FUNCTIONAL ANALYSIS

Available at http://www.mathcity.org

Lecture \# 1

Metric Space:

Let X be a non-empty set. Defined a function

$$
\begin{aligned}
& \mathrm{f}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R} \text { s.t } \\
& M_{1}: \mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 0 \quad \forall \quad \mathrm{x}, \mathrm{y} \in \mathrm{X} \\
& M_{2}: \mathrm{d}(\mathrm{x}, \mathrm{y})=0 \Leftrightarrow \mathrm{x}=\mathrm{y} \\
& M_{3}: \mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x}) \\
& M_{4}: \mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{z}) \quad \forall \quad \mathrm{x}, \mathrm{y}, \mathrm{z}
\end{aligned}
$$

Then d is called Metric in X and (X, d) is called Metric Space.
$\mathrm{d}: l_{2} \times l_{2} \rightarrow$ R s.t $\quad \mathrm{d}(\mathrm{x}, \mathrm{y})=\sqrt{\sum_{k=1}^{\infty}\left|x_{k}-y_{k}\right|^{2}}$
$\mathrm{x}=\left\{x_{k}\right\} \quad, \quad \mathrm{y}=\left\{y_{k}\right\} \in l_{2}$
s.t $\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}<\infty$ then $\left(l_{2}, d\right)$ is Metric Space.
$M_{1}: \mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 0 \quad \because \quad \sqrt{\sum_{k=1}^{\infty}\left|x_{k}-y_{k}\right|^{2}} \geq 0$

$M_{2}: d(x, y)=011 \Leftrightarrow 11 \sqrt{\sum_{k=1}^{\infty}\left|x_{k}-y_{k}\right|^{2}}=010 \mathrm{~S}$

$x_{k}=y_{k} \quad \Rightarrow \quad\left\{x_{1}, x_{2}, \ldots \ldots \ldots \ldots.\right\}=\left\{y_{1}, y_{2}, \ldots \ldots \ldots.\right\}$
$\underline{x}=\underline{y}$
$M_{3}: \mathrm{d}(\mathrm{x}, \mathrm{y})=\sqrt{\sum_{k=1}^{\infty}\left|x_{k}-y_{k}\right|^{2}}=\sqrt{\sum_{k=1}^{\infty}\left|y_{k}-x_{k}\right|^{2}}=\mathrm{d}(\mathrm{y}, \mathrm{x})$
$M_{4}: \mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{z})$
$\sqrt{\sum_{k=1}^{\infty}\left|x_{k}-z_{k}\right|^{2}}=\mathrm{d}(\mathrm{x}, \mathrm{z})=\sqrt{\sum_{k=1}^{\infty}\left|x_{k}-y_{k}+y_{k}-z_{k}\right|^{2}}$
$\leq \sqrt{\sum_{k=1}^{\infty}\left|x_{k}-y_{k}\right|^{2}}+\sqrt{\sum_{k=1}^{\infty}\left|y_{k}-z_{k}\right|^{2}}$
$=\mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{z})$
$|a+b| \leq|a|+|b|$ (Minkowski Inequality)
$\sqrt{\sum_{k=1}^{\infty}\left|a_{k}+b_{k}\right|^{2}} \leq \sqrt{\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}}+\sqrt{\sum_{k=1}^{\infty}\left|b_{k}\right|^{2}}$

Question

$$
\begin{aligned}
& d^{\prime}: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R} \text { s.t } \\
& d^{\prime}(\mathrm{x}, \mathrm{y})=\frac{d(x, y)}{1+d(x, y)} \quad \forall \quad \mathrm{x}, \mathrm{y} \quad \in \mathrm{X}
\end{aligned}
$$

Where d is metric on X then $\left(\mathrm{X}, d^{\prime}\right)$ is metric.
$M_{1}: d^{\prime}(\mathrm{x}, \mathrm{y}) \geq 0 \quad$ since $\mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 0$ by M_{1}
M_{1} is satisfied or M_{1} is True.

$$
\begin{aligned}
& M_{2}: d^{\prime}(\mathrm{x}, \mathrm{y})=0 \quad \Rightarrow \quad \frac{d(x, y)}{1+d(x, y)}=0 \\
& \mathrm{~d}(\mathrm{x}, \mathrm{y})=0 \quad \Leftrightarrow \quad \mathrm{x}=\mathrm{y} \quad \because \mathrm{~d} \text { is Metric on } \mathrm{X} \\
& M_{3}: d^{\prime}(\mathrm{x}, \mathrm{y})=\frac{d(x, y)}{1+d(x, y)}=\frac{d(y, x)}{1+d(y, x)} \\
&=\mathrm{d}(\mathrm{y}, \mathrm{x}) \quad \because \text { d is Metric }
\end{aligned}
$$

$$
M_{4}: d^{\prime}(\mathrm{x}, \mathrm{z})=\frac{d(\mathrm{x}, \mathrm{z})}{1+d(\mathrm{x}, \mathrm{z})}
$$

$$
\mathrm{N}_{\leq}^{\leq \frac{d(x, y)+d(y, z)}{1+d(x, y)+(y, z)}} \begin{aligned}
& \frac{d(x, y)]}{1+d(x, y)+d(y, z)}
\end{aligned}+\frac{d a d a, f, z) L}{1+d(x, y)+d(y, z)} \text { мathS }
$$

$d: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R}$ s.t
(i) $\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ iff $\mathrm{x}=\mathrm{y}$
(ii) $\quad \mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{z}, \mathrm{y})$ then (X, d) is Metric Space.

Solution:

$$
\begin{array}{rlrl}
M_{1}: & \mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{z}, \mathrm{y}) & \text { by eq. (ii) } \\
& \text { Put } \mathrm{z}=\mathrm{x} & \\
& \mathrm{~d}(\mathrm{x}, \mathrm{x}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{x}, \mathrm{y}) & \\
& 0 \leq 2 \mathrm{~d}(\mathrm{x}, \mathrm{y}) & & \\
& \mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 0 & M_{1} & \text { is True. }
\end{array}
$$

$M_{2}: \mathrm{d}(\mathrm{x}, \mathrm{y})=0$ iff $\mathrm{x}=\mathrm{y}$ given in (i) \quad So, M_{2} is True.
$M_{3}: \mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{z}, \mathrm{y})$
Put $\mathrm{y}=\mathrm{x}$
$\mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{x})+\mathrm{d}(\mathrm{z}, \mathrm{x})$
$d(x, z) \leq d(z, x) \quad$ since $d(x, x)=0$ \qquad
Replace x by z and z by x
$\mathrm{d}(\mathrm{z}, \mathrm{x}) \leq \mathrm{d}(\mathrm{x}, \mathrm{z})$ \qquad
$\mathrm{d}(\mathrm{x}, \mathrm{z})=\mathrm{d}(\mathrm{z}, \mathrm{x}) \quad M_{3}$ is True.
$M_{4}: \mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{z}, \mathrm{y}) \quad$ By (2)
$\mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{z})$
M_{4} is True.
Hence (X, d) is Metric Space.
Let (X, d) be a Metric Space then $d^{\prime}(x, y)=\begin{aligned} & d^{\prime}-\mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R} \text { s.t } \\ & \operatorname{Min}\left(\mathrm{d}(\mathrm{x}, \mathrm{y}, \mathrm{y}, \mathrm{t}) \text { then }\left(\mathrm{x}, d^{\prime}\right) \text { is Metrie Space. }\right.\end{aligned}$

$M_{3}: d^{\prime}(\mathrm{x}, \mathrm{y})=\operatorname{Min}(\mathrm{d}(\mathrm{x}, \mathrm{y}), 1)$

$$
=\operatorname{Min}(\mathrm{d}(\mathrm{y}, \mathrm{x}), 1)=\mathrm{d}(\mathrm{y}, \mathrm{x})
$$

Note: $\operatorname{Min}(\mathrm{d}(\mathrm{x}, \mathrm{y}), 1) \geq 0$ (Minimum is the answer. In this answer is 1)

$$
\begin{aligned}
& M_{3}: d^{\prime}(\mathrm{x}, \mathrm{z}) \operatorname{Min}(\mathrm{d}(\mathrm{x}, \mathrm{z}), 1)\leq \operatorname{Min}(\mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{z})), 1) \because \mathrm{d} \text { is Metric } \\
& \leq \operatorname{Min}(\mathrm{d}(\mathrm{x}, \mathrm{y}), 1)+\operatorname{Min}(\mathrm{d}(\mathrm{y}, \mathrm{z}), 1) \\
& d^{\prime}(\mathrm{x}, \mathrm{z}) \leq d^{\prime}(\mathrm{x}, \mathrm{y})+d^{\prime}(\mathrm{y}, \mathrm{z})
\end{aligned}
$$

(X, d^{\prime}) is Metric.

Example

$$
\begin{aligned}
\operatorname{Min}(2+3,1) & \leq \operatorname{Min}(2,1)+\operatorname{Min}(3,1) \\
1 & \leq 1+1
\end{aligned}
$$

Question:

$\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)$ are Metric Spaces
$\mathrm{X}=X_{1} \times X_{2}$
$d: \mathrm{X} \times \mathrm{X} \rightarrow \mathrm{R}$ s.t
$\mathrm{d}(\mathrm{x}, \mathrm{y})=\max \left(d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right)$
where $\mathrm{x}=\left(x_{1}, x_{2}\right) \in \mathrm{X}, \mathrm{y}=\left(y_{1}, y_{2}\right) \in \mathrm{X}$
then (X, d) is Metric Space.
Solution:
M_{1} : Since d_{1}, d_{2} is metric space
Then $\quad d_{i}\left(x_{i}, y_{i}\right) \geq 0 \quad \mathrm{i}=1,2, \ldots \ldots$
$\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)$
$1 \underset{d^{\prime}\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right] \geq 0}{\max \left[d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right] \geq 0}$
$M_{2}: d^{\prime}\left[\left(x_{1}, x / 2\right),\left(y_{1}, y_{2}^{\prime}\right)\right]=0 \Leftrightarrow \max \left[d d\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right]=0$ $d^{\prime}\left[\left(x_{1}, x_{2}\right),\left(y_{4}, y_{2}\right)\right]=0 \Leftrightarrow d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)=0$

$$
=d^{\prime}\left[d_{1}\left(y_{1}, x_{1}\right), d_{2}\left(y_{2}, x_{2}\right)\right]
$$

$$
=d^{\prime}\left[\left(y_{1}, y_{2}\right),\left(x_{1}, x_{2}\right)\right] \quad d_{1}, d_{2} \text { are metric space. }
$$

$$
\begin{equation*}
M_{4}: \text { let } \max \left[d_{1}\left(x_{1}, z_{1}\right), d_{2}\left(x_{2}, z_{2}\right)\right]=d_{1}\left(x_{1}, z_{1}\right) \tag{i}
\end{equation*}
$$

Since $d_{1}\left(x_{1}, y_{1}\right) \leq \max \left[d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right]$

$$
\begin{equation*}
d_{1}\left(y_{1}, z_{1}\right) \leq \max \left[d_{1}\left(y_{1}, z_{1}\right), d_{2}\left(y_{2}, z_{2}\right)\right] \tag{ii}
\end{equation*}
$$

Adding (ii) and (iii)
$d_{1}\left(x_{1}, y_{1}\right)+d_{1}\left(y_{1}, z_{1}\right) \leq \max \left[d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right]+\max$
$\left[d_{1}\left(y_{1}, z_{1}\right), d_{2}\left(y_{2}, z_{2}\right)\right]$
Since d_{1} is metric

$$
d_{1}\left(x_{1}, z_{1}\right) \leq d_{1}\left(x_{1}, y_{1}\right)+d_{1}\left(y_{1}, z_{1}\right)
$$

$d_{1}\left(x_{1}, z_{1}\right) \leq \max \left[d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right]+\max \left[d_{1}\left(y_{1}, z_{1}\right), d_{2}\left(y_{2}, z_{2}\right)\right]$
Put the value of $d_{1}\left(x_{1}, z_{1}\right)$ from (i)

$$
\begin{aligned}
& \max \left[d_{1}\left(x_{1}, z_{1}\right), d_{2}\left(x_{2}, z_{2}\right)\right] \leq \max \left[d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right)\right]+ \\
& \max \left[d_{1}\left(y_{1}, z_{1}\right), d_{2}\left(y_{2}, z_{2}\right)\right] \\
& d^{\prime}\left[\left(x_{1}, x_{2}\right),\left(z_{1}, z_{2}\right)\right] \leq d^{\prime}\left[\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right]+d^{\prime}\left[\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right]
\end{aligned}
$$

Hence d^{\prime} is metric on $X_{1} \times X_{2}$.

