Metric Spaces

Merging man and maths
Available online @ http://www.mathcity.org/msc, Version: 2.0

Metric Spaces

Let X be a non-empty set and \mathbb{R} denotes the set of real numbers. A function $d: X \times X \rightarrow \mathbb{R}$ is said to be metric if it satisfies the following axioms $\forall x, y, z \in X$.
$\left[\mathrm{M}_{1}\right] d(x, y) \geq 0$ i.e. d is finite and non-negative real valued function.
$\left[\mathrm{M}_{2}\right] d(x, y)=0$ if and only if $x=y$.
$\left[\mathrm{M}_{3}\right] d(x, y)=d(y, x) \quad$ (Symmetric property)
$\left[\mathrm{M}_{4}\right] d(x, z) \leq d(x, y)+d(y, z) \quad$ (Triangular inequality)
The pair (X, d) is then called metric space.
d is also called distance function and $d(x, y)$ is the distance from x to y.
NOTE: If (X, d) be a metric space then X is called underlying set.

Examples:

i) Let X be a non-empty set. Then $d: X \times X \rightarrow \mathbb{R}$ defined by

$$
d(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

is a metric on X and is called trivial metric or discrete metric.
ii) Let \mathbb{R} be the set of real number. Then $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
d(x, y)=|x-y| \text { is a metric on } \mathbb{R}
$$

The space (\mathbb{R}, d) is called real line and d is called usual metric on \mathbb{R}.
iii) Let X be a non-empty set and $d: X \times X \rightarrow \mathbb{R}$ be a metric on X. Then $d^{\prime}: X \times X \rightarrow \mathbb{R}$ defined by $d^{\prime}(x, y)=\min (1, d(x, y))$ is also a metric on X.

Proof:

$\left[\mathrm{M}_{1}\right]$ Since d is a metric so $d(x, y) \geq 0$
as $d^{\prime}(x, y)$ is either 1 or $d(x, y)$ so $d^{\prime}(x, y) \geq 0$.
[M_{2}] If $x=y$ then $d(x, y)=0$ and then $d^{\prime}(x, y)$ which is $\min (1, d(x, y))$ will be zero.
Conversely, suppose that $d^{\prime}(x, y)=0 \quad \Rightarrow \min (1, d(x, y))=0$

$$
\Rightarrow d(x, y)=0 \quad \Rightarrow x=y \quad \text { as } d \text { is metric. }
$$

$\left[\mathrm{M}_{3}\right] \quad d^{\prime}(x, y)=\min (1, d(x, y))=\min (1, d(y, x))=d^{\prime}(y, x) \quad \because d(x, y)=d(y, x)$
$\left[\mathrm{M}_{4}\right]$ We have $d^{\prime}(x, z)=\min (1, d(x, z))$
$\Rightarrow d^{\prime}(x, z) \leq 1$ or $d^{\prime}(x, z) \leq d(x, z)$
We wish to prove $d^{\prime}(x, z) \leq d^{\prime}(x, y)+d^{\prime}(y, z)$
now if $d(x, z) \geq 1, d(x, y) \geq 1$ and $d(y, z) \geq 1$
then $d^{\prime}(x, z)=1, d^{\prime}(x, y)=1$ and $d^{\prime}(y, z)=1$
and $d^{\prime}(x, y)+d^{\prime}(y, z)=1+1=2$
therefore $\Rightarrow d^{\prime}(x, z) \leq d^{\prime}(x, y)+d^{\prime}(y, z)$
Now if $d(x, z)<1, d(x, y)<1$ and $d(y, z)<1$
Then $d^{\prime}(x, z)=d(x, z), d^{\prime}(x, y)=d(x, y)$ and $d^{\prime}(y, z)=d(y, z)$
As d is metric therefore $d(x, z) \leq d(x, y)+d(y, z)$

$$
\Rightarrow d^{\prime}(x, z) \leq d^{\prime}(x, y)+d^{\prime}(y, z)
$$

Q.E.D
iv) Let $d: X \times X \rightarrow \mathbb{R}$ be a metric space. Then $d^{\prime}: X \times X \rightarrow \mathbb{R}$ defined by

$$
d^{\prime}(x, y)=\frac{d(x, y)}{1+d(x, y)} \text { is also a metric. }
$$

Proof.

$\left[\mathrm{M}_{1}\right]$ Since $d(x, y) \geq 0$ therefore $\frac{d(x, y)}{1+d(x, y)}=d^{\prime}(x, y) \geq 0$
$\left[\mathrm{M}_{2}\right]$ Let $d^{\prime}(x, y)=0 \Rightarrow \frac{d(x, y)}{1+d(x, y)}=0 \Rightarrow d(x, y)=0 \Rightarrow x=y$
Now conversely suppose $x=y$ then $d(x, y)=0$.
Then $d^{\prime}(x, y)=\frac{d(x, y)}{1+d(x, y)}=\frac{0}{1+0}=0$
$\left[\mathrm{M}_{3}\right] \quad d^{\prime}(x, y)=\frac{d(x, y)}{1+d(x, y)}=\frac{d(y, x)}{1+d(y, x)}=d^{\prime}(y, x)$
$\left[\mathrm{M}_{4}\right]$ Since d is metric therefore $d(x, z) \leq d(x, y)+d(y, z)$
Now by using inequality $a<b \Rightarrow \frac{a}{1+a}<\frac{b}{1+b}$.
We get $\frac{d(x, z)}{1+d(x, z)} \leq \frac{d(x, y)+d(y, z)}{1+d(x, y)+d(y, z)}$

$$
\Rightarrow d^{\prime}(x, z) \leq \frac{d(x, y)}{1+d(x, y)+d(y, z)}+\frac{d(y, z)}{1+d(x, y)+d(y, z)}
$$

$$
\Rightarrow d^{\prime}(x, z) \leq \frac{d(x, y)}{1+d(x, y)}+\frac{d(y, z)}{1+d(y, z)}
$$

$$
\Rightarrow d^{\prime}(x, z) \leq d^{\prime}(x, y)+d^{\prime}(y, z)
$$

Q.E.D
$\mathbf{v})$ The space $\mathbf{C}[a, b]$ is a metric space and the metric d is defined by

$$
d(x, y)=\max _{t \in J}|x(t)-y(t)|
$$

where $J=[a, b]$ and x, y are continuous real valued function defined on $[a, b]$.

Proof.

$\left[\mathrm{M}_{1}\right]$ Since $|x(t)-y(t)| \geq 0$ therefore $d(x, y) \geq 0$.
$\left[\mathrm{M}_{2}\right]$ Let $d(x, y)=0 \Rightarrow|x(t)-y(t)|=0 \Rightarrow x(t)=y(t)$
Conversely suppose $x=y$
Then $d(x, y)=\max _{t \in J}|x(t)-y(t)|=\max _{t \in J}|x(t)-x(t)|=0$

$$
\begin{aligned}
{\left[\mathrm{M}_{3}\right] d(x, y) } & =\max _{t \in J}|x(t)-y(t)|=\max _{t \in J}|y(t)-x(t)|=d(y, x) \\
{\left[\mathrm{M}_{4}\right] d(x, z) } & =\max _{t \in J}|x(t)-z(t)|=\max _{t \in J}|x(t)-y(t)+y(t)-z(t)| \\
& \leq \max _{t \in J}|x(t)-y(t)|+\max _{t \in J}|y(t)-z(t)| \\
& =d(x, y)+d(y, z)
\end{aligned}
$$

> Q.E.D
vi) $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is a metric, where \mathbb{R} is the set of real number and d defined by

$$
d(x, y)=\sqrt{|x-y|}
$$

vii) Let $x=\left(x_{1}, y_{1}\right), y=\left(x_{2}, y_{2}\right)$ we define

$$
d(x, y)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \text { is a metric on } \mathbb{R}
$$

and called Euclidean metric on \mathbb{R}^{2} or usual metric on \mathbb{R}^{2}.
viii) $d: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is not a metric, where \mathbb{R} is the set of real number and d defined by

$$
d(x, y)=(x-y)^{2}
$$

Proof.

