove mx x→  
   In (i)   as  r → ∞ ,  ( ) 0,md x x m nε< ∀ >  which show that  n

mx x→ ∈¡  
  And the proof is complete. 
 
Note: In the above theorem if we take n = 2 then we see complex plane 2=£ ¡  is 
complete. Moreover the unitary space n£   is complete.  

v Theorem  

The space l∞  is complete. 
Proof. 
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Let ( )mx  be any Cauchy sequence in l∞ .  
   Then for any 0ε >  there is 0n > ¥  such that 0,m n n∀ >  

( )
( , ) sup .......... ( )

m n

m n j j
j

d x x iξ ξ ε= − <  

   Where  
( ) ( ) ( ) ( )

1 2 3, , ,
m m m m

m jx ξ ξ ξ ξ   = =   
   

…    and  
( ) ( ) ( ) ( )

1 2 3, , ,
n n n n

n jx ξ ξ ξ ξ   = =   
   

…  

   Then from (i) 
( ) ( )

..........( )
m n

j j iiξ ξ ε− <    1,2,3,j∀ = …  and   0,m n n∀ >  

   It means 
( ) (1) (2) (3)

, , ,
m

j j j jξ ξ ξ ξ   =   
   

…  is a Cauchy sequence of real or complex numbers for 

every  1,2,3,j = …  

   And since ¡  and £  are complete therefore 
( )m

j jξ ξ→ ∈¡  or £  (say). 

  Using these infinitely many limits we define ( ) ( )1 2 3, , ,jx ξ ξ ξ ξ= = … . 

   We prove x l∞∈  and mx x→ . 

   In (i) as n → ∞  we obtain  
( )

..........( )
m

j j iiiξ ξ ε− <    0m n∀ >  

   We prove x is bounded.  
   By using the triangular inequality 

( ) ( ) ( ) ( )m m m m

j j j j j j j mkξ ξ ξ ξ ξ ξ ξ ε= − + ≤ − + < +  

   Where  
( )m

j mkξ <   as mx  is bounded. 

   Hence ( )j xξ =  is bounded. 

   This shows that nx x l∞→ ∈ .  
   And the proof is complete. 
 
v Theorem 

The space C of all convergent sequence of complex number is complete. 
   Note:  It is subspace of l∞ . 
Proof. 

First we prove C is closed in l∞ . 
   Let ( )jx ξ= ∈C ,  then there is a sequence ( )nx   in C such that nx x→ , 

 where 
( ) ( ) ( ) ( )

1 2 3, , ,
n n n n

n jx ξ ξ ξ ξ   = =   
   

… . 

   Then for any 0ε > , there is 0n ∈¥  such that 0n n∀ ≥  

( )
( )

, sup
3

n

n j j
j

d x x εξ ξ= − <  
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   Then in particular for 0n n=  and 1,2,3,...........j∀ =  
0( )

3

n

j j
εξ ξ− <  

   Now 
0nx ∈C  then 

0nx  is a convergent sequence therefore  1n∃ ∈¥    
such that 1,j k n∀ >  

 
0 0( ) ( )

3

n n

j k
εξ ξ− <  

   Then by using triangular inequality we have 
0 0 0 0( ) ( ) ( ) ( )n n n n

j k j j j k k kξ ξ ξ ξ ξ ξ ξ ξ− = − + − + −  

    
0 0 0 0( ) ( ) ( ) ( )n n n n

j j j k k kξ ξ ξ ξ ξ ξ≤ − + − + −  

    
3 3 3
ε ε ε ε< + + =   1,j k n∀ >  

   Hence x is Cauchy in l∞  and x is convergent 
   Therefore x∈C  and   ⇒   =C C . 
   i.e.  C is closed in l∞  and l∞  is complete. 
   Since we know that a subspace of complete space is complete if and only if it is closed 
in the space. 
   Consequently C is complete. 
 
v Theorem 

The space pl , 1p ≥  is a real number, is complete. 
Proof. 

Let ( )nx  be any Cauchy sequence in  pl . 
   Then for every 0ε > , there is 0n ∈¥  such that  0,m n n∀ >  

( )
1

( ) ( )

1

,
p pm n

m n j j
j

d x x ξ ξ ε
∞

=

 
= − <  

 
∑  ………….. (i) 

   where 
( ) ( ) ( ) ( )

1 2 3, , ,
m m m m

m jx ξ ξ ξ ξ   = =   
   

…   

   Then from (i)  
( ) ( )m n

j jξ ξ ε− <  ……… (ii)   0,m n n∀ >  and for any fixed  j. 

   This shows that 
( )m

jξ 
 
 

 is a Cauchy sequence of numbers for the fixed j. 

   Since ¡  and £  are complete therefore  
( )m

j jξ ξ→ ∈¡  or  £  (say)  as m → ∞ . 