MathCity.org Merging man \& maths Functional Analysis by Prof. Mumtaz Ahmad

Lecture \# 2

Question:

$\mathrm{d}: X \times X \rightarrow \mathrm{R}$ s.t

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=\sqrt{\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|^{2}} \text { is metric on } \mathrm{X}
$$

$$
\begin{array}{ccc}
M_{1}: \mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 0 & \because & \sqrt{\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|^{2}} \geq 0 \\
M_{2}: \mathrm{d}(\mathrm{x}, \mathrm{y})=0 \quad & \Rightarrow & \sqrt{\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|^{2}}=0 \\
\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|^{2}=0 & \\
x_{i}-y_{i}=0 & & \mathrm{i}=1,2 \ldots \ldots \ldots \infty \\
x_{i}=y_{i} & & \Rightarrow \quad\left\{x_{1}, x_{2}, \ldots \ldots \ldots \ldots\right\}=\left\{y_{1,}, y_{2, \ldots \ldots \ldots .}\right\}
\end{array}
$$

$$
\underline{x}=\underline{y}
$$

$$
1 \begin{aligned}
& M_{3}: \mathrm{d}(\mathrm{x}, \mathrm{y})=\sqrt{\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|^{2}}=\sqrt{\sum_{i=1}^{\infty}\left|y_{i}-x_{i}\right|^{2}}=\mathrm{d}(\mathrm{y}, \mathrm{x}) \\
& M_{4}: \mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{z})
\end{aligned}
$$

$$
\begin{gathered}
\sqrt{\sum_{i=1}^{\infty}\left|x_{i}-z_{i}\right|^{2}}=\mathrm{d}(\mathrm{x}, \mathrm{z})=\sqrt{\sum_{i=1}^{\infty}\left|x_{i}-y_{i}+y_{i}-z_{i}\right|^{2}} \\
\ln ^{0} \sum_{i=1}^{\infty} \sqrt{\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|^{2}}+\sqrt{\sum_{i=1}^{\infty}\left|y_{i}-z_{i}\right|^{2}}
\end{gathered}
$$

$$
\sqrt{\sum_{i=1}^{\infty}\left|a_{i}+b_{i}\right|^{2}} \leq \sqrt{\sum_{i=1}^{\infty}\left|a_{i}\right|^{2}}+\sqrt{\sum_{i=1}^{\infty}\left|b_{i}\right|^{2}}
$$

Question:

$$
\left|\mathrm{d}(\mathrm{x}, \mathrm{y})-\mathrm{d}\left(x^{\prime}, y^{\prime}\right)\right| \leq \mathrm{d}\left(\mathrm{x}, x^{\prime}\right)+\mathrm{d}\left(\mathrm{y}, y^{\prime}\right)
$$

By $M_{4}: \quad \mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}\left(\mathrm{x}, x^{\prime}\right)+\mathrm{d}\left(x^{\prime}, y^{\prime}\right)+\mathrm{d}\left(\mathrm{y}, y^{\prime}\right)$

$$
\begin{equation*}
\mathrm{d}(\mathrm{x}, \mathrm{y})-\mathrm{d}\left(x^{\prime}, y^{\prime}\right) \leq \mathrm{d}\left(\mathrm{x}, x^{\prime}\right)+\mathrm{d}\left(\mathrm{y}, y^{\prime}\right) \tag{1}
\end{equation*}
$$

Interchanging x by $x^{\prime} \&$ y by y^{\prime}

$$
\mathrm{d}\left(x^{\prime}, y^{\prime}\right)-\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}\left(x^{\prime}, x\right)+\mathrm{d}\left(y^{\prime}, y\right)
$$

Multiply by -1

$$
\begin{equation*}
-\left[\mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}\left(x^{\prime}, y^{\prime}\right)\right] \leq \mathrm{d}(\mathrm{x}, \mathrm{y})-\mathrm{d}\left(x^{\prime}, y\right) \tag{2}
\end{equation*}
$$

$$
\begin{gathered}
-\left[\mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}\left(x^{\prime}, y^{\prime}\right)\right] \leq \mathrm{d}(\mathrm{x}, \mathrm{y})-\mathrm{d}\left(x^{\prime}, y^{\prime}\right) \leq \mathrm{d}\left(\mathrm{x}, x^{\prime}\right)+\mathrm{d}\left(\mathrm{y}, y^{\prime}\right) \\
\left|\mathrm{d}(\mathrm{x}, \mathrm{y})-\mathrm{d}\left(x^{\prime}, y^{\prime}\right)\right| \leq \mathrm{d}\left(\mathrm{x}, x^{\prime}\right)+\mathrm{d}\left(\mathrm{y}, y^{\prime}\right)
\end{gathered}
$$

Distance between two sets:

Suppose that A and B are subsets of metric space (X,d). Then
(i) $\mathrm{d}(\mathrm{A}, \mathrm{B})=\operatorname{Inf} \mathrm{d}(\mathrm{A}, \mathrm{B})$
$a \in A$
$b \in B$
(ii) If $\mathrm{A}=\{\mathrm{x}\}$

$$
d(A, B)=\operatorname{Inf} d(x, B) \quad x \in A
$$

Question:

Prove that $|\mathrm{d}(\mathrm{x}, \mathrm{A})-\mathrm{d}(\mathrm{y}, \mathrm{A})| \leq \mathrm{d}(\mathrm{x}, \mathrm{y}) \quad$ when $\mathrm{A} \subseteq \mathrm{X}, \quad \mathrm{x}, \mathrm{y} \in \mathrm{X}$
Proof:
Def. of
distance $b / w \quad$ For any $z \in A$
point and a
set $d(x, A)=d(x, z) \leq d(x, y)+d(y, z)$
$\operatorname{lnf} d(x, A)$
So $d(x, A)=\operatorname{Inf} d(x, z) \leq d(x, y)+\operatorname{Inf} d(y, z) \quad \longleftarrow \int z \in A$

$$
\begin{aligned}
& d(x, A) \leq d(x, y)+d(y, A) \\
& d(x, A)-d(y, A)<d(x, y) \cap \text { gan \& (1)aths } \\
& \text { Interchanging } x b v y
\end{aligned}
$$

Fldd $\begin{aligned} & \text { Interchanging } x \text { by } y \\ & (0, A) \\ & d\end{aligned}(x, A) \leq d(y, x)$ sis by Prof. Mumtaz Ahmad

$$
[\mathrm{d}(\mathrm{x}, \mathrm{~A})-\mathrm{d}(\mathrm{y}, \mathrm{~A})] \leq \mathrm{d}(\mathrm{y}, \mathrm{x})
$$

$$
\begin{equation*}
|x|<\alpha \quad \Rightarrow-\alpha<x<\alpha \tag{2}
\end{equation*}
$$

Or $\quad-\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{A})-\mathrm{d}(\mathrm{y}, \mathrm{A})$
From (1) \& (2)

$$
-\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{~A})-\mathrm{d}(\mathrm{y}, \mathrm{~A}) \leq \mathrm{d}(\mathrm{y}, \mathrm{x}) \Rightarrow|\mathrm{d}(\mathrm{x}, \mathrm{~A})-\mathrm{d}(\mathrm{y}, \mathrm{~A})| \leq \mathrm{d}(\mathrm{x}, \mathrm{y})
$$

Diameter of a set:

Suppose that A is subset of metric space (X, d) then diameter of set is define as
(i) $\quad \delta(\mathrm{A})=\operatorname{Sup} \mathrm{d}(\mathrm{x}, \mathrm{y})$
(ii) If $\mathrm{A}=\phi \quad, \quad \delta(\phi)=-\infty$
(iii) If $\mathrm{A}=\{\mathrm{x}\} \quad, \quad \delta(\mathrm{A})=0$

Note: If diameter of set is finite then set is said to be bounded set.

Question:

What is open ball, close ball and a sphere in a metric space.
Solution:
Open Ball:

$$
\mathrm{B}\left(x_{0}, r\right)=\left\{\mathrm{x} \in \mathrm{X}: \mathrm{d}\left(\mathrm{x}, x_{0}\right)<r\right\}
$$

For real line

$$
\begin{aligned}
& \mathrm{B}\left(x_{0}, r\right)=\left\{\mathrm{x} \in \mathrm{R}:\left|\mathrm{x}-x_{0}\right|<r\right\} \\
& \quad\left|\mathrm{x}-x_{0}\right|<r \\
& -\mathrm{r}<\mathrm{x}-x_{0}<\mathrm{r} \\
& x_{0}-r<\mathrm{x}<x_{0}+r \\
& \quad] x_{0}-r, x_{0}+r[\text { open interval }
\end{aligned}
$$

Close Ball:
 $\left.\mathrm{B}\left(x_{0}, r\right)=\left\{\mathrm{x} \in \mathrm{X}: \mathrm{d}\left(\mathrm{x}, x_{0}\right) \leq r\right\}\right]$

For real line
Bin ine Merging man \& maths

Sphere:

$$
\mathrm{S}\left(x_{0}\right)=\left\{\mathrm{x} \in \mathrm{X}: \mathrm{d}\left(\mathrm{x}, x_{0}\right)=r\right\}
$$

For real line

$$
\begin{aligned}
\mathrm{S}\left(x_{0}\right)= & \left\{\mathrm{x} \in \mathrm{R}:\left|\mathrm{x}-x_{0}\right|=r\right\} \\
& \left|\mathrm{x}-x_{0}\right|=r \\
& \mathrm{x}-x_{0}= \pm \mathrm{r} \\
& \mathrm{x}=x_{0} \pm \mathrm{r} \\
& \left\{x_{0}-r, x_{0}+r\right\} \text { Set }
\end{aligned}
$$

Question:

Show that every open ball is an open set in a metric space.
Solution:
Let $\mathrm{B}\left(x_{0}, r\right)=\left\{\mathrm{x} \in \mathrm{X}: \mathrm{d}\left(\mathrm{x}, x_{0}\right)<r\right\}$ be an open ball in metric space.
Let $\mathrm{x} \in \mathrm{B}\left(x_{0}, r\right) \quad, \quad \mathrm{d}\left(\mathrm{x}, x_{0}\right)<r$
put $\mathrm{d}\left(\mathrm{x}, x_{0}\right)=r_{1}$ then $r_{1}<\mathrm{r}$
Define $r_{2}=r-r_{1}$
(1) $\quad \Rightarrow \quad r_{2}>0$

Now consider an open ball $\mathrm{B}\left(\mathrm{x}, r_{2}\right)$ and let $\mathrm{y} \in \mathrm{B}\left(\mathrm{x}, r_{2}\right)$

$$
\begin{equation*}
\Rightarrow \mathrm{d}(\mathrm{y}, \mathrm{x})<r_{2} \tag{2}
\end{equation*}
$$