$\left[\mathrm{M}_{1}\right]$ Square is always positive therefore $(x-y)^{2}=d(x, y) \geq 0$
$\left[\mathrm{M}_{2}\right]$ Let $d(x, y)=0 \Rightarrow(x-y)^{2}=0 \Rightarrow x-y=0 \Rightarrow x=y$
Conversely suppose that $x=y$
then $d(x, y)=(x-y)^{2}=(x-x)^{2}=0$
$\left[\mathrm{M}_{3}\right] d(x, y)=(x-y)^{2}=(y-x)^{2}=d(y, x)$
$\left[\mathrm{M}_{4}\right]$ Suppose that triangular inequality holds in d. then for any $x, y, z \in \mathbb{R}$

$$
\begin{gathered}
d(x, z) \leq d(x-y)+d(y, z) \\
\Rightarrow \quad(x-z)^{2} \leq(x-y)^{2}+(y-z)^{2}
\end{gathered}
$$

Since $x, y, z \in \mathbb{R}$ therefore consider $x=0, y=1$ and $z=2$.

$$
\begin{aligned}
& \Rightarrow \quad(0-2)^{2} \leq(0-1)^{2}+(1-2)^{2} \\
& \quad \Rightarrow \quad 4 \leq 1+1 \quad \Rightarrow 4 \leq 2
\end{aligned}
$$

which is not true so triangular inequality does not hold and d is not metric.
ix) Let $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$. We define

$$
d(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|
$$

is a metric on \mathbb{R}^{2}, called Taxi-Cab metric on \mathbb{R}^{2}.
$\mathbf{x)}$ Let \mathbb{R}^{n} be the set of all real n-tuples. For

$$
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { and } y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \text { in } \mathbb{R}^{n}
$$

we define $d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}}$
then d is metric on \mathbb{R}^{n}, called Euclidean metric on \mathbb{R}^{n} or usual metric on \mathbb{R}^{n}.
xi) The space l^{∞}. As points we take bounded sequence
$x=\left(x_{1}, x_{2}, \ldots\right)$, also written as $x=\left(x_{i}\right)$, of complex numbers such that

$$
\left|x_{i}\right| \leq C_{x} \quad \forall i=1,2,3, \ldots
$$

where C_{x} is fixed real number. The metric is defined as

$$
d(x, y)=\sup _{i \in \mathbb{N}}\left|x_{i}-y_{i}\right| \quad \text { where } y=\left(y_{i}\right)
$$

xii) The space $l^{p}, p \geq 1$ is a real number, we take as member of l^{p}, all sequence $x=\left(\xi_{j}\right)$ of complex number such that $\sum_{j=1}^{\infty}\left|\xi_{j}\right|^{p}<\infty$.
The metric is defined by $d(x, y)=\left(\sum_{j=1}^{\infty}\left|\xi_{j}-\eta_{j}\right|^{p}\right)^{\frac{1}{p}}$

$$
\text { Where } y=\left(\eta_{j}\right) \text { such that } \sum_{j=1}^{\infty}\left|\eta_{j}\right|^{p}<\infty
$$

Proof.

$\left[\mathrm{M}_{1}\right]$ Since $\left|\xi_{j}-\eta_{j}\right| \geq 0$ therefore $\left(\sum_{j=1}^{\infty}\left|\xi_{j}-\eta_{j}\right|^{p}\right)^{\frac{1}{p}}=d(x, y) \geq 0$.
$\left[\mathrm{M}_{2}\right]$ If $x=y$ then

$$
d(x, y)=\left(\sum_{j=1}^{\infty}\left|\xi_{j}-\eta_{j}\right|^{p}\right)^{\frac{1}{p}}=\left(\sum_{j=1}^{\infty}\left|\xi_{j}-\xi_{j}\right|^{p}\right)^{\frac{1}{p}}=\left(\sum_{j=1}^{\infty}|0|^{p}\right)^{\frac{1}{p}}=0
$$

Conversely, if $d(x, y)=0$

$$
\Rightarrow\left(\sum_{j=1}^{\infty}\left|\xi_{j}-\eta_{j}\right|^{p}\right)^{\frac{1}{p}}=0 \Rightarrow\left|\xi_{j}-\eta_{j}\right|=0 \Rightarrow\left(\xi_{j}\right)=\left(\eta_{j}\right) \Rightarrow x=y
$$

$\left[\mathrm{M}_{3}\right] d(x, y)=\left(\sum_{j=1}^{\infty}\left|\xi_{j}-\eta_{j}\right|^{p}\right)^{\frac{1}{p}}=\left(\sum_{j=1}^{\infty}\left|\eta_{j}-\xi_{j}\right|^{p}\right)^{\frac{1}{p}}=d(y, x)$
$\left[\mathrm{M}_{4}\right]$ Let $z=\left(\zeta_{j}\right)$, such that $\sum_{j=1}^{\infty}\left|\zeta_{j}\right|^{p}<\infty$

$$
\text { then } \begin{aligned}
d(x, z) & =\left(\sum_{j=1}^{\infty}\left|\xi_{j}-\zeta_{j}\right|^{p}\right)^{\frac{1}{p}} \\
& =\left(\sum_{j=1}^{\infty}\left|\xi_{j}-\eta_{j}+\eta_{j}-\zeta_{j}\right|^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

Using *Minkowski's Inequality

$$
\begin{aligned}
& \leq\left(\sum_{j=1}^{\infty}\left|\xi_{j}-\eta_{j}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{j=1}^{\infty}\left|\eta_{j}-\zeta_{j}\right|^{p}\right)^{\frac{1}{p}} \\
& =d(x, y)+d(y, z)
\end{aligned}
$$

Q.E.D

Pseudometric

Let X be a non-empty set. A function $d: X \times X \rightarrow \mathbb{R}$ is called pseudometric if and only if
i) $d(x, x)=0$ for all $x \in X$.
ii) $d(x, y)=d(y, x)$ for all $x, y \in X$.
iii) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$.

OR
A pseudometric satisfies all axioms of a metric except $d(x, y)=0$ may not imply $x=y$ but $x=y$ implies $d(x, y)=0$.

Example

Let $x, y \in \mathbb{R}^{2}$ and $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$
Then $d(x, y)=\left|x_{1}-y_{1}\right|$ is a pseudometric on \mathbb{R}^{2}.
Let $x=(2,3)$ and $y=(2,5)$
Then $d(x, y)=|2-2|=0$ but $x \neq y$
NOTE: Every metric is a pseudometric, but pseudometric is not metric.

* Minkowski’s Inequality

If $\xi_{i}=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ and $\eta_{i}=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)$ are in \mathbb{R}^{n} and $p>1$, then

$$
\left(\sum_{i=1}^{\infty}\left|\xi_{i}+\eta_{i}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{\infty}\left|\eta_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

Distance between sets

Let (X, d) be a metric space and $A, B \subset X$. The distance between A and B denoted by $d(A, B)$ is defined as $d(A, B)=\inf \{d(a, b) \mid a \in A, b \in B\}$

If $A=\{x\}$ is a singleton subset of X, then $d(A, B)$ is written as $d(x, B)$ and is called distance of point x from the set B.

Theorem

Let (X, d) be a metric space. Then for any $x, y \in X$

$$
|d(x, A)-d(y, A)| \leq d(x, y)
$$

Proof.

Let $z \in A$ then $d(x, z) \leq d(x, y)+d(y, z)$

$$
\text { then } d(x, A)=\inf _{z \in A} d(x, z) \leq d(x, y)+\inf _{z \in A} d(y, z)
$$

$$
=d(x, y)+d(y, A)
$$

$$
\begin{equation*}
\Rightarrow d(x, A)-d(y, A) \leq d(x, y) \tag{i}
\end{equation*}
$$

Next

$$
\begin{array}{rlrl}
d(y, A)=\inf _{z \in A} d(y, z) & \leq d(y, x)+\inf _{z \in A} d(x, z) & \\
& =d(y, x)+d(x, A) \\
\Rightarrow-d(x, A)+d(y, A) & \leq d(y, x) \\
\Rightarrow-(d(x, A)-d(y, A)) \leq d(x, y) \cdots \cdots \cdots \cdots \cdots(i i) & & \because d(x, y)=d(y, x)
\end{array}
$$

Combining equation (i) and (ii)

$$
|d(x, A)-d(y, A)| \leq d(x, y) \quad \text { Q.E.D }
$$

Diameter of a set

Let (X, d) be a metric space and $A \subset X$, we define diameter of A denoted by

$$
d(A)=\sup _{a, b \in A} d(a, b)
$$

NOTE: For an empty set φ, following convention are adopted
(i) $d(\varphi)=-\infty$, some authors take $d(\varphi)$ also as 0 .
(ii) $d(p, \varphi)=\infty$ i.e distance of a point p from empty set is ∞.
(iii) $d(A, \varphi)=\infty$, where A is any non-empty set.

Bounded Set

Let (X, d) be a metric space and $A \subset X$, we say A is bounded if diameter of A is finite i.e. $d(A)<\infty$.

Theorem

The union of two bounded set is bounded.

Proof.

Let (X, d) be a metric space and $A, B \subset X$ be bounded. We wish to prove $A \cup B$ is bounded.

Let $x, y \in A \cup B$
If $x, y \in A$ then since A is bounded therefore $d(x, y)<\infty$
and hence $d(A \cup B)=\sup _{x, y \in A \cup B} d(x, y)<\infty$ then $A \cup B$ is bounded.
Similarity if $x, y \in B$ then $A \cup B$ is bounded.
Now if $x \in A$ and $y \in B$ then

$$
d(x, y) \leq d(x, a)+d(a, b)+d(b, y) \quad \text { where } a \in A, b \in B
$$

Since $d(x, a), d(a, b)$ and $d(b, y)$ are finite
Therefore $d(x, y)<\infty$ i.e $A \cup B$ is bounded.

Open Ball

Let (X, d) be a metric space. An open ball in (X, d) is denoted by

$$
B\left(x_{0} ; r\right)=\left\{x \in X \mid d\left(x_{0}, x\right)<r\right\}
$$

x_{0} is called centre of the ball and r is called radius of ball and $r \geq 0$.

Closed Ball

The set $\bar{B}\left(x_{0} ; r\right)=\left\{x \in X \mid d\left(x_{0}, x\right) \leq r\right\}$ is called closed ball in (X, d).

Sphere

The set $S\left(x_{0} ; r\right)=\left\{x \in X \mid d\left(x_{0}, x\right)=r\right\}$ is called sphere in (X, d).