   Using these infinite many limits we define ( ) ( )1 2 3, , ,jx ξ ξ ξ ξ= = … . 

   We prove  px l∈   and  mx x→   as m → ∞ . 
   From (i) we have  
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1
( ) ( )

1

p pk m n

j j
j

ξ ξ ε
=

 
− <  

 
∑  

i.e.  
( ) ( )

1

pk m n
p

j j
j

ξ ξ ε
=

− <∑  …………. (iii) 

   Taking as n → ∞ , we get 

 
( )

1

pk m
p

j j
j

ξ ξ ε
=

− <∑  ,  k = 1, 2, 3, ……. 

   Now takingk → ∞ , we obtain 
( ) pm

p
j jξ ξ ε− <∑  ………… (iv)       1,2,3,..........j∀ =  

   This shows that ( ) p
mx x l− ∈  

   Now pl  is a vector space and p
mx l∈ , p

mx x l− ∈   then  ( ) p
m mx x x x l+ − = ∈ . 

   Also from (iv) we see that  
 ( )( , ) p p

md x x ε<         0m n∀ >  
  i.e.     ( , )md x x ε<         0m n∀ >  

   This shows that p
mx x l→ ∈   as  x → ∞ . 

   And the proof is complete. 

v Theorem 
The space C[a, b] is complete. 

Proof. 
Let ( )nx  be a Cauchy sequence in C[a, b]. 

   Therefore for every 0ε > , there is 0n ∈¥  such that  0,m n n∀ >  
    ( , ) max ( ) ( )m n m nt J

d x x x t x t ε
∈

= − <  ………… (i)  where [ ],J a b= . 

   Then for any fix 0t t J= ∈  

0 0( ) ( )m nx t x t ε− <  0,m n n∀ >  
   It means  ( )1 0 2 0 3 0( ), ( ), ( ),x t x t x t …  is a Cauchy sequence of real numbers. And since ¡  is 
complete therefore  0 0( ) ( )mx t x t→ ∈¡  (say)  as  m → ∞ . 
   In this way for every  t J∈ , we can associate a unique real number ( )x t  with ( )nx t . 
   This defines a function ( )x t  on  J. 
   We prove ( )x t ∈C[a, b]  and ( ) ( )mx t x t→  as m → ∞ . 
   From (i) we see that  

( ) ( )m nx t x t ε− <     for every t J∈   and  0,m n n∀ > . 
   Letting  n → ∞ ,  we obtain for all t J∈  

( ) ( )mx t x t ε− <   0m n∀ < . 
   Since the convergence is uniform and the nx ’s are continuous, the limit function ( )x t  is 
continuous, as it is well known from the calculus. 
   Then  ( )x t  is continuous. 
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   Hence  ( ) [ , ]x t a b∈C ,  also  ( ) ( )mx t x t ε− <    as  m → ∞  
   Therefore    ( ) ( ) [ , ]mx t x t a b→ ∈C . 
   The proof is complete. 

v Theorem 
If ( )1,X d  and ( )2,Y d  are complete then X Y×  is complete. 

   Note: The metric d (say) on X Y×  is defined as ( ) ( )( )1 1 2 2 1 2( , ) max , , ,d x y d dξ ξ η η=     
where ( )1 1,x ξ η= , ( )2 2,y ξ η=  and 1 2, Xξ ξ ∈ , 1 2, Yη η ∈ . 
Proof. 
   Let ( )nx  be a Cauchy sequence in  X Y× . 
   Then for any 0ε > , there is 0n ∈¥  such that  0,m n n∀ >  

( )
( ) ( ) ( ) ( )

1 2, max , , ,
m n m n

m nd x x d dξ ξ η η ε    = <        
 

        ⇒  
( ) ( )

1 ,
m n

d ξ ξ ε  < 
 

 and 
( ) ( )

2 ,
m n

d η η ε  < 
 

 0,m n n∀ >  

   This implies 
( ) (1) (2) (3)

, , ,
m
ξ ξ ξ ξ   =   

   
…  is a Cauchy sequence in X. 

and 
( ) (1) (2) (3)

, , ,
m
η η η η   =   

   
…  is a Cauchy sequence in Y. 

   Since X and Y are complete therefore 
( )m

Xξ ξ→ ∈ (say)  and  
( )m

Yη η→ ∈ (say)  
   Let ( ),x ξ µ=   then  x X Y∈ × . 

  Also  ( )
( ) ( )

1 2, max , , , 0
m m

md x x d dξ ξ η η    = →        
   as   n → ∞ . 

   Hence mx x X Y→ ∈ × . 
   This proves completeness of X Y× . 

v Theorem 

( ) ( ): , ,f X d Y d ′→   is continuous at  0x X∈  if and only if  nx x→   implies 

0( ) ( )nf x f x→ . 
   Proof. 