By $M_{4}: \mathrm{d}\left(\mathrm{y}, x_{0}\right) \leq \mathrm{d}(\mathrm{y}, \mathrm{x})+\mathrm{d}\left(\mathrm{x}, x_{0}\right)$

$$
\mathrm{d}\left(\mathrm{y}, x_{0}\right)<r_{2}+r_{1}
$$

Every close ball is a close set in metric space.
Solution: Let $\bar{B}(\mathrm{a}, \mathrm{r})=\{\mathrm{x} \in \mathrm{X}: \mathrm{d}(\mathrm{x}, a) \leq r\}$ be a close ball.
To show $\bar{B}(\mathrm{a}, \mathrm{r})$ is an close set we shall prove that $\bar{B}^{\prime}(\mathrm{a}, \mathrm{r})$ is open set.
Let $\mathrm{x} \in \bar{B}^{\prime}(\mathrm{a}, \mathrm{r}) \quad \Rightarrow \quad \mathrm{d}(\mathrm{x}, \mathrm{a})>\mathrm{r}$
Take $r_{1}=\mathrm{d}(\mathrm{x}, \mathrm{a})-\mathrm{r}$ then $r_{1}>0$
Consider $B_{1}\left(x, r_{1}\right)$ be an open ball. We shall prove $B_{1}\left(x, r_{1}\right) \leq \bar{B}^{\prime}(\mathrm{a}, \mathrm{r})$
Let $\mathrm{y} \in B_{1}\left(x, r_{1}\right) \quad \Rightarrow \quad \mathrm{d}(\mathrm{y}, \mathrm{x})<r_{1}$
By $M_{4} \quad \mathrm{~d}(\mathrm{x}, \mathrm{a}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, a) \quad \Rightarrow \quad \mathrm{d}(\mathrm{y}, \mathrm{a}) \geq \mathrm{d}(\mathrm{x}, \mathrm{a})-\mathrm{d}(\mathrm{x}, y)$
$\mathrm{d}(\mathrm{y}, \mathrm{a}) \geq \mathrm{d}(\mathrm{x}, \mathrm{a})-r_{1} \quad \Rightarrow \quad \mathrm{~d}(\mathrm{y}, \mathrm{a}) \geq \mathrm{d}(\mathrm{x}, \mathrm{a})-\mathrm{d}(\mathrm{x}, a)+\mathrm{r}$
$\mathrm{d}(\mathrm{y}, \mathrm{a})>\mathrm{r}, \quad \mathrm{y} \in \bar{B}(\mathrm{a}, \mathrm{r}) \quad \Rightarrow \quad B_{1}\left(x, r_{1}\right) \leq \bar{B}^{\prime}(\mathrm{a}, \mathrm{r})$
$\bar{B}^{\prime}(\mathrm{a}, \mathrm{r})$ is an open set. Hence $\bar{B}(\mathrm{a}, \mathrm{r})$ is a close set.

Lecture \# 3

Sequence:

Suppose that (X, d) is a metric space a sequence in X is a function.

$$
\mathrm{f}: \mathrm{N} \rightarrow \mathrm{X} \quad \forall \mathrm{n} \in \mathrm{~N}
$$

if $\mathrm{f}\left(x_{n}\right)=x_{n}$ then x_{n} will be nth term of $\operatorname{seq}\left\{x_{n}\right\}$
e.g. $\quad \mathrm{f}(\mathrm{n})=\frac{n}{2} \quad \forall \mathrm{n} \in \mathrm{N}$

$$
\begin{array}{lll}
\mathrm{f}(\mathrm{n})=2 \mathrm{n} \\
\mathrm{f}(\mathrm{n})=5 \mathrm{n} \\
\mathrm{f}(\mathrm{n})=\left\lceil\frac{n}{2}\right\rfloor \\
\mathrm{f}(\mathrm{n})=\lceil\mathrm{n}\rceil & \forall \mathrm{n} \in \mathrm{~N} \\
\forall \mathrm{n} \in \mathrm{~N} & \text { Floor Brackets } \\
\text { Ceiling Brackets }
\end{array}
$$

Convergent Sequence:

A sequence $\left\{x_{n}\right\}$ in metric space (X, d) is said to be converges $x \in X$. If given any $\varepsilon>0 \exists$ a natural number.

Matraing man \& maths

s.t $\quad \forall \quad \mathrm{n} ; \mathrm{n} \geq n_{0} \Rightarrow \mathrm{~d}\left(x_{n}, \mathrm{x}\right)<\varepsilon$

or $\quad \forall \quad \mathrm{n} ; \mathrm{n} \geq n_{0} \Rightarrow x_{n} \rightarrow \mathrm{x}$ when $n \rightarrow \infty$

Question:

Prove that a sequence in a (X, d) converges to one and only one limit.
Solution:
Let (X, d) be a metric space $\left\{x_{n}\right\}$ be a convergent sequence converges to two distinct points x and x^{\prime} of X .

Let $\mathrm{r}=\mathrm{d}\left(\mathrm{x}, x^{\prime}\right): \mathrm{r}>0$
Since $x_{n} \rightarrow \mathrm{x}$, for $\varepsilon>0 \exists n_{1} \in \mathrm{~N}$ s.t
$\forall \quad \mathrm{n} ; \mathrm{n} \geq n_{1} \Rightarrow \mathrm{~d}\left(x_{n}, \mathrm{x}\right)<\frac{\varepsilon}{2}$
Similarly, since $x_{n} \rightarrow x^{\prime}$, for $\varepsilon>0 \exists n_{2} \in$ N s.t

$$
\forall \quad \mathrm{n} ; \mathrm{n} \geq n_{2} \Rightarrow \mathrm{~d}\left(x_{n}, x^{\prime}\right)<\frac{\varepsilon}{2}
$$

Take $n_{0}=\operatorname{Max}\left(n_{1}, n_{2}\right)$
$\forall \quad \mathrm{n} ; \mathrm{n} \geq n_{0} \Rightarrow \mathrm{~d}\left(x_{n}, \mathrm{x}\right)<\frac{\varepsilon}{2}$

$$
\mathrm{d}\left(x_{n}, x^{\prime}\right)<\frac{\varepsilon}{2}
$$

Now $\mathrm{r}=\mathrm{d}\left(\mathrm{x}, x^{\prime}\right) \leq\left(x, x_{n}\right)+\mathrm{d}\left(x_{n}, x^{\prime}\right)$
$\mathrm{r}=\mathrm{d}\left(\mathrm{x}, x^{\prime}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}$
$\mathrm{r}<\mathrm{r} \quad \because \varepsilon=\mathrm{r}$
Which is contradiction.
So $\mathrm{x}=x^{\prime}$
Note: Limit and limit points for a convergent sequence is same.

Cauchy Sequence:

Let (X, d) be a metric-space a $\left\{x_{n}\right\}$ is said to a Cauchy sequence.

Theorem:
Prove that every convergent sequence is a Cauchy sequence.
Proof: Suppose that $\left\{x_{n}\right\}$ is a convergent sequence in (X,d) metric space. And converges to a point $\mathrm{x} \in \mathrm{X}$.

Then for $\varepsilon>0 \exists n_{1} \in \mathrm{~N}, n_{1}=n_{1}(\varepsilon)$
s.t $\quad \forall \quad \mathrm{n} \geq n_{1} \Rightarrow \mathrm{~d}\left(x_{n}, \mathrm{x}\right)<\frac{\varepsilon}{2}$

Also for same $n_{2} \in \mathrm{~N}, n_{2}=n_{2}(\varepsilon)$

$$
\begin{aligned}
& \quad \forall \quad \mathrm{m} ; \mathrm{m} \geq n_{2} \Rightarrow \mathrm{~d}\left(x_{m}, x\right)<\varepsilon \quad \text { Take } n_{0}=\operatorname{Max}\left(n_{1}, n_{2}\right) \\
& \forall \quad \mathrm{m}, \mathrm{n} ; \mathrm{m}, \mathrm{n} \geq n_{0} \Rightarrow \mathrm{~d}\left(x_{m}, x_{n}\right) \leq \mathrm{d}\left(x_{m}, x\right)+\mathrm{d}\left(x_{m}, x\right) \\
& \forall \quad \\
& \mathrm{m}, \mathrm{n} ; \mathrm{m}, \mathrm{n} \geq n_{0} \Rightarrow \mathrm{~d}\left(x_{m}, x_{n}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& \forall \quad \mathrm{~m}, \mathrm{n} ; \mathrm{m}, \mathrm{n} \geq n_{0} \Rightarrow \mathrm{~d}\left(x_{m}, x_{n}\right)<\varepsilon
\end{aligned}
$$

Hence $\left\{x_{n}\right\}$ is a Cauchy Sequence in (X, d$)$.

Theorem:

A Cauchy sequence in (X, d) metric space converges. Iff it has a convergent subsequence.

Proof:
Suppose that $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, d) which converges to $\mathrm{x} \in \mathrm{X}$.
Then $\left\{x_{n}\right\}$ itself is a convergent subsequence of it.
Conversely, let a Cauchy sequence $\left\{x_{n}\right\}$ has convergent subsequence $\left\{x_{n}\right\}$ converges to $\mathrm{x} \in \mathrm{X}$.

Then for $\varepsilon>0 \exists n_{1}, n_{2} \in \mathrm{~N}$

$$
n_{1}=n_{1}(\varepsilon), \quad n_{2}=n_{2}(\varepsilon)
$$

s.t $\quad \forall \quad n_{k} ; n_{k} \geq n_{1} \Rightarrow \mathrm{~d}\left(x_{n}, x_{n k}\right)<\frac{\varepsilon}{2}$
$\forall \quad n_{k} ; n_{k} \geq n_{2} \Rightarrow \mathrm{~d}\left(x_{n k}, x\right)<\frac{\varepsilon}{2}$
Take $n_{0}=\operatorname{Max}\left(n_{1}, n_{2}\right)$
$\forall \mathrm{n}, \mathrm{n} \geq n_{0} \Rightarrow \mathrm{~d}\left(x_{n}, x\right) \leq \mathrm{d}\left(x_{n}, x_{n k}\right)+\mathrm{d}\left(x_{n k}, x\right)$
$\forall \mathrm{n}, \mathrm{n} \geq n_{0} \neq \mathrm{d}\left(x_{n}, x\right) 14 \frac{1}{2} 0 \frac{\varepsilon}{2} 11210$ OLAS
$\forall \mathrm{n}, \mathrm{n} \geq n_{0} \Rightarrow \mathrm{~d}\left(x_{n}, x\right)<\varepsilon$

Note: Every sequence itself is subsequence of it.

Complete Space:

Let $\left\{x_{n}\right\}$ be a Cauchy sequence in (X, d) if $x_{n} \rightarrow \mathrm{x} \in \mathrm{X}$ then (X, d) is said to be complete space. e.g. $\mathrm{R} \& \mathrm{C}$ are complete spaces.

Dense Subset: If $\mathrm{A} \subseteq \mathrm{X}$ s.t $\bar{A}=\mathrm{X}$ then A is dense in X .

Somewhere \& Nowhere Dense Subset:

If $\mathrm{A} \subseteq \mathrm{X},\left(\bar{A}^{0}\right) \neq \phi$ then it is somewhere dense subset.
If $\left(\bar{A}^{0}\right)=\phi$ then it is nowhere dense subset.
Super Set

Nested Sequence:

Let $A_{1}, A_{2} \ldots \ldots A_{n}, \ldots .$. be a sequence of non-empty set in (X,d) s.t
(i) $A_{n} \supseteq A_{n+1}, \mathrm{n}=1,2, \ldots$
(ii) $\delta\left(A_{n}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$

$\left\{A_{n}\right\}$ is nested sequence of set. ${ }^{12}$

Lecture \# 4

Normed Space:

Let N be a linear space over the field $\mathrm{F}(\mathrm{R}$ or C) A norm on N is a function

$$
\begin{array}{lll}
& \|\cdot\|: \mathrm{N} \rightarrow \mathrm{R} \text { such that } \\
N_{1}: & \forall \underline{\mathrm{x}} \in \mathrm{~N} \quad, \quad\|\underline{x}\| & \geq 0 \\
N_{2}: & \|\underline{x}\|=0 \quad \Leftrightarrow \quad \mathrm{x}=0 & \\
N_{3}: & \|\alpha \underline{x}\|=|\alpha|\|x\| & ,
\end{array} \quad \alpha \in \mathrm{F}
$$

$\|$.$\| is Norm and (\mathrm{N},\|\|$.$) is Normed space.$

Example:

Prove that l_{p} space consisting of all sequence $\mathrm{x}=\left\{x_{n}\right\}, x_{n} \in \mathrm{~F}$ under $\|\|:. l_{p} \rightarrow \mathrm{R}$ such that $\|x\|=\sqrt[p]{\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}} \quad$ where $\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty$ is normed space then $\left(l_{p},\|\|.\right)$ is normed space.