Examples

Consider the set of real numbers with usual metric $d=|x-y| \forall x, y \in \mathbb{R}$ then $B\left(x_{0} ; r\right)=\left\{x \in \mathbb{R} \mid d\left(x_{0}, x\right)<r\right\}$
i.e. $B\left(x_{0} ; r\right)=\left\{x \in \mathbb{R}:\left|x-x_{0}\right|<r\right\}$
i.e. $\quad x_{0}-r<x<x+r=\left(x_{0}-r, x_{0}+r\right)$
i.e. open ball is the real line with usual metric is an open interval.

And $\bar{B}\left(x_{0} ; r\right)=\left\{x \in \mathbb{R}:\left|x-x_{0}\right| \leq r\right\}$
i.e. $x_{0}-r \leq x \leq x_{0}+r=\left[x_{0}-r, x_{0}+r\right]$
i.e. closed ball in a real line is a closed interval.

And $S\left(x_{0} ; r\right)=\left\{x \in \mathbb{R}:\left|x-x_{0}\right|=r\right\}=\left\{x_{0}-r, x_{0}+r\right\}$
i.e. two point $x_{0}-r$ and $x_{0}+r$ only.

Open Set

Let (X, d) be a metric space and set G is called open in X if for every $x \in G$, there exists an open ball $B(x ; r) \subset G$.

* Theorem

An open ball in metric space X is open.

Proof.

Let $B\left(x_{0} ; r\right)$ be an open ball in (X, d).
Let $y \in B\left(x_{0} ; r\right)$ then $d\left(x_{0}, y\right)=r_{1}<r$
Let $r_{2}<r-r_{1}$, then $B\left(y ; r_{2}\right) \subset B\left(x_{0} ; r\right)$
Hence $B\left(x_{0} ; r\right)$ is an open set.

AlTERNATIVE:

Let $B\left(x_{0} ; r\right)$ be an open ball in (X, d).
Let $x \in B\left(x_{0} ; r\right)$ then $d\left(x_{0}, x\right)=r_{1}<r$
Take $r_{2}=r-r_{1}$ and consider the open ball $B\left(x ; r_{2}\right)$
we show that $B\left(x ; r_{2}\right) \subset B(x ; r)$.
For this let $y \in B\left(x ; r_{2}\right)$ then $d(x, y)<r_{2}$
and $d\left(x_{0}, y\right) \leq d\left(x_{0}, x\right)+d(x, y)$

$$
<r_{1}+r_{2}=r
$$

hence $y \in B\left(x_{0} ; r\right)$ so that $B\left(x ; r_{2}\right) \subset B\left(x_{0} ; r\right)$. Thus $B\left(x_{0} ; r\right)$ is an open.
Q.E.D

NOTE: Let (X, d) be a metric space then
i) X and φ are open sets.
ii) Union of any number of open sets is open.
iii) Intersection of a finite number of open sets is open.

Limit point of a set

Let (X, d) be a metric space and $A \subset X$, then $x \in X$ is called a limit point or accumulation point of A if for every open ball $B(x ; r)$ with centre x,

$$
B(x ; r) \cap\{A-\{x\}\} \neq \varphi .
$$

i.e. every open ball contain a point of A other than x.

Closed Set

A subset A of metric space X is closed if it contains every limit point of itself. The set of all limit points of A is called the derived set of A and denoted by A^{\prime}.

Theorem

A subset A of a metric space is closed if and only if its complement A^{c} is open.

Proof.

Suppose A is closed, we prove A^{c} is open.
Let $x \in A^{c}$ then $x \notin A$.
$\Rightarrow x$ is not a limit point of A.
then by definition of a limit point there exists an open ball $B(x ; r)$ such that

$$
B(x ; r) \cap A=\varphi .
$$

This implies $B(x ; r) \subset A^{c}$. Since x is an arbitrary point of A^{c}. So A^{c} is open.
Conversely, assume that A^{c} is an open then we prove A is closed.
i.e. A contain all of its limit points.

Let x be an accumulation point of A. and suppose $x \in A^{c}$.
then there exists an open ball $B(x ; r) \subset A^{c} \quad \Rightarrow B(x ; r) \cap A=\varphi$.
This shows that x is not a limit point of A. this is a contradiction to our assumption. Hence $x \in A$. Accordingly A is closed.

The proof is complete.

Theorem

A closed ball is a closed set.

Proof.

Let $\bar{B}(x ; r)$ be a closed ball. We prove $\bar{B}^{c}(x ; r)=C$ (say) is an open ball.
Let $y \in C$ then $d(x, y)>r$.
Let $r_{1}=d(x, y)$ then $r_{1}>r$. And take $r_{2}=r_{1}-r$
Consider the open ball $B\left(y ; \frac{r_{2}}{2}\right)$ we prove $B\left(y ; \frac{r_{2}}{2}\right) \subset C$.

For this let $z \in B\left(y ; \frac{r_{2}}{2}\right)$ then $d(z, y)<\frac{r_{2}}{2}$
By the triangular inequality

$$
\begin{aligned}
& d(x, y) \leq d(x, z)+d(z, y) \\
\Rightarrow & d(x, y) \leq d(z, x)+d(z, y) \\
\Rightarrow & d(z, x) \geq d(x, y)-d(z, y) \\
\Rightarrow & d(z, x)>r_{1}-\frac{r_{2}}{2}=\frac{2 r_{1}-r_{2}}{2}=\frac{2 r_{1}-r_{1}+r}{2}=\frac{r_{1}+r}{2} \quad \because d(y, z)=d(z, y) \\
\Rightarrow & d(z, x)>\frac{r+r}{2}=r \\
\Rightarrow & z \notin \bar{B}(x ; r) \text { This shows that } z \in C \\
\Rightarrow & B\left(y ; \frac{r_{2}}{2}\right) \subset C
\end{aligned}
$$

Hence C is an open set and consequently $\bar{B}(x ; r)$ is closed.
Q.E.D

* Theorem

Let (X, d) be a metric space and $A \subset X$. If $x \in X$ is a limit point of A. then every open ball $B(x ; r)$ with centre x contain an infinite numbers of point of A.
Proof.
Suppose $B(x ; r)$ contain only a finite number of points of A.
Let $a_{1}, a_{2}, \ldots, a_{n}$ be those points.
and let $d\left(x, a_{i}\right)=r_{i}$ where $i=1,2, \ldots, n$.
also consider $r^{\prime}=\min \left(r_{1}, r_{2}, \ldots, r_{n}\right)$
Then the open ball $B\left(x ; r^{\prime}\right)$ contain no point of A other than x. then x is not limit point of A. This is a contradiction therefore $B(x ; r)$ must contain infinite numbers of point of A.

Closure of a Set

Let (X, d) be a metric space and $M \subset X$. Then closure of M is denoted by $\bar{M}=M \cup M^{\prime}$ where M^{\prime} is the set of all limit points of M. It is the smallest closed superset of M.

Dense Set

Let (X, d) be a metric space the a set $M \subset X$ is called dense in X if $\bar{M}=X$.

* Countable Set

A set A is countable if it is finite or there exists a function $f: A \rightarrow \mathbb{N}$ which is oneone and onto, where \mathbb{N} is the set of natural numbers.
e.g. \mathbb{N}, \mathbb{Q} and \mathbb{Z} are countable sets. The set of real numbers, the set of irrational numbers and any interval are not countable sets.

Separable Space

A space X is said to be separable if it contains a countable dense subsets.
e.g. the real line \mathbb{R} is separable since it contain the set \mathbb{Q} of rational numbers, which is dense is \mathbb{R}.

Theorem

Let (X, d) be a metric space, $A \subset X$ is dense if and only if A has non-empty intersection with any open subset of X.

Proof.

Assume that A is dense in X . then $\bar{A}=X$.
Suppose there is an open set $G \subset X$ such that $A \cap G=\varphi$.
Then if $x \in G$ then $A \cap(G-\{x\})=\varphi$
which show that x is not a limit point of A.
This implies $x \notin A$ but $x \in X \Rightarrow \bar{A} \neq X$
This is a contradiction.
Consequently $A \cap G \neq \varphi$ for any open $G \subset X$.
Conversely suppose that $A \cap G \neq \varphi$ for any open $G \subset X$.
We prove $\bar{A}=X$, for this let $x \in X$.
If $x \in A$ then $x \in A \cup A^{\prime}=\bar{A}$ then $X=\bar{A}$.
If $x \notin A$ then let $\left\{G_{i}\right\}$ be the family of all the open subset of X such that $x \in G_{i}$ for every i.
Then by hypothesis $A \cap G_{i} \neq \varphi$ for any i. i.e G_{i} contain point of A other then x.
This implies that x is an accumulation point of A. i.e. $x \in A^{\prime}$
Accordingly $x \in A \cup A^{\prime}=\bar{A}$ and $X=\bar{A}$.
The proof is complete.

Neighbourhood of a Point

Let (X, d) be a metric space and $x_{0} \in X$ and a subset $N \subset X$ is called a neighbourhood of x_{0} if there exists an open ball $B\left(x_{0} ; \varepsilon\right)$ with centre x_{0} such that $B\left(x_{0} ; \varepsilon\right) \subset N$.

Shortly "neighbourhood" is written as "nhood".

* Interior Point

Let (X, d) be a metric space and $A \subset X$, a point $x_{0} \in X$ is called an interior point of A if there is an open ball $B\left(x_{0} ; r\right)$ with centre x_{0} such that $B\left(x_{0} ; r\right) \subset A$.
The set of all interior points of A is called interior of A and is denoted by $\operatorname{int}(A)$ or A°. It is the largest open set contain in A. i.e. $A^{\circ} \subset A$.