Assume that  f  is continuous at 0x X∈  then for given 0ε >  there is a 0δ >   
such that   

0( , )d x x δ<    ( )0( ), ( )d f x f x ε′⇒ < . 
   Let 0nx x→ ,  then for our  0δ >   there is  0n ∈¥   such that  

( )0,nd x x δ< ,    0n n∀ >  
   Then by hypothesis  ( )0( ), ( )nd f x f x ε′ < ,     0n n∀ >   

i.e.  ( ) ( )0nf x f x→  
   Conversely, assume that 0nx x→    ⇒  0( ) ( )nf x f x→  
   We prove  :f X Y→   is continuous at  0x X∈ , suppose this is false 
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   Then there is an 0ε >  such that for every 0δ >  there is an x X∈  such that 
( )0,d x x δ<    but    ( )0( ), ( )d f x f x ε′ ≥  

   In particular when  1
n

δ = ,  there is  nx X∈   such that  

( )0,nd x x δ<    but    ( )0( ), ( )nd f x f x ε≥ . 
   This shows that 0nx x→   but  0( ) ( )nf x f x→    as n → ∞ . 
   This is a contradiction. 
   Consequently  :f X Y→   is continuous at  0x X∈ . 
   The proof is complete. 

v Rare (or nowhere dense in X ) 

Let X be a metric, a subset  M X⊂  is called rare (or nowhere dense in X ) if M  
has no interior point  i.e.  ( )int M ϕ= . 

v Meager ( or of the first category) 
Let X be a metric, a subset M X⊂  is called meager (or of the first category) if M 

can be expressed as a union of countably many rare subset of X. 

v Non-meager ( or of the second category) 
Let X be a metric, a subset M X⊂  is called non-meager (or of the second category) 

if it is not meager (of the first category) in X. 

v Example: 

   Consider the set ¤  of rationales as a subset of a real line ¡ . Let  q∈¤ , then { } { }q q=  
because { } ( ) ( ), ,q q q− = −∞ ∪ ∞¡  is open. Clearly { }q  contain no open ball. Hence ¤  is 
nowhere dense in ¡  as well as in ¤ . Also since ¤  is countable, it is the countable union 
of subsets { }q , q∈¤ . Thus ¤  is of the first category. 

v Bair’s Category Theorem 
If X ϕ≠  is complete then it is non-meager in itself. 

OR 
A complete metric space is of second category. 

Proof. 

   Suppose that X is meager in itself then 
1

k
k

X M
∞

=
= ∪ , where each kM  is rare in X. 

   Since 1M  is rare then int( )M M ϕ= =o  
   i.e.  1M  has non-empty open subset 
   But  X  has a non-empty open subset ( i.e. X itself )  then 1M X≠ . 

   This implies 1 1

c
M X M= −   is a non-empty and open. 

   We choose a point  1 1

c
p M∈   and an open ball  ( )1 1 1 1;

c
B B p Mε= ⊂ , where 1

1
2ε < . 
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   Now 2

c
M  is non-empty and open  

   Then ∃ a point 2 2

c
p M∈  and open ball ( )2 2 2 2 1 1

1; ;
2

c
B B p M B pε ε = ∈ ∩  

 
 

   ( 2M  has no non-empty open subset then 2 1 1
1;
2

c
M B p ε ∩  

 
 is non-empty and open.) 

   So we have chosen a point 2p  from the set  2 1 1
1;
2

c
M B p ε ∩  

 
 and an open ball 

( )2 2,B p ε  around it, where  1
2 1

1 1 1 2
2 2 2

ε ε −< < ⋅ < . 

   Proceeding in this way we obtain a sequence of balls kB  such that 

1
1;
2k k k kB B p Bε+

 ⊂ ⊂ 
 

   where    ( );k k kB B p ε=    1,2,3,.......k∀ =  

   Then the sequence of centres kp  is such that for m n>  

( ) 1

1 1, 0
2 2m n m md p p ε +< < →    as   m → ∞ . 

   Hence the sequence ( )kp  is Cauchy. 
   Since X is complete therefore  kp p X→ ∈ (say)  as  k → ∞ . 
   Also  

( ) ( ) ( ), , ,m m n nd p p d p p d p p≤ +  

     ( )1 ,
2 m nd p pε< +  

     ( ), 0m n md p pε ε< + → +    as   n → ∞ . 

mp B⇒ ∈    m∀      i.e.  
c

mp M∈   m∀   ( )2 1 1
1
2;

c
m m mB M B p ε− −= ∩∵  

c

m mB M⇒ ⊂     m mB M ϕ⇒ ∩ =  
mp M⇒ ∉  m∀   p X⇒ ∉  

   This is a contradiction. 
   Bair’s Theorem is proof. 
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