Solution:

$$
\begin{aligned}
& \|x\|=0 \quad \Leftrightarrow \quad\left\{x_{1}, x_{2}, \ldots \ldots . x_{n}, \ldots .\right\}=0 \\
& \|x\|=0 \quad \Leftrightarrow \quad \underline{\mathrm{x}}=0 \\
& N_{3}: \quad\|\alpha x\|=\sqrt[p]{\sum_{i=1}^{\infty}\left|\alpha x_{i}\right|^{p}} \\
& =|\alpha|^{p} \sqrt{\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}}=|\alpha|\|x\| \\
& N_{4}: \quad\|x+y\|=\sqrt[p]{\sum_{i=1}^{\infty}\left|x_{i}+y_{i}\right|^{p}} \\
& \text { By Minkoswki Inequality } \\
& \|x+y\| \leq \sqrt[p]{\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}} \quad+\sqrt[p]{\sum_{i=1}^{\infty}\left|y_{i}\right|^{p}} \\
& \|x+y\| \leq\|x\|+\|y\| \quad \text { Hence }\left(l_{p},\|.\|\right) \text { is normed space } .
\end{aligned}
$$

Question: Prove that l^{n} is a normed space under $\|\cdot\|: l^{n} \rightarrow \mathrm{R}$ such that

$$
\|x\|=\operatorname{Sup}_{i=1}^{n}\left|x_{i}\right|
$$

Solution:

$$
\begin{aligned}
& N_{1}:\|x\| \geq 0 \quad \because \operatorname{Sup}_{i=1}^{n}\left|x_{i}\right| \geq 0 \\
& N_{2}:\|x\|=0 \quad \Leftrightarrow \quad \operatorname{Sup}_{i=1}^{n}\left|x_{i}\right|=0 \\
& \left|x_{i}\right|=0 \quad \Leftrightarrow \quad\left\{x_{1}, x_{2}, \ldots \ldots . x_{n}\right\}=(0,0,0 \ldots .0) \\
& \|x\|=0 \quad \Leftrightarrow \quad \underline{\mathrm{x}}=0 \\
& \mathcal{N}_{3}:\|\alpha x\|=\operatorname{Sup}_{i=1}^{n}\left|\alpha x_{i}\right|=|\alpha| \operatorname{Sup}_{i=1}^{n}\left|x_{i}\right|=|\alpha| H x \| \gg
\end{aligned}
$$

$$
\begin{aligned}
& \|x+y\| \leq\|x\|+\|y\|
\end{aligned}
$$

Hence $\left(l^{n},\|\|.\right)$ is normed space.
Question: Show that a normed space is a metric space.
Proof:
Let $\mathrm{d}: \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{R}$ such that

$$
\begin{aligned}
& \quad \mathrm{d}(\mathrm{x}, \mathrm{y})=\|x-y\| \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{~N} \\
& M_{1}: \quad \mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 0 \quad \because \quad\|x-y\| \geq 0 \quad \begin{array}{c}
\text { By } N_{1} \\
M_{2}: \mathrm{d}(\mathrm{x}, \mathrm{y})=0 \quad \Leftrightarrow \quad\|x-y\|=0 \Leftrightarrow \mathrm{x}=\mathrm{y} \text { by } N_{2} \\
M_{3}: \\
\\
\\
\mathrm{d}(\mathrm{x}, \mathrm{y})=\|x-y\| \\
\\
=\|-1(y-x)\|=|-1|\|y-x\| \\
14
\end{array} \quad \because\|\alpha x\|=|\alpha|\|x\|
\end{aligned}
$$

$$
\begin{aligned}
& \quad=\|y-x\|=\mathrm{d}(\mathrm{y}, \mathrm{x}) \\
& M_{4}: \mathrm{d}(\mathrm{x}, \mathrm{z})=\|x-z\| \\
& =\|x-y+y-z\| \\
& \quad \leq\|x-y\|+\|y-z\| \quad \text { By } N_{4} \\
& \mathrm{~d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{z}) \\
& \text { Hence }(\mathrm{N}, \mathrm{~d}) \text { is a metric space. }
\end{aligned}
$$

Question: If $(\mathrm{N},\|\|$.$) is a normed space then |\|x\|-\|y\|| \leq\|x-y\|$
Solution:
Let

$$
\begin{align*}
& \|x\|=\|x-y+y\| \\
& \leq\|x-y\|+\|y\| \quad \text { By } N_{4} \\
& \|x\|-\|y\| \leq\|x-y\| \tag{1}
\end{align*}
$$

$$
\mid\|x\|-\|y\|\|\leq\| x-y \|
$$

Question:

$\forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{N}$ prove that
(i) $\mathrm{d}(\mathrm{x}+\mathrm{y}, \mathrm{y}+\mathrm{z})=\mathrm{d}(\mathrm{x}, \mathrm{z})$
(ii) $\mathrm{d}(\alpha \mathrm{x}, \alpha \mathrm{y}) \quad=|\alpha| \mathrm{d}(\mathrm{x}, \mathrm{y})$

Solution:
We know that
d: $\mathrm{N} \times \mathrm{N} \rightarrow \mathrm{R}$ such that

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=\|x-y\|
$$

(i) $\mathrm{d}(\mathrm{x}+\mathrm{y}, \mathrm{y}+\mathrm{z})=\|x-y+y-z\|$

$$
\begin{aligned}
& =\|x-z\| \\
& =\mathrm{d}(\mathrm{x}, \mathrm{z})
\end{aligned}
$$

(ii) $\quad \mathrm{d}(\alpha \mathrm{x}, \alpha \mathrm{y})=\|\alpha x-\alpha y\|$ $=\|\alpha(x-y)\|$

$$
\begin{aligned}
& =|\alpha|\|x-y\| \\
& =|\alpha| \mathrm{d}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

MathCity.org

 Merging man \& maths Functional Analysis by Prof. Mumataz Ammad
Lecture \# 5

Question \#1:

What is inner product space? State its axioms.
Solution:
Let V be a linear space over the field $\mathrm{F}(\mathrm{R}$ or C$)$ then an inner product space

$$
<., .>: V \times V \rightarrow F \text { such that }
$$

$$
I_{1}:<x, x>\geq 0 \quad \forall x \in \mathrm{~V}
$$

$$
I_{2}:<x, x>=0 \quad \Leftrightarrow \quad x=0
$$

$$
I_{3}:\langle x+y, z>=<x, z>+<y, z>\quad \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{~V}
$$

$$
I_{4}:<\alpha x, y>=\alpha<x, z>\quad, \alpha \in \mathrm{F}, \quad \mathrm{x}, \mathrm{y} \in \mathrm{~V}
$$

Then the pair $(\mathrm{V}, \leq, \gg$) is called inner product.

Note:

Show that every inner product space is a normed space.

Solution:

In an inner product space V then
$\|\|:. V \rightarrow R^{+}$define

$$
\begin{array}{ccc}
\|x\|=\sqrt{<x, x>} & \forall x \in \mathrm{~V} \\
N_{1}:\|x\| \geq 0 & \text { since }<x, x>\geq 0 & \text { By } I_{1} \\
N_{2}:\|x\|=0 & \Leftrightarrow \sqrt{<x, x>}=0 & \\
& \Leftrightarrow<x, x>=0 & \\
& \Leftrightarrow \quad x=0 & \text { By } I_{2}
\end{array}
$$

$$
\begin{aligned}
& N_{3}:\|\alpha x\|=\sqrt{\langle\alpha x, \alpha x\rangle} \quad \Rightarrow \quad \sqrt{\alpha \bar{\alpha}\langle x, x\rangle} \\
& =\sqrt{|\alpha|^{2}\langle x, x\rangle} \quad \Rightarrow \quad|\alpha| \sqrt{\langle x, x\rangle} \\
& =|\alpha||x| \mid \\
& \left.N_{4}:\|x+y\|^{2}=<\mathrm{x}+\mathrm{y}, \mathrm{x}+\mathrm{y}\right\rangle \\
& =\langle\mathrm{x}, \mathrm{x}\rangle+\langle\mathrm{x}, \mathrm{y}\rangle+\langle\mathrm{y}, \mathrm{x}\rangle+\langle\mathrm{y}, \mathrm{y}\rangle \\
& \leq\langle\mathrm{x}, \mathrm{x}\rangle+2 \operatorname{Re}<\mathrm{x}, \mathrm{y}\rangle+\langle\mathrm{y}, \mathrm{y}\rangle \\
& =\|x\|^{2}+2 \operatorname{Re}\|x\|\|y\|+\|y\|^{2} \quad \text { since } \operatorname{Re}<\mathrm{x}, \mathrm{y}>\leq\|x\|\|y\| \\
& \|x+y\|^{2} \leq(\|x\|+\|y\|)^{2} \\
& \|x+y\| \leq\|x\|+\|y\| \\
& (\mathrm{V},\|\cdot\|) \text { is a normed space. }
\end{aligned}
$$

Question \#3:

State and prove parallelogram law for inner product space.
Solution:

Statement:
 Define a function
 Merging man \& maths

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} \quad \forall x, y \in \mathrm{~V}
$$

Proof:

$$
\begin{align*}
\|x+y\|^{2}=<\mathrm{x} & +\mathrm{y}, \mathrm{x}+\mathrm{y}> \\
& =<\mathrm{x}, \mathrm{x}>+<\mathrm{x}, \mathrm{y}>+<\mathrm{y}, \mathrm{x}>+<\mathrm{y}, \mathrm{y}> \\
& =\|x\|^{2}+<\mathrm{x}, \mathrm{y}>+<\mathrm{y}, \mathrm{x}>+\|y\|^{2} \tag{i}
\end{align*}
$$

And

$$
\begin{align*}
& \|x-y\|^{2}=<\mathrm{x}
\end{aligned} \begin{aligned}
& -\mathrm{y}, \mathrm{x}-\mathrm{y}> \\
& \quad=<\mathrm{x}, \mathrm{x}>+<\mathrm{x},-\mathrm{y}>+<-\mathrm{y}, \mathrm{x}>+<\mathrm{y}, \mathrm{y}> \\
& = \tag{ii}
\end{align*} \quad\|x\|^{2}-<\mathrm{x}, \mathrm{y}>-<\mathrm{y}, \mathrm{x}>+\|y\|^{2} .
$$

Adding (i) and (ii)

$$
\begin{aligned}
\|x+y\|^{2}+\|x-y\|^{2} & =\|x\|^{2}+\left\langle\mathrm{x}, \mathrm{y}>+\left\langle\mathrm{y}, \mathrm{x}>+\|y\|^{2}+\|x\|^{2}-<\mathrm{x}, \mathrm{y}>-<\mathrm{y}, \mathrm{x}>+\|y\|^{2}\right.\right. \\
& =2\|x\|^{2}+2\|y\|^{2}
\end{aligned}
$$

Subtracting (ii) from (i)

$$
\begin{aligned}
\|x+y\|^{2}-\|x-y\|^{2} & =\|x\|^{2}+<\mathrm{x}, \mathrm{y}>+<\mathrm{y}, \mathrm{x}>+\|y\|^{2}-\|x\|^{2}+<\mathrm{x}, \mathrm{y}>+<\mathrm{y}, \mathrm{x}>-\|y\|^{2} \\
& =2<\mathrm{x}, \mathrm{y}>+2<\mathrm{y}, \mathrm{x}> \\
& =2[<\mathrm{x}, \mathrm{y}>+<\mathrm{y}, \mathrm{x}>] \\
& =2(2 \operatorname{Re}<\mathrm{x}, \mathrm{y}>) \\
& =4 \operatorname{Re}<\mathrm{x}, \mathrm{y}>
\end{aligned}
$$