Continuity

A function $f:(X, d) \rightarrow\left(Y, d^{\prime}\right)$ is called continuous at a point $x_{0} \in X$ if for any $\varepsilon>0$ there is a $\delta>0$ such that $d^{\prime}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon$ for all x satisfying $d\left(x, x_{0}\right)<\delta$.

Alternative:

$f: X \rightarrow Y$ is continuous at $x_{0} \in X$ if for any $\varepsilon>0$, there is a $\delta>0$ such that

$$
x \in B\left(x_{0} ; \delta\right) \quad \Rightarrow f(x) \in B\left(f\left(x_{0}\right) ; \varepsilon\right)
$$

Theorem

$f:(X, d) \rightarrow\left(Y, d^{\prime}\right)$ is continuous at $x_{0} \in X$ if and only if $f^{-1}(G)$ is open is X.
wherever G is open in Y.
Note: Before proving this theorem note that if $f: X \rightarrow Y, f^{-1}: Y \rightarrow X$ and $A \subset X$,
$B \subset Y$ then $f^{-1} f(A) \supset A$ and $f f^{-1}(B) \subset B$

Proof.

Assume that $f: X \rightarrow Y$ is continuous and $G \subset Y$ is open. We will prove $f^{-1}(G)$ is open in X.
Let $x \in f^{-1}(G) \Rightarrow f(x) \in f f^{-1}(G) \subset G$
When G is open, there is an open ball $B(f(x) ; \varepsilon) \subset G$.
Since $f: X \rightarrow Y$ is continuous, therefore for $\varepsilon>0$ there is a $\delta>0$ such that

$$
y \in B(x ; \delta) \Rightarrow f(y) \in B(f(x) ; \varepsilon) \subset G \text { then } y \in f^{-1} f(G) \subset f^{-1}(G)
$$

Since y is an arbitrary point of $B(x ; \delta) \subset f^{-1}(G)$. Also x was arbitrary, this show that $f^{-1}(G)$ is open in X.
Conversely, for any $G \subset Y$ we prove $f: X \rightarrow Y$ is continuous.
For this let $x \in X$ and $\varepsilon>0$ be given. Now $f(x) \in Y$ and let $B(f(x) ; \varepsilon)$ be an open ball in Y. then by hypothesis $f^{-1}(B(f(x) ; \varepsilon))$ is open in X and $x \in f^{-1}(B(f(x) ; \varepsilon))$
As $y \in B(x ; \delta) \subset f^{-1}(B(f(x) ; \varepsilon))$
$\Rightarrow f(y) \in f f^{-1}(B(f(x) ; \varepsilon)) \subset B(f(x) ; \varepsilon)$ i.e. $f(y) \in B(f(x) ; \varepsilon)$
Consequently $f: X \rightarrow Y$ is continuous.
The proof is complete.

* Convergence of Sequence:

Let $\left(x_{n}\right)=\left(x_{1}, x_{2}, \ldots\right)$ be a sequence in a metric space (X, d), we say $\left(x_{n}\right)$ converges to $x \in X$ if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$.
We write $\lim _{n \rightarrow \infty} x_{n}=x$ or simply $x_{n} \rightarrow x$ as $n \rightarrow \infty$.
Alternatively, we say $x_{n} \rightarrow x$ if for every $\varepsilon>0$ there is an $n_{0} \in \mathbb{N}$, such that

$$
\forall n>n_{0}, \quad d\left(x_{n}, x\right)<\varepsilon .
$$

Theorem

If $\left(x_{n}\right)$ is converges then limit of $\left(x_{n}\right)$ is unique.

Proof.

Suppose $x_{n} \rightarrow a$ and $x_{n} \rightarrow b$,
Then $0 \leq d(a, b) \leq d\left(a, x_{n}\right)+d\left(x_{n}, b\right) \rightarrow 0+0 \quad$ as $n \rightarrow \infty \quad \Rightarrow d(a, b)=0 \Rightarrow a=b$
Hence the limit is unique.

Alternative

Suppose that a sequence $\left(x_{n}\right)$ converges to two distinct limits a and b. and $d(a, b)=r>0$
Since $x_{n} \rightarrow a$, given any $\varepsilon>0$, there is a natural number n_{1} depending on ε
such that

$$
d\left(x_{n}, a\right)<\frac{\varepsilon}{2} \quad \text { whenever } n>n_{1}
$$

Also $x_{n} \rightarrow b$, given any $\varepsilon>0$, there is a natural number n_{2} depending on ε such that

$$
d\left(x_{n}, b\right)<\frac{\varepsilon}{2} \quad \text { whenever } n>n_{2}
$$

Take $n_{0}=\max \left(n_{1}, n_{2}\right)$ then

$$
d\left(x_{n}, a\right)<\frac{\varepsilon}{2} \quad \text { and } \quad d\left(x_{n}, b\right)<\frac{\varepsilon}{2} \quad \text { whenever } n>n_{0}
$$

Since ε is arbitrary, take $\varepsilon=r$ then

$$
\begin{aligned}
r=d(a, b) & \leq d\left(a, x_{n}\right)+d\left(x_{n}, b\right) & \\
& <\frac{r}{2}+\frac{r}{2}=r & \because d\left(a, x_{n}\right)=d\left(x_{n}, a\right)<\frac{\varepsilon}{2}
\end{aligned}
$$

Which is a contradiction, Hence $a=b$ i.e. limit is unique.

* Theorem

i) A convergent sequence is bounded.
ii) If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$.

Proof.

(i) Suppose $x_{n} \rightarrow x$, therefore for any $\varepsilon>0$ there is $n_{0} \in \mathbb{N}$ such that

$$
\forall n>n_{0}, \quad d\left(x_{n}, x\right)<\varepsilon
$$

Let $a=\max \left\{d\left(x_{1}, x\right), d\left(x_{2}, x\right), \ldots \ldots \ldots \ldots, d\left(x_{n}, x\right)\right\}$ and $k=\max \{\varepsilon, a\}$
Then by using triangular inequality for arbitrary $x_{i}, x_{j} \in\left(x_{n}\right)$

$$
\begin{aligned}
0 \leq d\left(x_{i}, x_{j}\right) & \leq d\left(x_{i}, x\right)+d\left(x, x_{j}\right) \\
& \leq k+k=2 k
\end{aligned}
$$

Hence $\left(x_{n}\right)$ is bounded.
(ii) By using triangular inequality

$$
\begin{align*}
& d\left(x_{n}, y_{n}\right) \leq d\left(x_{n}, x\right)+d(x, y)+d\left(y, y_{n}\right) \\
\Rightarrow & d\left(x_{n}, y_{n}\right)-d(x, y) \leq d\left(x_{n}, x\right)+d\left(y, y_{n}\right) \rightarrow 0+0 \quad \text { as } \quad n \rightarrow \infty \tag{i}\\
& d(x, y) \leq d\left(x, x_{n}\right)+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y\right) \\
\Rightarrow & d(x, y)-d\left(x_{n}, y_{n}\right) \leq d\left(x, x_{n}\right)+d\left(y_{n}, y\right) \rightarrow 0+0 \quad \text { as } \quad n \rightarrow \infty
\end{align*}
$$

Next

From (i) and (ii)

$$
\left|d\left(x_{n}, y_{n}\right)-d(x, y)\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

Hence

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=d(x, y) \quad \text { Q.E.D }
$$

* Cauchy Sequence

A sequence $\left(x_{n}\right)$ in a metric space (X, d) is called Cauchy if any $\varepsilon>0$ there is a $n_{0} \in \mathbb{N}$ such that $\forall m, n>n_{0}, \quad d\left(x_{m}, x_{n}\right)<\varepsilon$.

Theorem

A convergent sequence in a metric space (X, d) is Cauchy.

Proof.

Let $x_{n} \rightarrow x \in X$, therefore any $\varepsilon>0$ there is $n_{0} \in \mathbb{N}$ such that

$$
\forall m, n>n_{0}, \quad d\left(x_{n}, x\right)<\frac{\varepsilon}{2} \quad \text { and } \quad d\left(x_{m}, x\right)<\frac{\varepsilon}{2} .
$$

Then by using triangular inequality

$$
\begin{array}{rlr}
d\left(x_{m}, x_{n}\right) & \leq d\left(x_{m}, x\right)+d\left(x, x_{n}\right) \\
& \leq d\left(x_{m}, x\right)+d\left(x_{n}, x\right) \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon &
\end{array}
$$

Thus every convergent sequence in a metric space is Cauchy.

* Example

Let $\left(x_{n}\right)$ be a sequence in the discrete space (X, d). If $\left(x_{n}\right)$ be a Cauchy sequence, then for $\varepsilon=1 / 2$, there is a natural number n_{0} depending on ε such that

$$
d\left(x_{m}, x_{n}\right)<1 / 2 \quad \forall m, n \geq n_{0}
$$

Since in discrete space d is either 0 or 1 therefore $d\left(x_{m}, x_{n}\right)=0 \Rightarrow x_{m}=x_{n}=x$ (say)
Thus a Cauchy sequence in (X, d) become constant after a finite number of terms,
i.e. $\left(x_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{n_{0}}, x, x, x, \ldots\right)$

Subsequence

Let $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ be a sequence (X, d) and let $\left(i_{1}, i_{2}, i_{3}, \ldots\right)$ be a sequence of positive integers such that $i_{1}<i_{2}<i_{3}<\ldots$ then $\left(a_{i_{1}}, a_{i_{2}}, a_{i_{3}}, \ldots\right)$ is called subsequence of $\left(a_{n}: n \in \mathbb{N}\right)$.