Question \#4:

Prove that $4<\mathrm{x}, \mathrm{y}>=\left(\|x+y\|^{2}-\|x-y\|^{2}\right)+i\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)$
Solution:

$$
\begin{aligned}
& \text { Functink } \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+<x, y>+<y, x>+\|y\|^{2} \\
& \Rightarrow \quad\|x+i y\|^{2}=<x+i y, x+i y> \\
& =<x, x>+<x, i y>+<i y, x>+<i y, i y> \\
& =\langle\mathrm{x}, \mathrm{x}\rangle+\langle\mathrm{x}, i \mathrm{y}\rangle+\langle i \mathrm{y}, \mathrm{x}\rangle+i \overline{\mathrm{I}}<\mathrm{y}, \mathrm{y}\rangle \\
& =\|\mathrm{x}\|^{2}+<\mathrm{x}, i \mathrm{y}>+<i \mathrm{y}, \mathrm{x}>-i i\|\mathrm{y}\|^{2} \\
& =\|x\|^{2}+<x, i y>+<i y, x>+\|y\|^{2} \\
& \Rightarrow \quad\|x-y\|^{2}=<x-y, x-y> \\
& =<x, x>+<x,-y>+<-y, x>+<-y,-y> \\
& =\|x\|^{2}-<\mathrm{x}, \mathrm{y}>-<\mathrm{y}, \mathrm{x}>+<\mathrm{y}, \mathrm{y}>
\end{aligned}
$$

$$
\begin{align*}
& =\|x\|^{2}-<\mathrm{x}, \mathrm{y}>-<\mathrm{y}, \mathrm{x}>+\|y\|^{2} \tag{iii}\\
& \Rightarrow \quad\|x-i y\|^{2}=<x-i y, x-i y> \\
& =<\mathrm{x}, \mathrm{x}>+<\mathrm{x},-i \mathrm{y}\rangle+<-i \mathrm{y}, \mathrm{x}>+<-i \mathrm{y},-i \mathrm{y}> \\
& =\|\mathrm{x}\|^{2}-<\mathrm{x}, i \mathrm{y}>-<i \mathrm{y}, \mathrm{x}>+i \overline{\mathrm{I}}<\mathrm{y}, \mathrm{y}> \\
& =\|\mathrm{x}\|^{2}-<\mathrm{x}, i \mathrm{y}>-<i \mathrm{y}, \mathrm{x}>-i i\|\mathrm{y}\|^{2} \\
& =\|x\|^{2}-<x, i y>-<i y, x>+\|y\|^{2} \tag{iv}
\end{align*}
$$

Subtract (iii) from (i)
$\|x+y\|^{2}-\|x-y\|^{2}=\|x\|^{2}+<\mathrm{x}, \mathrm{y}>+\left\langle\mathrm{y}, \mathrm{x}>+\|y\|^{2}-\|x\|^{2}+<\mathrm{x}, \mathrm{y}>+<\mathrm{y}, \mathrm{x}\right\rangle-\|y\|^{2}$

$$
\begin{aligned}
& =2<\mathrm{x}, \mathrm{y}>+2<\mathrm{y}, \mathrm{x}> \\
& =2[<\mathrm{x}, \mathrm{y}>+<\mathrm{y}, \mathrm{x}>] \\
& =2(2 \operatorname{Re}<\mathrm{x}, \mathrm{y}>)
\end{aligned}
$$

Now Subtract (iv) from (ii) $=4 \mathrm{Re}\langle\mathrm{x}, \mathrm{y}\rangle$

$$
\begin{aligned}
& \|x+i y\|^{2}-\|x-i y\|^{2}=\|\mathrm{x}\|^{2}+<\mathrm{x}, i \mathrm{y}>+<i \mathrm{y}, \mathrm{x}>+\|\mathrm{y}\|^{2}-\|\mathrm{x}\|^{2}+<\mathrm{x}, i \mathrm{y}>+<i \mathrm{y}, \mathrm{x}>-\|\mathrm{y}\|^{2}
\end{aligned}
$$

$$
\begin{align*}
& =4 \operatorname{Im}<\mathrm{x}, \mathrm{y}> \tag{vi}
\end{align*}
$$

Add (v) and (vi)

$$
\begin{aligned}
\left(\|x+y\|^{2}-\|x-y\|^{2}\right)+ & i\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)=4 \operatorname{Re}<\mathrm{x}, \mathrm{y}>+i 4 \operatorname{Im}<\mathrm{x}, \mathrm{y}> \\
& =4(\operatorname{Re}<\mathrm{x}, \mathrm{y}>+i \operatorname{Im}<\mathrm{x}, \mathrm{y}>) \\
& =4<\mathrm{x}, \mathrm{y}>\quad \text { Proved }
\end{aligned}
$$

Question \#5:

Prove that every normed space is not an inner product space. Prove it by counter example.

Solution: Consider c $\left[0, \frac{\pi}{2}\right]$ i.e. A space of all continuous real valued function defined on $\left[0, \frac{\pi}{2}\right]$. Define $\|\|:. \mathrm{c}\left[0, \frac{\pi}{2}\right] \rightarrow F$ such that $\quad\|f\|=\operatorname{Sup}_{x \in\left[0, \frac{\pi}{2}\right]}|f(x)|$

Now let $\|f\|=\operatorname{Sup}_{t \in\left[0, \left.\frac{\pi}{2} \right\rvert\,\right.}|f(t)|$ 。

$$
\begin{array}{ll}
\|f\|=\sup _{t \in\left[0, \frac{\pi}{2}\right]}|\sin t|=1 & , \quad\|g\|=\sup _{t \in\left[0, \frac{\pi}{2}\right]}|\cos t|=1 \\
\|f+g\|=\sup _{t \in\left[0, \frac{\pi}{2}\right]}|\operatorname{sint}+\operatorname{cost}| &
\end{array}
$$

$$
\|f+g\|=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}
$$

$$
\|f-g\|=\operatorname{Sup}_{t \in\left[0, \frac{\pi}{2}\right]}|\operatorname{sint}-\operatorname{cost}|
$$

$$
\|f-g\|=1
$$

$$
\begin{aligned}
& N_{1}:\|f\| \geq 0 \quad \because \sup _{x \in\left[0, \frac{\pi}{2}\right]}|f(x)| \geq 0 \\
& N_{2}:\|f\|=0 \Leftrightarrow \sup _{x \in\left[0, \frac{\pi}{2}\right]}|f(x)|=0 \\
& \Leftrightarrow|f(x)|=0 \\
& \Leftrightarrow \quad f=0 \\
& \begin{aligned}
N_{3}:\|\alpha f\| & =\sup _{x \in\left[0, \frac{\pi}{2}\right]}|\alpha f(x)| \quad \Rightarrow \quad|\alpha|_{x \in\left[0, \frac{\pi}{2}\right]}^{\sup _{3}}|f(x)| \\
& =|\alpha|\|f\|
\end{aligned} \\
& N_{4}: \quad\|f+g\|=\sup _{x \in\left[0, \frac{\pi}{2}\right]}|f(x)+g(x)| \\
& \leq \operatorname{Sup}_{x \in\left[0, \frac{\pi}{2}\right]}|f(x)|+\operatorname{Sup}_{x \in\left[0, \frac{\pi}{2}\right]}|g(x)| \\
& \|f+g\| \leq\|f\|+\|g\|
\end{aligned}
$$

By //gram identity

$$
\begin{aligned}
& \|f+g\|^{2}+\|f-g\|^{2}=2\|f\|^{2}+2\|g\|^{2} \\
& (\sqrt{2})^{2}+(1)^{2} \neq 2(1)+2(1)
\end{aligned}
$$

$$
3 \neq 4
$$

Hence $\mathrm{c}\left[0, \frac{\pi}{2}\right]$ is not an inner product space.

Question \#6:

How can you prove that inner product space is a normed space and hence a metric space also show that its converse may not be true [normed space is not an inner product space V]

Solution:
In an inner product space V

$N_{1}:\|x\| \geq 0 \quad$ since $\left\langle x, x>\geq 0\right.$ By I_{1}
$N_{2}:\|x\|=0 \Leftrightarrow \sqrt{<x, x>1}=01$ and or maths

$$
\begin{array}{ccc}
N_{3}:\|\alpha x\| & =\sqrt{<\alpha x, \alpha x>} & = \\
=\sqrt{|\alpha|^{2}<x, x>} & \sqrt{\alpha \bar{\alpha}<x, x>} \\
=|\alpha|\|x\| & |\alpha| \sqrt{<x, x>} \\
N_{4}:\|x+y\|^{2}=<\mathrm{x}+\mathrm{y}, \mathrm{x}+\mathrm{y}> & \\
=<\mathrm{x}, \mathrm{x}>+<\mathrm{x}, \mathrm{y}>+<\mathrm{y}, \mathrm{x}>+<\mathrm{y}, \mathrm{y}> & \\
=<\mathrm{x}, \mathrm{x}>+2 \operatorname{Re}<\mathrm{x}, \mathrm{y}>+<\mathrm{y}, \mathrm{y}> & \\
& \leq\|x\|^{2}+2 \operatorname{Re}\|x\|\|y\|+\|y\|^{2} & \text { since } \operatorname{Re}<\mathrm{x}, \mathrm{y}>\leq\|x\|\|y\| \\
\|x+y\|^{2} \leq(\|x\|+\|y\|)^{2} & \\
\|x+y\| \leq\|x\|+\|y\| &
\end{array}
$$

$(\mathrm{V},\|\|$.$) is a normed space.$
Now to show normed space is metric space

$$
\begin{aligned}
& \text { Let } \quad \text { d: } \mathrm{N} \times \mathrm{N} \rightarrow \mathrm{R} \quad \text { s.t } \\
& \mathrm{d}(\mathrm{x}, \mathrm{y})=\|x-y\| \\
& M_{1}: \mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 0 \quad \text { since }\|x-y\| \geq 0 \quad \text { By } N_{1} \\
& M_{2}: \mathrm{d}(\mathrm{x}, \mathrm{y})=0 \quad \Leftrightarrow \quad\|x-y\|=0 \\
& \Leftrightarrow \quad x-y=0 \quad \text { By } N_{2} \\
& \Leftrightarrow \quad x=y \\
& M_{3}: \mathrm{d}(\mathrm{x}, \mathrm{y})=\|x-y\| \\
& =\|-(y-x)\| \\
& =|-1|\|y-x\| \quad \because\|\alpha x\|=|\alpha|\|x\|
\end{aligned}
$$

(N, d) is a metric space.
Now to show that its converse is not true or normal space is not an inner product space.
Let $\|f\|=\operatorname{Sup}_{t \in\left[0, \frac{\pi}{2}\right]}|f(t)|$
Let $\mathrm{f}, \mathrm{g} \in \mathrm{c}\left[0, \frac{\pi}{2}\right]$
Such that $\mathrm{f}(\mathrm{t})=$ sint \quad and $\quad \mathrm{g}(\mathrm{t})=$ cost \quad where $t \in\left[0, \frac{\pi}{2}\right]$

$$
\begin{aligned}
& \|f\|=\operatorname{Sup}_{t \in\left[0, \frac{\pi}{2}\right]}|\operatorname{sint}|=1 \\
& \|f+g\|=\sup _{t \in\left[0, \frac{\pi}{2}\right]}^{\operatorname{sun}}|\operatorname{sint}+\cos t|
\end{aligned}
$$

$$
\begin{aligned}
& \|f+g\|=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2} \\
& \left.\|f-g\|=\sup _{t \in\left[0, \frac{\pi}{2}\right]}\right] \operatorname{sint}-\cos t \mid \\
& \|f-g\|=1
\end{aligned}
$$

By //gram identity

$$
\begin{aligned}
& \|f+g\|^{2}+\|f-g\|^{2}=2\|f\|^{2}+2\|g\|^{2} \\
& (\sqrt{2})^{2}+(1)^{2} \neq 2(1)+2(1)
\end{aligned}
$$

$$
3 \neq 4
$$

Hence $c\left[0, \frac{\pi}{2}\right]$ is not an inner product space.
So, every normed is not an inner product space.

Conjugate Index (For MCQs)

Let \bar{P} be a real number $(P>1)$. A real number q is said to be conjugate index of P if $\frac{1}{p}+\frac{1}{q}=1$ _

$$
\begin{aligned}
& \text { ies iveliging man \& maths } \\
& \text { Functienark \&falaysis by Prof. Mumazaz Almad }
\end{aligned}
$$

Lecture \# 6
Theorem:
Prove that R^{n} is a norm space and a Banach Space.

Proof:

The space R^{n} is a Euclidian space where $\underline{x}=\left(x_{1}, x_{2}, x_{3}, \ldots \ldots \ldots x_{n}\right) \in R^{n}$

$$
\underline{0}=(0,0,0,0, \ldots \ldots .0) \in R^{n}
$$

is a Linear space over $\mathbf{F}(\mathbf{R}$ or $\mathbf{C})$.
$\|\|:. R^{n} \rightarrow R \quad$ Such that
$\|x\|=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$
$N_{1}:\|x\| \geq 0 \quad \therefore \sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}} \geq 0$
$\left.N_{2}:\|x\|=0 \quad \Leftrightarrow \sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}=0 \quad \Leftrightarrow x_{i}=0\right]$
$\Leftrightarrow\left(x_{1}, x_{2}, x_{3}, \ldots \ldots x_{n}\right)=(0,0,0, \ldots \ldots 0)$
axerging man \& maths

$=|\alpha|\|x\|$
$N_{3}:\|x+y\|=\sqrt{\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{2}}$
$\leq \sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}+\sqrt{\sum_{i=1}^{n}\left|y_{i}\right|^{2}}$
$\|x+y\| \leq\|x\|+\|y\|$
Hence $\left(R^{n},\|\|.\right)$ is a normed space.
(ii). R^{n} is a Banach Space.

Let $\left\{x^{(p)}\right\}$ be a cauchy in R^{n}
Then for $\varepsilon>0 \exists n_{0} \in N, n_{0}=n_{0}(\varepsilon)$
s.t $\forall \mathrm{p}, \mathrm{q} ; \mathrm{p}, \mathrm{q} \geq n_{0} \Rightarrow\left\|x^{(p)}-x^{(q)}\right\|=\sqrt{\sum_{i=1}^{n}\left|x_{i}^{(p)}-x_{i}^{(q)}\right|^{2}}<\varepsilon$
$\Rightarrow \forall \mathrm{p}, \mathrm{q} ; \mathrm{p}, \mathrm{q} \geq n_{0} \Rightarrow\left|x^{(p)}-x^{(q)}\right| \leq \sqrt{\sum_{i=1}^{n}\left|x_{i}^{(p)}-x_{i}^{(q)}\right|} \quad<\varepsilon$
$\Rightarrow \forall \mathrm{p}, \mathrm{q} ; \mathrm{p}, \mathrm{q} \geq n_{0} \Rightarrow\left|x^{(p)}-x^{(q)}\right|<\varepsilon$
$\left\{x^{(p)}\right\}$ is a cauchy sequence in R .
Since R is complete so
$x_{i}^{(p)} \rightarrow x_{i} \in \mathrm{R}$ as $\mathrm{P} \rightarrow \infty \quad \forall \mathrm{i}=1,2,3, \ldots \ldots, \mathrm{n}$
For $\varepsilon>0$ (Already choosen) $\exists P_{i} \in \mathrm{~N}$ s.t
$\forall \mathrm{P} ; \quad \mathrm{P} \geq P_{i} \Rightarrow\left|x_{i}^{(p)}-x_{i}\right|<\frac{\varepsilon}{\sqrt{n}}$
Take $\mathrm{x}=\lim _{p \rightarrow \infty} x_{i}^{(p)}$ then $\mathrm{x} \in R^{n}$
We shall prove $\lim _{p \rightarrow \infty} x^{p}=\mathrm{x} \in R^{n}$
Let $P_{0}=\max \left(P_{1}, P_{2}, \ldots P_{n}\right)$
$\forall \mathrm{P} ; \mathrm{P} \geq P_{0} \Rightarrow\left\|x^{(p)}-x\right\|=\sqrt{\sum_{i=1}^{n}\left|x^{(p)}-x_{i}\right|^{2}}$

R^{n} is complete and Hence a Banach space.

Question: Prove that $\boldsymbol{C}^{\boldsymbol{n}}$ is a normed space and hence a Banach Space.

Proof:

The space C^{n} is Euclidian space where
$\underline{Z}=\left(z_{1}, z_{2}, \ldots \ldots . z_{n}\right) \in C^{n}$
$\underline{0}=(0,0,0, \ldots \ldots 0) \in C^{n}$
is a Linear space over $\mathrm{F}(\mathrm{R}$ or C$)$
$\|\|:. C^{n} \rightarrow R \quad$ Such that
$\|z\|=\sqrt{\sum_{i=1}^{n}\left|z_{i}\right|^{2}}$

$$
\begin{aligned}
& \begin{aligned}
& N_{1}:\|z\| \geq 0 \quad \therefore \sqrt{\sum_{i=1}^{n}\left|z_{i}\right|^{2}} \geq 0 \\
& N_{2}:\|z\|=0 \Leftrightarrow \sqrt{\sum_{i=1}^{n}\left|z_{i}\right|^{2}}=0 \\
& \Leftrightarrow z_{i}=0
\end{aligned} \\
& \Leftrightarrow\left(z_{1,} z_{2,}, z_{3}, \ldots \ldots . z_{n}\right)=(0,0,0, \ldots \ldots .0) \\
&
\end{aligned} \begin{aligned}
N_{3}:\|\alpha z\| & =\sqrt{\sum_{i=1}^{n}\left|\alpha z_{i}\right|^{2}} \\
& =|\alpha| \sqrt{\sum_{i=1}^{n}\left|z_{i}\right|^{2}} \\
& =|\alpha|\|z\|
\end{aligned} \quad \begin{aligned}
& N_{3}:\left\|z+z^{\prime}\right\|=\sqrt{\sum_{i=1}^{n}\left|z+z^{\prime}\right|^{2}}
\end{aligned}
$$

By Minkowski inequality

Hence ($\left.C^{n},\|\|.\right)$ is a normed ${ }^{\text {s }}$ space.
(ii). C^{n} is a Banaeh space 1108 nan oc maths

s.t $\forall \mathrm{p}, \mathrm{q} ; \mathrm{p}, \mathrm{q} \geq n_{0} \Rightarrow\left\|Z^{(p)}-z^{(q)}\right\|=\sqrt{\sum_{i=1}^{n}\left|z_{i}^{(p)}-z_{i}^{(q)}\right|^{2}}<\varepsilon$
$\Rightarrow \forall \mathrm{p}, \mathrm{q} ; \mathrm{p}, \mathrm{q} \geq n_{0} \Rightarrow\left|z^{(p)}-z^{(q)}\right| \leq \sqrt{\sum_{i=1}^{n}\left|z_{i}^{(p)}-z_{i}^{(q)}\right|} \quad<\varepsilon$
$\Rightarrow \forall \mathrm{p}, \mathrm{q} ; \mathrm{p}, \mathrm{q} \geq n_{0} \Rightarrow\left|z^{(p)}-z^{(q)}\right|<\varepsilon$
$\left\{z^{(p)}\right\}$ is a cauchy sequence in R .
Since R is complete so
$z_{i}^{(p)} \rightarrow z_{i} \in \mathrm{R}$ as $\mathrm{P} \rightarrow \infty \quad \forall \mathrm{i}=1,2,3, \ldots \ldots, \mathrm{n}$
For $\varepsilon>0$ (Already choosen) $\exists P_{i} \in \mathrm{~N}$ s.t
$\forall \mathrm{P} ; \quad \mathrm{P} \geq P_{i} \Rightarrow\left|z_{i}^{(p)}-z_{i}\right|<\frac{\varepsilon}{\sqrt{n}}$

Take $\mathrm{z}=\lim _{p \rightarrow \infty} z_{i}^{(p)}$ then $\mathrm{z} \in C^{n}$
We shall prove $\lim _{p \rightarrow \infty} z^{p}=\mathrm{z} \in C^{n}$
Let $P_{0}=\max \left(P_{1}, P_{2}, \ldots . . P_{n}\right)$
$\forall \mathrm{P} ; \mathrm{P} \geq P_{0} \Rightarrow\left\|z^{(p)}-z\right\|=\sqrt{\sum_{i=1}^{n}\left|z^{(p)}-z_{i}\right|^{2}}$
$\forall \mathrm{P} ; \mathrm{P} \geq P_{0} \Rightarrow\left\|Z^{(p)}-z\right\|=\sqrt{\frac{\varepsilon^{2}}{n}+\frac{\varepsilon^{2}}{n}+\ldots \ldots \ldots+\frac{\varepsilon^{2}}{n}}$
$\forall \mathrm{P} ; \mathrm{P} \geq P_{0} \Rightarrow\left\|z^{(p)}-z\right\|<\varepsilon$
$\Rightarrow z^{p} \rightarrow \mathrm{z} \in C^{n}$ where $\mathrm{P} \rightarrow \infty$
C^{n} is complete and Hence a Banach space.

MathCity.org Merging man \& maths Functional Analysis by Prof. Mumtaz Ahmad

Lecture \# 7

l^{∞}-Space:

A space of bounded sequence $\mathrm{x}=\left\{x_{i}\right\}$ or real or complex numbers with addition and scalar multiplication defined by

$$
\begin{aligned}
& \mathrm{x}+\mathrm{y}=\left\{x_{i}+y_{i}\right\} \\
& \alpha \mathrm{x}=\left\{\alpha x_{i}\right\}
\end{aligned}
$$

Question: The norm in l^{∞} can be defined as $\|\cdot\|: l^{\infty} \rightarrow \mathrm{R}$ such that

$$
\|x\|=\operatorname{Sup}_{i=1}^{\infty}\left|x_{i}\right|
$$

Prove l^{∞} is normed space and hence a Banach space.
Solution:
l^{∞} is normed space

$$
\begin{aligned}
& \left.\left.\simeq N_{1}:\|x\| \geq 0 _\right] \because \operatorname{Sup}_{i=1}^{\infty}\left|x_{i}\right| \geq 0\right] \text { ——— } \\
& N_{2}:\|x\|=0 \quad \Leftrightarrow \operatorname{Sup}\left|x_{i}\right|=0 \\
& \text { Mergint man \& maths }
\end{aligned}
$$

$$
\begin{aligned}
& N_{3}:\|\alpha x\|=\operatorname{Sup}_{i=1}^{\infty}\left|\alpha x_{i}\right| \\
& =|\alpha| \operatorname{Sup}_{i=1}^{\infty}\left|x_{i}\right| \\
& =|\alpha|\left\|x_{i}\right\| \\
& N_{4}:\|x+y\|=\operatorname{Sup}_{i=1}^{\infty}\left|x_{i}+y_{i}\right| \\
& \leq \operatorname{Sup}_{i=1}^{\infty}\left|x_{i}\right|+\underset{i=1}{\infty}\left|y_{i}\right| \\
& \|x+y\| \leq\|x\|+\|y\| \quad \operatorname{Hence}\left(l^{\infty},\| \| \|\right) \text { is a normed space } .
\end{aligned}
$$

l^{∞} is Banach Space:

Let $\left\{x^{(p)}\right\}$ be a Cauchy sequence in l^{∞}

$$
x^{(p)}=\left\{x_{i}^{(p)}\right\} . \text { Then for } \varepsilon>0 \exists n_{o} \in N, n_{o}=n_{o}(\varepsilon)
$$