Theorem

(i) Let $\left(x_{n}\right)$ be a Cauchy sequence in (X, d), then $\left(x_{n}\right)$ converges to a point $x \in X$ if and only if $\left(x_{n}\right)$ has a convergent subsequence $\left(x_{n_{k}}\right)$ which converges to $x \in X$.
(ii) If $\left(x_{n}\right)$ converges to $x \in X$, then every subsequence $\left(x_{n_{k}}\right)$ also converges to $x \in X$.

Proof.

(i) Suppose $x_{n} \rightarrow x \in X$ then $\left(x_{n}\right)$ itself is a subsequence which converges to $x \in X$. Conversely, assume that $\left(x_{n_{k}}\right)$ is a subsequence of $\left(x_{n}\right)$ which converges to x.

Then for any $\varepsilon>0$ there is $n_{0} \in \mathbb{N}$ such that $\forall n_{k}>n_{0}, d\left(x_{n_{k}}, x\right)<\frac{\varepsilon}{2}$.
Further more $\left(x_{n}\right)$ is Cauchy sequence
Then for the $\varepsilon>0$ there is $n_{1} \in \mathbb{N}$ such that $\forall m, n>n_{1}, d\left(x_{m}, x_{n}\right)<\frac{\varepsilon}{2}$.
Suppose $n_{2}=\max \left(n_{0}, n_{1}\right)$ then by using the triangular inequality we have

$$
\begin{array}{rlr}
d\left(x_{n}, x\right) & \leq d\left(x_{n}, x_{n_{k}}\right)+d\left(x_{n_{k}}, x\right) & \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \quad \forall n_{k}, n>n_{2}
\end{array}
$$

This show that $x_{n} \rightarrow x$.
(ii) $x_{n} \rightarrow x$ implies for any $\varepsilon>0 \quad \exists n_{0} \in \mathbb{N}$ such that $d\left(x_{n}, x\right)<\varepsilon$

Then in particular $d\left(x_{n_{k}}, x\right)<\varepsilon \quad \forall n_{k}>n_{0}$
Hence $x_{n_{k}} \rightarrow x \in X$.

* Example

Let $X=(0,1)$ then $\left(x_{n}\right)=\left(x_{1}, x_{2}, x_{3}, \ldots\right)=(1 / 2,1 / 3,1 / 4, \ldots)$ is a sequence in X. Then $x_{n} \rightarrow 0$ but 0 is not a point of X.

* Theorem

Let (X, d) be a metric space and $M \subset X$.
(i) Then $x \in \bar{M}$ if and only if there is a sequence $\left(x_{n}\right)$ in M such that $x_{n} \rightarrow x$.
(ii) If for any sequence $\left(x_{n}\right)$ in $M, x_{n} \rightarrow x \Rightarrow x \in M$, then M is closed.

Proof.

(i) Suppose $x \in \bar{M}=M \cup M^{\prime}$

If $x \in M$, then there is a sequence (x, x, x, \ldots) in M which converges to x.
If $x \notin M$, then $x \in M^{\prime}$ i.e. x is an accumulation point of M, therefore each $n \in \mathbb{N}$ the open ball $B\left(x ; \frac{1}{n}\right)$ contain infinite number of point of M.
We choose $x_{n} \in M$ from each $B\left(x ; \frac{1}{n}\right)$
Then we obtain a sequence $\left(x_{n}\right)$ of points of M and since $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$.
Then $x_{n} \rightarrow x$ as $n \rightarrow \infty$.
Conversely, suppose $\left(x_{n}\right)$ such that $x_{n} \rightarrow x$.
We prove $x \in \bar{M}$
If $x \in M$ then $x \in \bar{M} . \quad \because \bar{M}=M \cup M^{\prime}$
If $x \notin M$, then every neighbourhood of x contain infinite number of terms of $\left(x_{n}\right)$.
Then x is a limit point of M i.e. $x \in M^{\prime}$
Hence $x \in \bar{M}=M \cup M^{\prime}$.
(ii) If $\left(x_{n}\right)$ is in M and $x_{n} \rightarrow x$, then $x \in \bar{M}$ then by hypothesis $M=\bar{M}$, then M is closed.

* Complete Space

A metric space (X, d) is called complete if every Cauchy sequence in X converges to a point of X.

* Subspace

Let (X, d) be a metric space and $Y \subset X$ then Y is called subspace if Y is itself a metric space under the metric d.

Theorem

A subspace of a complete metric space (X, d) is complete if and only if Y is closed in X.

Proof.

Assume that Y is complete we prove Y is closed.
Let $x \in \bar{Y}$ then there is a sequence $\left(x_{n}\right)$ in Y such that $x_{n} \rightarrow x$.
Since convergent sequence is a Cauchy and Y is complete then $x_{n} \rightarrow x \in Y$.
Since x was arbitrary point of $Y \quad \Rightarrow \bar{Y} \subset Y$
Therefore $\bar{Y}=Y$
$\because Y \subset \bar{Y}$

Consequently Y is closed.
Conversely, suppose Y is closed and $\left(x_{n}\right)$ is a Cauchy sequence. Then $\left(x_{n}\right)$ is Cauchy in X and since X is complete so $x_{n} \rightarrow x \in X$.
Also $x \in \bar{Y}$ and $\bar{Y} \subset X$.
Since Y is closed i.e. $Y=\bar{Y}$ therefore $x \in Y$.
Hence Y is complete.

* Nested Sequence:

A sequence sets $A_{1}, A_{2}, A_{3}, \ldots$ is called nested if $A_{1} \supset A_{2} \supset A_{3} \supset \ldots$

* Theorem (Cantor's Intersection Theorem)

A metric space (X, d) is complete if and only if every nested sequence of nonempty closed subset of X, whose diameter tends to zero, has a non-empty intersection. Proof.

Suppose (X, d) is complete and let $A_{1} \supset A_{2} \supset A_{3} \supset \ldots$ be a nested sequence of closed subsets of X.
Since A_{i} is non-empty we choose a point a_{n} from each A_{n}. And then we will prove $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ is Cauchy in X.
Let $\varepsilon>0$ be given, since $\lim _{n \rightarrow \infty} d\left(A_{n}\right)=0$ then there is $n_{0} \in \mathbb{N}$ such that $d\left(A_{n_{0}}\right)<0$
Then for $m, n>n_{0}, \quad d\left(a_{m}, a_{n}\right)<\varepsilon$.
This shows that $\left(a_{n}\right)$ is Cauchy in X.
Since X is complete so $a_{n} \rightarrow p \in X$ (say)
We prove $p \in \bigcap_{n} A_{n}$,
Suppose the contrary that $p \notin \bigcap_{n} A_{n}$ then \exists a $k \in \mathbb{N}$ such that $p \notin A_{k}$.
Since A_{k} is closed, $d\left(p, A_{k}\right)=\delta>0$.

Consider the open ball $B\left(p ; \frac{\delta}{2}\right)$ then A_{k} and $B\left(p ; \frac{\delta}{2}\right)$ are disjoint
Now $a_{k}, a_{k+1}, a_{k+2}, \ldots$ all belong to A_{k} then all these points do not belong to $B\left(p ; \frac{\delta}{2}\right)$
This is a contradiction as p is the limit point of $\left(a_{n}\right)$.
Hence $p \in \bigcap_{n} A_{n}$.
Conversely, assume that every nested sequence of closed subset of X has a non-empty intersection. Let $\left(x_{n}\right)$ be Cauchy in X, where $\left(x_{n}\right)=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$

Consider the sets

$$
\begin{gathered}
A_{1}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \\
A_{2}=\left\{x_{2}, x_{3}, x_{4}, \ldots\right\} \\
\ldots \ldots \ldots \ldots \ldots \ldots \\
\ldots \ldots \ldots \ldots \ldots \ldots \\
\ldots \ldots \ldots \ldots \ldots \ldots \\
A_{k}=\left\{x_{n}: n \geq k\right\}
\end{gathered}
$$

Then we have $A_{1} \supset A_{2} \supset A_{3} \supset \ldots$
We prove $\lim _{n \rightarrow \infty} d\left(A_{n}\right)=0$
Since $\left(x_{n}\right)$ is Cauchy, therefore $\exists n_{0} \in \mathbb{N}$ such that

$$
\forall m, n>n_{0}, d\left(x_{m}, x_{n}\right)<\varepsilon, \quad \text { i.e. } \quad \lim _{n \rightarrow \infty} d\left(A_{n}\right)=0
$$

Now $d\left(\overline{A_{n}}\right)=d\left(A_{n}\right)$ then $\lim _{n \rightarrow \infty} d\left(A_{n}\right)=\lim _{n \rightarrow \infty} d\left(\overline{A_{n}}\right)=0$
Also $\overline{A_{1}} \supset \overline{A_{2}} \supset \overline{A_{3}} \supset \ldots$
Then by hypothesis $\bigcap_{n} \overline{A_{n}} \neq \varphi$. Let $p \in \bigcap_{n} \overline{A_{n}}$
We prove $x_{n} \rightarrow p \in X$
Since $\lim _{n \rightarrow \infty} d\left(\overline{A_{n}}\right)=0$ therefore $\exists k_{0} \in \mathbb{N}$ such that $d\left(\overline{A_{k_{0}}}\right)<\varepsilon$
Then for $n>k_{0}, x_{n}, p \in \overline{A_{n}} \quad \Rightarrow d\left(x_{n}, p\right)<\varepsilon \quad \forall n>k_{0}$
This proves that $x_{n} \rightarrow p \in X$.
The proof is complete.