S.t $\forall p, q ; p, q \geq n_{o} \Rightarrow\left\|x^{(p)}-x^{(q)}\right\|=\left\|x_{i}^{(p)}-x_{i}^{(q)}\right\|<\varepsilon$
$\forall p, q ; p, q \geq n_{o} \Rightarrow\left|x^{(p)}-x^{(q)}\right| \leq \mid x^{(p)}-x^{(q)} \|<\varepsilon$
$\forall p, q ; p, q \geq n_{o} \Rightarrow\left|x^{(p)}-x^{(q)}\right|<\varepsilon$
Hence $\left\{x_{i}^{(p)}\right\}$ is a Cauchy sequence in R or C . Since R or C is complete so
$x_{i}^{(p)} \rightarrow x_{i} \quad \forall \quad \mathrm{i}=1,2, \ldots \ldots \infty$
Take $\mathrm{x}=\left\{x_{i}\right\}$ we show that $\mathrm{x} \in l^{\infty}$ and $\lim _{p \rightarrow \infty} x^{(p)}=\mathrm{x}$

That is $\mathrm{p} ; \mathrm{p} \geq n_{1}\|\Rightarrow\| x_{i}^{(p)}-x\left\|=\operatorname{Sup}_{i=1}^{\infty}\left|x_{i}^{(p)}-x_{i}\right| \leq \frac{\varepsilon}{2}\right\| \varepsilon_{i}$

$\leq\left|x_{i}-x_{i}^{(p)}\right|+\left|x_{i}^{(p)}\right|$
$\left|x_{i}\right|<\frac{\varepsilon}{2}+k_{p}$ (finitenumber)
Hence $x=\left\{x_{i}\right\} \in l^{\infty}$
$\Rightarrow l^{\infty}$ is Banachspace.
$x^{p}=x_{1}^{(1)} \quad x_{2}^{(1)}, \ldots \ldots \ldots . . x_{n}^{(1)} \ldots .$.
$x_{1}^{(2)} x_{2}^{(2)}, \ldots \ldots \ldots . x_{n}^{(2)} \ldots \ldots$
$x=\left(x_{1} \quad x_{2} \quad x_{n} \ldots \ldots ..\right) \quad x^{p} \rightarrow$ xis called Banach $s p a c e$

Question:

What do you know about c-space show that it is a norm space and Hence a Banach Space.

Solution:

C-space:

Space of all convergent sequence in F (R or C) and it is a sub-space of l^{∞} where

$$
\mathrm{x}=\left\{x_{i}\right\} \in \mathrm{C} \text { and }
$$

$\|\cdot\|: c \rightarrow \mathrm{~F} \quad$ such that

$$
\begin{array}{ll}
N_{1}:\|x\| \geq 0 & \because \operatorname{Sup}_{i=1}^{\infty}\left|x_{i}\right| \geq 0 \\
N_{2}:\|x\|=0 & \Leftrightarrow \operatorname{Sup}_{i=1}^{\infty}\left|x_{i}\right|=0
\end{array}
$$

Now to prove c is Banach space we shall prove that c is closed subspace of l^{∞}.
Let x be a limit point of c then $\mathrm{x} \in l^{\infty}$ so that $\mathrm{x}=\left\{x_{i}\right\}$.

$$
\begin{aligned}
& =|\alpha| \underset{i=1}{\infty}\left|x_{i}\right| \\
& =|\alpha|\left\|x_{i}\right\| \\
& N_{4}:\|x+y\|=\operatorname{Sup}_{i=1}^{\infty}\left|x_{i}+y_{i}\right| \\
& \leq \underset{i=1}{\infty}\left|x_{i}\right|+\underset{i=1}{\infty} \underset{i=1}{\infty}\left|y_{i}\right| \\
& \|x+y\| \leq\|x\|+\|y\| \quad \text { Hence }(c,\| \|) \text { is a normed space. }
\end{aligned}
$$

By definition of limit point there is a sequence $\left\{x^{(p)}\right\}$ in C such that $\lim _{p \rightarrow \infty} x^{(p)}=x$
Hence for $\varepsilon>0 \exists n_{o} \in N, \quad n_{o}=n_{o}(\varepsilon)$ s.t
S.t $\forall p ; p \geq n_{o} \Rightarrow\left\|x^{(p)}-x\right\|=\operatorname{Sup}_{i=1}^{\infty}\left\|x_{i}^{(p)}-x_{i}\right\|$
$\forall p ; p \geq n_{o} \Rightarrow\left|x_{i}^{(p)}-x_{i}\right| \leq\left\|x^{(p)}-x\right\|<\varepsilon / 3$
$\forall p ; p \geq n_{o} \Rightarrow\left|x^{(p)}-x_{i}\right|<\varepsilon / 3 \quad \forall i=1,2, \ldots \ldots \ldots$
Now consider the sequence $x^{\left(n_{o}\right)}=\left\{x_{i}^{\left(n_{o}\right)}\right\}$
Then $x^{\left(n_{o}\right)} \in \mathrm{C}$ and so is convergent.
But a convergent sequence will be a Cauchy sequence.
So, for $\varepsilon>0 \exists n_{1} \in \mathrm{~N}$ s.t
$\forall \mathrm{i}, \mathrm{j}, \mathrm{i}, \mathrm{j} \leq n_{1} \Rightarrow\left|x_{i}^{\left(n_{0}\right)}-x_{x_{j}}^{\left(n_{o}\right)}\right|<\varepsilon / 3$
Take $n_{2}=\max \left(n_{o}, n_{1}\right)$ then ${ }^{\circ}$
$\forall \mathrm{i}, \mathrm{j} ; \mathrm{i}, \mathrm{j} \geq n_{2} \Rightarrow\left|x_{i}-x_{j}+=\right| x_{i} \in x_{i}\left(n_{0}, n_{+}+x_{i}^{\left(n_{o}\right)}-x_{j}^{\left(n_{o}\right) l}+x_{j}^{\left(n_{0}\right)}-x_{j} \mid\right.$

$$
<^{\varepsilon} / 3+\varepsilon / 3+\varepsilon / 3
$$

$\forall \mathrm{i}, \mathrm{j} ; \mathrm{i}, \mathrm{j} \geq n_{o} \Rightarrow\left|x_{i}-x_{j}\right|<\varepsilon$
$\Rightarrow\left\{x_{i}\right\}$ is a Cauchy sequence in R or C .
Since R or C is complete. So $\mathrm{x}=\left\{x_{i}\right\}$ is convergent and hence $\mathrm{x} \in \mathrm{C}$
Thus, c is closed subspace of l^{∞}
Thus, c is complete and hence Banach space.
" A subspace Y of complete metric space X is complete iff Y is close in X "

Question:

What is meant by C_{o}-space?? Show that it is a Banach Space.
Solution:
Space of all convergent sequence in $\mathrm{F}(\mathrm{R}$ or C$)$ and it is a subspace of C which is subspace of l^{∞} where $\mathrm{x}=\left\{x_{i}\right\} \in C_{o}$ and

$$
\|\cdot\|: C_{o} \rightarrow \mathrm{~F} \text { such that }
$$

$$
\|x\|=\underset{i=1}{\infty}\left|x_{i}\right|
$$

To prove C_{o} is Banach space. We shall prove that C_{o} is closed subspace of l^{∞}.
Let x be limit point of C_{o} the $\mathrm{x} \in l^{\infty}$
So that $\mathrm{x}=\left\{x_{i}\right\}$
By definition-of limit point there is a a sequence $\left\{x^{(p)}\right\}$ in C_{o} such that $\lim _{p \rightarrow \infty} x^{(p)}=x \geq$

Hence for $\varepsilon>0 \exists n_{o} \in N, \quad n_{o}=n_{o}(\varepsilon)$ s.t

$\forall \mathrm{p} ; \mathrm{p} \geq p_{0} \Rightarrow\left\|x^{(p)}-x\right\|=\operatorname{Sup}\left|x_{i}^{(p)}-x_{i}\right|<\varepsilon / 3$

$\forall p ; p \geq p_{o} \Rightarrow\left|x^{(p)}-x_{i}\right|<\varepsilon / 3 \quad \forall i=1,2, \ldots \ldots \ldots \infty$
Now consider the sequence $x^{\left(n_{o}\right)}=\left\{x_{i}^{\left(n_{o}\right)}\right\}$
Then $x^{\left(n_{o}\right)} \in C_{o}$ and so is convergent.
But a convergent sequence will be a Cauchy sequence.
So, for $\varepsilon>0 \exists n_{1} \in$ Ns.t
$\forall \mathrm{i}, \mathrm{j} ; \mathrm{i}, \mathrm{j} \geq n_{1} \Rightarrow\left|x_{i}^{\left(n_{o}\right)}-x_{j}^{\left(n_{o}\right)}\right|<\varepsilon / 3$
Take $n_{2}=\max \left(n_{o}, n_{1}\right)$ then
$\forall \mathrm{i}, \mathrm{j} ; \mathrm{i}, \mathrm{j} \geq n_{2} \Rightarrow\left|x_{i}-x_{j}\right|=\left|x_{i}-x_{i}^{\left(n_{o}\right)}+x_{i}^{\left(n_{o}\right)}-x_{j}^{\left(n_{o}\right)}+x_{j}^{\left(n_{o}\right)}-x_{j}\right|$

$$
\begin{aligned}
& \leq\left|x_{i}-x_{i}^{\left(n_{o}\right)}\right|+\left|x_{i}^{\left(n_{o}\right)}-x_{j}^{\left(n_{o}\right)}\right|+\left|x_{j}^{\left(n_{o}\right)}-x_{j}\right| \\
& <\varepsilon / 3+\varepsilon / 3+\varepsilon / 3
\end{aligned}
$$

$$
\forall \mathrm{i}, \mathrm{j} ; \mathrm{i}, \mathrm{j} \geq n_{o} \Rightarrow\left|x_{i}-x_{j}\right|<\varepsilon
$$

$\Rightarrow\left\{x_{i}\right\}$ is a Cauchy sequence in R or C .
Since R or C is complete. So $\mathrm{x}=\left\{x_{i}\right\}$ is convergent and hence $\mathrm{x} \in C_{o}$
Thus, C_{o} is closed subspace of l^{∞}
Thus, C_{o} is complete and hence Banach space.

Question:

Give an example of space which is not a Banach space.
Solution:
The space Q of rational number is a subset of the Banach space R
wesmorlacily.org

Lecture \# 8

Convex Set:

Let X be a normed space C is a subset of x then it is said to be convex set if

$$
\begin{array}{lll}
\forall & x, y \in C & \exists \alpha \in[0,1] \\
\text { s.t } & \alpha x+(1-\alpha) y \in C &
\end{array}
$$

or $\quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{C} \quad \exists \alpha, \beta \in[0,1]$
s.t $\alpha x+\beta y \in C \quad$ when $\alpha+\beta=1$

Note:

Every subspace of a Linear space is convex set but converse may not be true.

Theorem:

Prove that $x+S=\{x+s, s \in S\}$ where S is a subspace of N is convex.
Let $\frac{\mathrm{u}, u^{\prime} \in \frac{\mathrm{x}+\mathrm{S}}{} \text { Solution: }}{\text { Lerer }}$
Then

$$
\begin{aligned}
\alpha \mathrm{u}+(1-\alpha) u^{\prime} & =\alpha(\mathrm{x}+\mathrm{s})+(1-\alpha)\left(\mathrm{x}+s^{\prime}\right) \\
& =\alpha \mathrm{x}+\alpha \mathrm{s}+(1-\alpha) \mathrm{x}+(1-\alpha) s^{\prime} \\
& =\alpha \mathrm{x}+(1-\alpha) \mathrm{x}+\alpha \mathrm{s}+(1-\alpha) s^{\prime} \\
& =\alpha \mathrm{x}+(1-\alpha) \mathrm{x}+s^{\prime \prime} \\
& =\alpha \mathrm{x}+\mathrm{x}-\alpha \mathrm{x}+s^{\prime \prime} \\
& =\mathrm{x}+s^{\prime \prime} \quad \in \mathrm{x}+\mathrm{S}
\end{aligned}
$$

$\Rightarrow \quad x+S$ is convex set

Theorem:

Let $\mathrm{T}: \mathrm{N} \rightarrow N^{\prime}$ be a linear transformation and C is convex subset of N . Then show that $\mathrm{T}(\mathrm{C})$ is also convex in N^{\prime}.