* Complete Space (Examples)

(i) The discrete space is complete.

Since in discrete space a Cauchy sequence becomes constant after finite terms i.e. $\left(x_{n}\right)$ is Cauchy in discrete space if it is of the form

$$
\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}=b, b, b, \ldots\right)
$$

(ii) The set $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$ of integers with usual metric is complete.
(iii) The set of rational numbers with usual metric is not complete.
$\because(1.1,1.41,1.412, \ldots)$ is a Cauchy sequence of rational numbers but its limit is $\sqrt{2}$, which is not rational.
(iv) The space of irrational number with usual metric is not complete.

We take $(-1,1),(-1 / 2,1 / 2),(-1 / 3,1 / 3), \ldots,(-1 / n, 1 / n)$
We choose one irrational number from each interval and these irrational tends to zero as we goes toward infinity, as zero is a rational so space of irrational is not complete.

* Theorem

The real line is complete.

Proof.

Let $\left(x_{n}\right)$ be any Cauchy sequence of real numbers.
We first prove that $\left(x_{n}\right)$ is bounded.
Let $\varepsilon=1>0$ then $\exists n_{0} \in \mathbb{N}$ such that $\forall m, n \geq n_{0}, d\left(x_{m}, x_{n}\right)=\left|x_{m}-x_{n}\right|<1$
In particular for $n \geq n_{0}$ we have

$$
\left|x_{n_{0}}-x_{n}\right| \leq 1 \Rightarrow x_{n_{0}}-1 \leq x_{n} \leq x_{n_{0}}+1
$$

Let $\alpha=\max \left\{x_{1}, x_{2}, \ldots, x_{n_{0}}+1\right\}$ and $\beta=\min \left\{x_{1}, x_{2}, \ldots, x_{n_{0}}-1\right\}$
then $\beta \leq x_{n} \leq \alpha \quad \forall n$.
this shows that $\left(x_{n}\right)$ is bounded with β as lower bound and α as upper bound.
Secondly we prove $\left(x_{n}\right)$ has convergent subsequence $\left(x_{n_{i}}\right)$.
If the range of the sequence is $\left\{x_{n}\right\}=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ is finite, then one of the term is the sequence say b will repeat infinitely i.e. b, b, b, \ldots
Then (b, b, b, \ldots) is a convergent subsequence which converges to b.
If the range is infinite then by the Bolzano Weirestrass theorem, the bounded infinite set $\left\{x_{n}\right\}$ has a limit point, say b.
Then each of the open interval $S_{1}=(b-1, b+1), S_{2}=(b-1 / 2, b+1 / 2)$, $S_{2}=(b-1 / 3, b+1 / 3), \ldots$ has an infinite numbers of points of the set $\left\{x_{n}\right\}$.
i.e. there are infinite numbers of terms of the sequence $\left(x_{n}\right)$ in every open interval S_{n}.

We choose a point $x_{i_{1}}$ from S_{1}, then we choose a point $x_{i_{2}}$ from S_{2} such that $i_{1}<i_{2}$ i.e. the terms $x_{i_{2}}$ comes after $x_{i_{1}}$ in the original sequence $\left(x_{n}\right)$. Then we choose a term $x_{i_{3}}$ such that $i_{2}<i_{3}$, continuing in this manner we obtain a subsequence

$$
\left(x_{i_{n}}\right)=\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, \ldots\right) .
$$

It is always possible to choose a term because every interval contain an infinite numbers of terms of the sequence $\left(x_{n}\right)$.

Since $b-1 / n \rightarrow b$ and $b+1 / n \rightarrow b$ as $n \rightarrow \infty$. Hence we have convergent subsequence $\left(x_{i_{n}}\right)$ whose limit is b.
Lastly we prove that $x_{n} \rightarrow b \in \mathbb{R}$.
Since $\left(x_{n}\right)$ is a Cauchy therefore for any $\varepsilon>0$ there is $n_{0} \in \mathbb{N}$ such that

$$
\forall m, n>n_{0} \quad\left|x_{m}-x_{n}\right|<\frac{\varepsilon}{2}
$$

Also since $x_{i_{n}} \rightarrow b$ there is a natural number i_{m} such that $i_{m}>n_{0}$
Then $\forall m, n, i_{m}>n_{0}$

$$
\begin{aligned}
d\left(x_{n}, b\right)=\left|x_{n}-b\right| & =\left|x_{n}-x_{i_{i_{m}}}+x_{i_{m}}-b\right| \\
& \leq\left|x_{n}-x_{i_{m}}\right|+\left|x_{i_{m}}-b\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

Hence $x_{n} \rightarrow b \in \mathbb{R}$ and the proof is complete.

* Theorem

The Euclidean space \mathbb{R}^{n} is complete.

Proof.

Let $\left(x_{m}\right)$ be any Cauchy sequence in \mathbb{R}^{n}.
Then for any $\varepsilon>0$, there is $n_{0} \in \mathbb{N}$ such that $\forall m, r>n_{0}$

$$
\begin{equation*}
d\left(x_{m}, x_{r}\right)=\left(\sum(\underset{(m)}{\xi} \underset{j}{ }-\stackrel{(r)}{\xi} \underset{j}{ })^{2}\right)^{1 / 2}<\varepsilon \tag{i}
\end{equation*}
$$

Squaring both sided of (i) we obtain

$$
\begin{aligned}
& \sum\left(\stackrel{(n)}{\xi_{j}}-\stackrel{(r)}{\xi_{j}}\right)^{2}<\varepsilon^{2} \\
\Rightarrow & \left|\stackrel{(m)}{\xi_{j}}-\stackrel{(r)}{\xi_{j}}\right|<\varepsilon \quad \forall \quad j=1,2,3, \ldots, n
\end{aligned}
$$

This implies $\binom{(m)}{\xi_{j}}=\left(\begin{array}{c}(1) \\ \left.\xi_{j}, \xi_{j}\right)\end{array}, \begin{array}{c}(3) \\ \xi_{j}\end{array}, \ldots\right)$ is a Cauchy sequence of real numbers for every $j=1,2,3, \ldots, n$.
Since \mathbb{R} is complete therefore ${ }^{(m)} \rightarrow \xi_{j} \in \mathbb{R}$ (say)
Using these n limits we define

$$
x=\left(\xi_{j}\right)=\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots, \xi_{n}\right) \text { then clearly } x \in \mathbb{R}^{n} .
$$

We prove $x_{m} \rightarrow x$
In (i) as $r \rightarrow \infty, d\left(x_{m}, x\right)<\varepsilon \forall m>n_{0}$ which show that $x_{m} \rightarrow x \in \mathbb{R}^{n}$
And the proof is complete.
NOTE: In the above theorem if we take $n=2$ then we see complex plane $\mathbb{C}=\mathbb{R}^{2}$ is complete. Moreover the unitary space \mathbb{C}^{n} is complete.

* Theorem

The space l^{∞} is complete.
Proof.

Let $\left(x_{m}\right)$ be any Cauchy sequence in l^{∞}.
Then for any $\varepsilon>0$ there is $n_{0}>\mathbb{N}$ such that $\forall m, n>n_{0}$

$$
d\left(x_{m}, x_{n}\right)=\sup _{j} \mid\left(\xi_{j}^{(m)}-\xi_{j}^{n} \mid<\varepsilon .\right.
$$

Where $x_{m}=\binom{(m)}{\xi_{j}}=\binom{(m)}{\left.\xi_{1}, \stackrel{(m)}{2}_{2}, \stackrel{(m)}{\xi_{3}}, \ldots\right)}$ and $x_{n}=\binom{(n)}{\xi_{j}}=\left(\begin{array}{l}(n) \\ \left.\xi_{1}, \stackrel{(n)}{\xi_{2}}, \stackrel{(n)}{\xi_{3}}, \ldots\right)\end{array}\right.$
Then from (i)

$$
\left|\xi_{j}^{(m)}-\xi_{j}^{(n)}\right|<\varepsilon \ldots \ldots \ldots . .(i i) \quad \forall j=1,2,3, \ldots \text { and } \quad \forall m, n>n_{0}
$$

 every $j=1,2,3, \ldots$
And since \mathbb{R} and \mathbb{C} are complete therefore ${ }^{(m)} \xi_{j} \rightarrow \xi_{j} \in \mathbb{R}$ or \mathbb{C} (say).
Using these infinitely many limits we define $x=\left(\xi_{j}\right)=\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)$.
We prove $x \in l^{\infty}$ and $x_{m} \rightarrow x$.
In (i) as $n \rightarrow \infty$ we obtain $\left|\stackrel{(m)}{\xi_{j}}-\xi_{j}\right|<\varepsilon \ldots \ldots(i i i) \quad \forall m>n_{0}$
We prove x is bounded.
By using the triangular inequality

$$
\left|\xi_{j}\right|=\left|\xi_{j}-\xi_{j}^{(m)}+\xi_{j}^{(m)}\right| \leq\left|\xi_{j}-\xi_{j}^{(m)}\right|+\left|\begin{array}{c}
(m) \\
\xi_{j}
\end{array}\right|<\varepsilon+k_{m}
$$

Where $\left|\begin{array}{c}(m) \\ \xi_{j}\end{array}\right|<k_{m}$ as x_{m} is bounded.
Hence $\left(\xi_{j}\right)=x$ is bounded.
This shows that $x_{n} \rightarrow x \in l^{\infty}$.
And the proof is complete.

Theorem

The space \mathbf{C} of all convergent sequence of complex number is complete.
Note: It is subspace of l^{∞}.

Proof.

First we prove \mathbf{C} is closed in l^{∞}.
Let $x=\left(\xi_{j}\right) \in \overline{\mathbf{C}}$, then there is a sequence $\left(x_{n}\right)$ in \mathbf{C} such that $x_{n} \rightarrow x$,

$$
\text { where } x_{n}=\binom{(n)}{\xi_{j}}=\left(\begin{array}{ll}
(n) & (n) \\
\xi_{1}, \xi_{2}, & (n) \\
\left.\xi_{3}, \ldots\right)
\end{array}\right) .
$$

Then for any $\varepsilon>0$, there is $n_{0} \in \mathbb{N}$ such that $\forall n \geq n_{0}$

$$
d\left(x_{n}, x\right)=\sup _{j}\left|\xi_{j}^{(n)}-\xi_{j}\right|<\frac{\varepsilon}{3}
$$

Then in particular for $n=n_{0}$ and $\forall j=1,2,3, \ldots \ldots \ldots$.

$$
\left|\stackrel{\left(n_{0}\right)}{\xi_{j}}-\xi_{j}\right|<\frac{\varepsilon}{3}
$$

Now $x_{n_{0}} \in \mathbf{C}$ then $x_{n_{0}}$ is a convergent sequence therefore $\exists n_{1} \in \mathbb{N}$ such that $\forall j, k>n_{1}$

$$
\left|\begin{array}{c}
\left(n_{0}\right) \\
\left.\xi_{j}-n_{n}-n_{0}\right) \\
\xi_{k}
\end{array}\right|<\frac{\varepsilon}{3}
$$

Then by using triangular inequality we have

$$
\begin{aligned}
\left|\xi_{j}-\xi_{k}\right| & =\left|\xi_{j}-\stackrel{\left(n_{0}\right)}{\xi_{j}}+\stackrel{\left(n_{0}\right)}{\xi_{j}}-\stackrel{\left(n_{0}\right)}{\xi_{k}}+\stackrel{\left(n_{0}\right)}{\xi_{k}}-\xi_{k}\right| \\
& \leq\left|\xi_{j}-\stackrel{\left(n_{0}\right)}{\xi_{j}}\right|+\left|+\left|\begin{array}{cc}
\left(n_{0}\right) \\
\xi_{j} \\
j & \left.-n_{0}\right) \\
\xi_{k}
\end{array}\right|+\left|\begin{array}{c}
\left(n_{0}\right) \\
\xi_{k} \\
\hline
\end{array} \xi_{k}\right|\right. \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon \quad \forall j, k>n_{1}
\end{aligned}
$$

Hence x is Cauchy in l^{∞} and x is convergent
Therefore $x \in \mathbf{C}$ and $\Rightarrow \overline{\mathbf{C}}=\mathbf{C}$.
i.e. \mathbf{C} is closed in l^{∞} and l^{∞} is complete.

Since we know that a subspace of complete space is complete if and only if it is closed in the space.

Consequently \mathbf{C} is complete.

* Theorem

The space $l^{p}, p \geq 1$ is a real number, is complete.

Proof.

Let $\left(x_{n}\right)$ be any Cauchy sequence in l^{p}.
Then for every $\varepsilon>0$, there is $n_{0} \in \mathbb{N}$ such that $\forall m, n>n_{0}$

$$
d\left(x_{m}, x_{n}\right)=\left(\sum_{j=1}^{\infty}\left|\begin{array}{c}
(m) \tag{i}\\
\xi_{j}
\end{array}-\xi_{j}^{(n)}\right|^{p}\right)^{\frac{1}{p}}<\varepsilon
$$

Then from (i) $\quad\left|\begin{array}{c}(m) \\ \xi_{j}-\xi_{j}^{(n)} \\ j\end{array}\right|<\varepsilon \ldots \ldots .$. (ii) $\quad \forall m, n>n_{0}$ and for any fixed j.
This shows that $\binom{(m)}{\xi_{j}}$ is a Cauchy sequence of numbers for the fixed j.
Since \mathbb{R} and \mathbb{C} are complete therefore ${\stackrel{(m)}{\xi} \xi_{j}}_{\xi_{j}}^{\xi_{j}} \in \mathbb{R}$ or \mathbb{C} (say) as $m \rightarrow \infty$.
Using these infinite many limits we define $x=\left(\xi_{j}\right)=\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right)$.
We prove $x \in l^{p}$ and $x_{m} \rightarrow x$ as $m \rightarrow \infty$.
From (i) we have

$$
\begin{array}{ll}
& \left(\sum_{j=1}^{k}\left|\begin{array}{l}
(m) \\
\xi_{j} \\
\stackrel{(n}{3}^{\xi} \\
j
\end{array}\right|^{p}\right)^{\frac{1}{p}}<\varepsilon \\
\text { i.e. } \quad \sum_{j=1}^{k}\left|\begin{array}{l}
(m) \\
\xi_{j} \\
\xi_{j} \\
\xi_{j}
\end{array}\right|^{p}<\varepsilon^{p} . . \tag{iii}
\end{array}
$$

Taking as $n \rightarrow \infty$, we get

$$
\sum_{j=1}^{k}| |_{j}^{(m)} \xi_{j}-\left.\xi_{j}\right|^{p}<\varepsilon^{p}, \quad k=1,2,3, \ldots \ldots
$$

Now taking $k \rightarrow \infty$, we obtain

$$
\sum\left|\begin{array}{l}
(m) \\
\xi_{j} \\
\xi^{\prime}
\end{array} \xi_{j}\right|^{p}<\varepsilon^{p} \ldots \ldots \ldots \ldots(i v) \quad \forall j=1,2,3, \ldots \ldots \ldots
$$

This shows that $\left(x_{m}-x\right) \in l^{p}$
Now l^{p} is a vector space and $x_{m} \in l^{p}, x-x_{m} \in l^{p}$ then $x_{m}+\left(x-x_{m}\right)=x \in l^{p}$.
Also from (iv) we see that

$$
\begin{array}{ll}
& \left(d\left(x_{m}, x\right)\right)^{p}<\varepsilon^{p} \quad \forall m>n_{0} \\
\text { i.e. } & d\left(x_{m}, x\right)<\varepsilon \quad \forall m>n_{0}
\end{array}
$$

This shows that $x_{m} \rightarrow x \in l^{p}$ as $x \rightarrow \infty$.
And the proof is complete.

Theorem

The space $\mathbf{C}[a, b]$ is complete.

Proof.

Let $\left(x_{n}\right)$ be a Cauchy sequence in $\mathbf{C}[a, b]$.
Therefore for every $\varepsilon>0$, there is $n_{0} \in \mathbb{N}$ such that $\forall m, n>n_{0}$

$$
d\left(x_{m}, x_{n}\right)=\max _{t \in J}\left|x_{m}(t)-x_{n}(t)\right|<\varepsilon \ldots \ldots \ldots .(i) \quad \text { where } J=[a, b] .
$$

Then for any fix $t=t_{0} \in J$

$$
\left|x_{m}\left(t_{0}\right)-x_{n}\left(t_{0}\right)\right|<\varepsilon \quad \forall m, n>n_{0}
$$

It means $\left(x_{1}\left(t_{0}\right), x_{2}\left(t_{0}\right), x_{3}\left(t_{0}\right), \ldots\right)$ is a Cauchy sequence of real numbers. And since \mathbb{R} is complete therefore $x_{m}\left(t_{0}\right) \rightarrow x\left(t_{0}\right) \in \mathbb{R}$ (say) as $m \rightarrow \infty$.

In this way for every $t \in J$, we can associate a unique real number $x(t)$ with $x_{n}(t)$.
This defines a function $x(t)$ on J.
We prove $x(t) \in \mathbf{C}[a, b]$ and $x_{m}(t) \rightarrow x(t)$ as $m \rightarrow \infty$.
From (i) we see that

$$
\left|x_{m}(t)-x_{n}(t)\right|<\varepsilon \quad \text { for every } t \in J \quad \text { and } \forall m, n>n_{0} .
$$

Letting $n \rightarrow \infty$, we obtain for all $t \in J$

$$
\left|x_{m}(t)-x(t)\right|<\varepsilon \quad \forall m<n_{0} .
$$

Since the convergence is uniform and the x_{n} 's are continuous, the limit function $x(t)$ is continuous, as it is well known from the calculus.

Then $x(t)$ is continuous.

Hence $x(t) \in \mathbf{C}[a, b]$, also $\left|x_{m}(t)-x(t)\right|<\varepsilon$ as $m \rightarrow \infty$
Therefore $\quad x_{m}(t) \rightarrow x(t) \in \mathbf{C}[a, b]$.
The proof is complete.

Theorem

If $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ are complete then $X \times Y$ is complete.
NOTE: The metric d (say) on $X \times Y$ is defined as $d(x, y)=\max \left(d_{1}\left(\xi_{1}, \xi_{2}\right), d_{2}\left(\eta_{1}, \eta_{2}\right)\right)$ where $x=\left(\xi_{1}, \eta_{1}\right), y=\left(\xi_{2}, \eta_{2}\right)$ and $\xi_{1}, \xi_{2} \in X, \eta_{1}, \eta_{2} \in Y$.

Proof.

Let $\left(x_{n}\right)$ be a Cauchy sequence in $X \times Y$.
Then for any $\varepsilon>0$, there is $n_{0} \in \mathbb{N}$ such that $\forall m, n>n_{0}$

$$
\begin{aligned}
& d\left(x_{m}, x_{n}\right)=\max \left(d_{1}\left(\begin{array}{c}
(m) \\
\xi \\
\hline
\end{array} \stackrel{(n)}{\xi}\right), d_{2}\binom{(m)(n)}{\eta, \eta}\right)<\varepsilon \\
\Rightarrow & d_{1}\left(\begin{array}{c}
(m) \\
\xi
\end{array}, \stackrel{(n)}{\xi}\right)<\varepsilon \text { and } d_{2}\binom{(m)(n)}{\eta, \eta}<\varepsilon \quad \forall m, n>n_{0}
\end{aligned}
$$

This implies $\binom{(m)}{\xi}=\left(\begin{array}{c}(1) \\ \xi\end{array}, \stackrel{(2)}{\xi}, \stackrel{(3)}{\xi}, \ldots\right)$ is a Cauchy sequence in X.
and $\left.\binom{(m)}{\eta}=\left(\begin{array}{l}(1) \\ \eta,(2) \\ \eta, \eta\end{array}\right), \ldots\right)$ is a Cauchy sequence in Y.
Since X and Y are complete therefore $\stackrel{(m)}{\xi} \rightarrow \xi \in X$ (say) and $\stackrel{(m)}{\eta} \rightarrow \eta \in Y$ (say)
Let $x=(\xi, \mu)$ then $x \in X \times Y$.
Also $\quad d\left(x_{m}, x\right)=\max \left(d_{1}(\stackrel{(m)}{\xi}, \xi), d_{2}(\stackrel{(m)}{\eta}, \eta)\right) \rightarrow 0 \quad$ as $\quad n \rightarrow \infty$.
Hence $x_{m} \rightarrow x \in X \times Y$.
This proves completeness of $X \times Y$.

* Theorem

$f:(X, d) \rightarrow\left(Y, d^{\prime}\right)$ is continuous at $x_{0} \in X$ if and only if $x_{n} \rightarrow x$ implies $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$.
Proof.
Assume that f is continuous at $x_{0} \in X$ then for given $\varepsilon>0$ there is a $\delta>0$
such that

$$
d\left(x, x_{0}\right)<\delta \quad \Rightarrow d^{\prime}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon
$$

Let $x_{n} \rightarrow x_{0}$, then for our $\delta>0$ there is $n_{0} \in \mathbb{N}$ such that

$$
d\left(x_{n}, x_{0}\right)<\delta, \quad \forall n>n_{0}
$$

Then by hypothesis $d^{\prime}\left(f\left(x_{n}\right), f\left(x_{0}\right)\right)<\varepsilon, \quad \forall n>n_{0}$

$$
\text { i.e. } \quad f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)
$$

Conversely, assume that $x_{n} \rightarrow x_{0} \Rightarrow f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$
We prove $f: X \rightarrow Y$ is continuous at $x_{0} \in X$, suppose this is false

Then there is an $\varepsilon>0$ such that for every $\delta>0$ there is an $x \in X$ such that

$$
d\left(x, x_{0}\right)<\delta \quad \text { but } \quad d^{\prime}\left(f(x), f\left(x_{0}\right)\right) \geq \varepsilon
$$

In particular when $\delta=\frac{1}{n}$, there is $x_{n} \in X$ such that

$$
d\left(x_{n}, x_{0}\right)<\delta \quad \text { but } \quad d\left(f\left(x_{n}\right), f\left(x_{0}\right)\right) \geq \varepsilon .
$$

This shows that $x_{n} \rightarrow x_{0}$ but $f\left(x_{n}\right) \nrightarrow f\left(x_{0}\right)$ as $n \rightarrow \infty$.
This is a contradiction.
Consequently $f: X \rightarrow Y$ is continuous at $x_{0} \in X$.
The proof is complete.

Rare (or nowhere dense in X)

Let X be a metric, a subset $M \subset X$ is called rare (or nowhere dense in X) if \bar{M} has no interior point i.e. $\operatorname{int}(\bar{M})=\varphi$.

* Meager (or of the first category)

Let X be a metric, a subset $M \subset X$ is called meager (or of the first category) if M can be expressed as a union of countably many rare subset of X.

Non-meager (or of the second category)

Let X be a metric, a subset $M \subset X$ is called non-meager (or of the second category) if it is not meager (of the first category) in X.

* Example:

Consider the set \mathbb{Q} of rationales as a subset of a real line \mathbb{R}. Let $q \in \mathbb{Q}$, then $\{q\}=\overline{\{q\}}$ because $\mathbb{R}-\{q\}=(-\infty, q) \cup(q, \infty)$ is open. Clearly $\{q\}$ contain no open ball. Hence \mathbb{Q} is nowhere dense in \mathbb{R} as well as in \mathbb{Q}. Also since \mathbb{Q} is countable, it is the countable union of subsets $\{q\}, q \in \mathbb{Q}$. Thus \mathbb{Q} is of the first category.

Bair's Category Theorem

If $X \neq \varphi$ is complete then it is non-meager in itself.

OR

A complete metric space is of second category.

Proof.

Suppose that X is meager in itself then $X=\bigcup_{k=1}^{\infty} M_{k}$, where each M_{k} is rare in X.
Since M_{1} is rare then $\operatorname{int}(M)=M^{\circ}=\varphi$
i.e. $\overline{M_{1}}$ has non-empty open subset

But X has a non-empty open subset (i.e. X itself) then $\overline{M_{1}} \neq X$.
This implies ${\overline{M_{1}}}^{c}=X-\overline{M_{1}}$ is a non-empty and open.
We choose a point $p_{1} \in{\overline{M_{1}}}^{c}$ and an open ball $B_{1}=B\left(p_{1} ; \varepsilon_{1}\right) \subset{\overline{M_{1}}}^{c}$, where $\varepsilon_{1}<1 / 2$.

Now ${\overline{M_{2}}}^{c}$ is non-empty and open
Then \exists a point $p_{2} \in{\overline{M_{2}}}^{c}$ and open ball $B_{2}=B\left(p_{2} ; \varepsilon_{2}\right) \in{\overline{M_{2}}}^{c} \cap B\left(p_{1} ; \frac{1}{2} \varepsilon_{1}\right)$
($\overline{M_{2}}$ has no non-empty open subset then ${\overline{M_{2}}}^{c} \cap B\left(p_{1} ; \frac{1}{2} \varepsilon_{1}\right)$ is non-empty and open.)
So we have chosen a point p_{2} from the set ${\overline{M_{2}}}^{c} \cap B\left(p_{1} ; \frac{1}{2} \varepsilon_{1}\right)$ and an open ball $B\left(p_{2}, \varepsilon_{2}\right)$ around it, where $\varepsilon_{2}<\frac{1}{2} \varepsilon_{1}<\frac{1}{2} \cdot \frac{1}{2}<2^{-1}$.
Proceeding in this way we obtain a sequence of balls B_{k} such that

$$
B_{k+1} \subset B\left(p_{k} ; \frac{1}{2} \varepsilon_{k}\right) \subset B_{k} \quad \text { where } \quad B_{k}=B\left(p_{k} ; \varepsilon_{k}\right) \quad \forall k=1,2,3, \ldots \ldots .
$$

Then the sequence of centres p_{k} is such that for $m>n$

$$
d\left(p_{m}, p_{n}\right)<\frac{1}{2} \varepsilon_{m}<\frac{1}{2^{m+1}} \rightarrow 0 \quad \text { as } \quad m \rightarrow \infty .
$$

Hence the sequence $\left(p_{k}\right)$ is Cauchy.
Since X is complete therefore $p_{k} \rightarrow p \in X$ (say) as $k \rightarrow \infty$.
Also

$$
\begin{aligned}
& d\left(p_{m}, p\right) \leq d\left(p_{m}, p_{n}\right)+d\left(p_{n}, p\right) \\
& <\frac{1}{2} \varepsilon_{m}+d\left(p_{n}, p\right) \\
& <\varepsilon_{m}+d\left(p_{n}, p\right) \rightarrow \varepsilon_{m}+0 \text { as } n \rightarrow \infty \text {. } \\
& \Rightarrow p \in B_{m} \quad \forall m \text { i.e. } p \in{\overline{M_{m}}}^{c} \forall m \quad \because B_{m}={\overline{M_{2}}}^{c} \cap B\left(p_{m-1} ; \frac{1}{2} \varepsilon_{m-1}\right) \\
& \Rightarrow B_{m} \subset{\overline{M_{m}}}^{c} \quad \Rightarrow B_{m} \cap M_{m}=\varphi \\
& \Rightarrow p \notin M_{m} \quad \forall m \quad \Rightarrow p \notin X
\end{aligned}
$$

This is a contradiction.
Bair's Theorem is proof.

References: (1) Lectures (2003-04)

Prof. Muhammad Ashfaq
Ex Chairman, Department of Mathematics.
University of Sargodha, Sargodha.

(2) Book

Introductory Functional Analysis with Applications
By Erwin Kreyszig (John Wiley \& Sons. Inc., 1989.)
These notes are available online at http://www.mathcity.org in PDF Format. Last update: July 01, 2011.