Solution:

$$
\begin{array}{ll}
\text { Let } & \mathrm{u}, u^{\prime} \in \mathrm{T}(\mathrm{C}) \text { then } \exists \mathrm{c}, c^{\prime} \in \mathrm{C} \\
\text { s.t } & \mathrm{u}=\mathrm{T}(\mathrm{c}) \\
& u^{\prime}=\mathrm{T}\left(c^{\prime}\right)
\end{array}
$$

For $\alpha \in[0,1]$

$$
\begin{array}{rlrl}
\alpha \mathrm{u}+(1-\alpha) u^{\prime} & =\alpha \mathrm{T}(\mathrm{c})+(1-\alpha) \mathrm{T}\left(c^{\prime}\right) & \\
& =\mathrm{T}(\alpha \mathrm{c})+\mathrm{T}\left((1-\alpha) c^{\prime}\right) & & \because \mathrm{T}(\alpha \mathrm{x})=\alpha \mathrm{T}(\mathrm{x}) \\
& =\mathrm{T}\left(\alpha \mathrm{c}+(1-\alpha) c^{\prime}\right) & \mathrm{T}(\mathrm{X})+\mathrm{T}(\mathrm{y})=\mathrm{T}(\mathrm{x}+\mathrm{y}) \\
& =\mathrm{T}\left(c^{\prime \prime}\right) \in \mathrm{T}(\mathrm{C}) & \ddots c^{\prime \prime}=\alpha \mathrm{c}+(1-\alpha) c^{\prime}
\end{array}
$$

$\Rightarrow \quad \mathrm{T}(\mathrm{C})$ is convex in N^{\prime}.

Question:

For any convex subset K and L of a Linear Space N . Prove that
$\mathrm{K}+\overline{\mathrm{L}}=\{\mathrm{x}+\mathrm{y} ; \mathrm{x} \in \mathrm{K}, \mathrm{y} \in \mathrm{L}\}$ is convex.
Solution:
Let

$$
u^{\prime}=x^{\prime}+y^{\prime}
$$

and $\alpha \in[0,1]$
Consider

$$
\begin{aligned}
\alpha u+(1-\alpha) u^{\prime} & =\alpha(\mathrm{x}+\mathrm{y})+(1-\alpha) \mathrm{T}\left(x^{\prime}+y^{\prime}\right) \\
& =\alpha \mathrm{x}+\alpha \mathrm{y}+(1-\alpha) x^{\prime}+(1-\alpha) y^{\prime} \\
& =\alpha \mathrm{x}+(1-\alpha) x^{\prime}+\alpha \mathrm{y}+(1-\alpha) y^{\prime} \\
& =\left(x^{\prime \prime}+y^{\prime \prime}\right) \in \mathrm{K}+\mathrm{L}
\end{aligned}
$$

Where $x^{\prime \prime}=\alpha \mathrm{x}+(1-\alpha) x^{\prime} \quad, \quad y^{\prime \prime}=\alpha y+(1-\alpha) y^{\prime}$
$\Rightarrow \quad \mathrm{K}+\mathrm{L}$ is convex in N .

Question:

Let N be a norm space then define an open ball in norm space. Prove that open ball in norm space is convex.

Solution:

Open ball:

Let N be a normed space $\mathrm{r}>0$ the

$$
\mathrm{B}\left(x_{0}, \mathrm{r}\right)=\left\{\mathrm{x} \in \mathrm{~N}:\left\|x-x_{0}\right\|<\mathrm{r}\right\}
$$

Let $\mathrm{x}, x^{\prime} \in \mathrm{B}\left(x_{0}, \mathrm{r}\right)$ then

$$
\left\|x-x_{0}\right\|<\mathrm{r}
$$

And $\quad\left\|x^{\prime}-x_{0}\right\|<\mathrm{r} \quad$ and $\quad \alpha \in[0,1]$
Consider
$\left\|\alpha \mathrm{x}+(1-\alpha) x^{\prime}-x_{0}\right\|=\left\|\alpha \mathrm{x}+(1-\alpha) x^{\prime}+\alpha x_{0}-\alpha x_{0}-x_{0}\right\|$
$\begin{aligned} &\left\|\alpha x+(1-\alpha) x^{\prime}-x_{0}\right\|=\left\|\alpha x+(1-\alpha) x^{\prime}+\alpha x_{0}-\alpha x_{0}-x_{0}\right\| \\ &\left.=\left\|\alpha\left(x-x_{0}\right)+(1-\alpha) x^{\prime}-(1-\alpha) x_{0}\right\|\right]\end{aligned}$ $=\left\|\alpha\left(\mathrm{x}-x_{0}\right)+(1-\alpha)\left(x^{\prime}-x_{0}\right)\right\|$

$\left\|\alpha \mathrm{x}+(1-\alpha) x^{\prime}-x_{0}\right\|<\mathrm{r}$
$\Rightarrow \quad \alpha \mathrm{x}+(1-\alpha) x^{\prime} \in \mathrm{B}\left(x_{0}, \mathrm{r}\right)$
$\Rightarrow \quad \mathrm{B}\left(x_{0}, \mathrm{r}\right) \in$ is convex in N

Question:

Let N be a norm space then define a close ball in norm space. Prove that a close ball in a norm space is convex.

Solution:
Let N be a norm space $\mathrm{r}>0$
Then $\bar{B}\left(x_{0}, \mathrm{r}\right)=\left\{\mathrm{x} \in \mathrm{N}:\left\|x-x_{0}\right\| \leq \mathrm{r}\right\}$
Let $\mathrm{x}, x^{\prime} \in \bar{B}\left(x_{0}, \mathrm{r}\right)$ then

$$
\left\|x-x_{0}\right\| \leq \mathrm{r}
$$

And $\quad\left\|x^{\prime}-x_{0}\right\| \leq r \quad$ and $\quad \alpha \in[0,1]$
Consider

$$
\left\|\alpha x+(1-\alpha) x^{\prime}-x_{0}\right\|=\left\|\alpha x+(1-\alpha) x^{\prime}+\alpha x_{0}-\alpha x_{0}-x_{0}\right\|
$$

$$
=\left\|\alpha\left(\mathrm{x}-x_{0}\right)+(1-\alpha) x^{\prime}-(1-\alpha) x_{0}\right\|
$$

$$
=\left\|\alpha\left(\mathrm{x}-x_{0}\right)+(1-\alpha)\left(x^{\prime}-x_{0}\right)\right\|
$$

$$
\leq\left\|\alpha\left(\mathrm{x}-x_{0}\right)\right\|+\left\|(1-\alpha)\left(x^{\prime}-x_{0}\right)\right\|
$$

$$
\leq|\alpha|\left\|\left(\mathrm{x}-x_{0}\right)\right\|+|1-\alpha|\left\|\left(x^{\prime}-x_{0}\right)\right\|
$$

$$
\leq \alpha r+(1-\alpha) r
$$

$$
\leq \mathrm{r}
$$

$$
\Rightarrow \quad \alpha \mathrm{x}+(1-\alpha) x^{\prime} \in \bar{B}\left(x_{0}, \mathrm{r}\right)
$$

Theorem:

Let C be a convex set in Linear space N then for $\alpha \geq 0, \beta \geq 0$. Prove that $(\alpha+\beta) C=\alpha C+\beta C$

Then

$$
(\alpha+\beta) C=\alpha C+\beta C
$$

Holds trivially

Case-II

Let $\alpha>0, \beta>0$
And $z \in(\alpha+\beta) C$ then $\quad \exists c \in C$
s.t

$$
z=(\alpha+\beta) c
$$

$$
z=\alpha c+\beta c \quad \in \alpha C+\beta C
$$

$$
\begin{equation*}
\Rightarrow \quad(\alpha+\beta) \mathrm{C} \subseteq \alpha \mathrm{C}+\beta \mathrm{C} \tag{1}
\end{equation*}
$$

Conversely, Let $u \in \alpha C+\beta C$

Then $\exists \mathrm{c}, \mathrm{d} \in \mathrm{C}$
s.t

$$
\begin{align*}
& \mathrm{u}=\alpha \mathrm{c}+\beta \mathrm{d}=(\alpha+\beta)\left(\frac{\alpha c}{\alpha+\beta}+\frac{\beta d}{\alpha+\beta}\right) \\
&=(\alpha+\beta)\left(\frac{\alpha}{\alpha+\beta} c+\left(1-\frac{\alpha}{\alpha+\beta}\right) \mathrm{d}\right) \\
&=(\alpha+\beta) \omega \in(\alpha+\beta) \mathrm{C} \\
& \Rightarrow \alpha \mathrm{C}+\beta \mathrm{C} \subseteq(\alpha+\beta) \mathrm{C} \tag{2}
\end{align*}
$$

where $\omega=\left(\frac{\alpha}{\alpha+\beta} c+\left(1-\frac{\alpha}{\alpha+\beta}\right) \mathrm{d}\right) \in \mathrm{C}$
By (1) and (2)

$$
(\alpha+\beta) C=\alpha C+\beta C
$$

Question:

Show that closure of a convex subset of a norm space is a convex set.
Solution:

$\alpha x_{n}+(1-\alpha) y_{n} \in \mathrm{C}$
$\because \quad$ Addition and scalar multiplication is continuous so $\alpha x_{n}+(1-\alpha) y_{n} \rightarrow \alpha x+(1-\alpha) y \in \bar{C}$
$\Rightarrow \bar{C}$ is convex in N

Lecture \# 9

Quotient Space:

Suppose that N is a norm space S is a closed subspace of N then $\forall \mathrm{x} \in \mathrm{N}$ $x+S=\{x+s ; s \in S\}$ is called Coset of S determined by S.

It should be noted that N / S (quotient space) is a linear space under addition and scalar multiplication defined by

$$
\begin{array}{ll}
\mathrm{x}+\mathrm{S}+\mathrm{y}+\mathrm{S}=\mathrm{x}+\mathrm{y}+\mathrm{S} & ; \mathrm{x}, \mathrm{y} \in \mathrm{~N} \\
\alpha(\mathrm{x}+\mathrm{S})=\alpha \mathrm{x}+\mathrm{S} & ; \mathrm{x} \in \mathrm{~N}, \alpha \in \mathrm{~F} \\
\|x+S\|_{1}=\operatorname{Inf}_{s \in S}\|x+s\| &
\end{array}
$$

Question:

Show that a quotient space N/S is a norm space under the norm

$$
\begin{aligned}
& |k+s|=|=|f| x+t \\
& \text { Merging man \& maths }
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& N_{2}:\|x+S\|=0 \quad \Leftrightarrow \quad \operatorname{Inf}\|x+s\|=0
\end{aligned}
$$

So by the property of infimum \exists a $\operatorname{Seq}\left\{S_{n}\right\}$ in S such that

$$
\left\|x+s_{n}\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

But then $\quad x+s_{n} \rightarrow 0$ that is $\quad s_{n} \rightarrow-x$ as $n \rightarrow \infty$
Since Sis closed subspace of N
$\Rightarrow x \in S$ Hence
$x+S=0 \quad$ the zero element of N / S
$\Rightarrow\|x+S\|_{1}=0 \quad \Leftrightarrow \quad x+S=0$
N_{3} : For any scalar α and $\mathrm{x}+\mathrm{s} \in \mathrm{N} / \mathrm{S}$

Consider the elements

$$
\alpha(x+S)=\alpha x+S
$$

Case-I

If $\alpha \neq 0$ then

$$
\|\alpha(x+s)\|_{1}=\|0 . x+S\|_{1}=\|S\|_{1}=0=\mid \alpha\|x+s\|_{1}
$$

Case - II

$$
\begin{aligned}
& \text { If } \quad \alpha \neq 0 \text { then } \\
& \|\alpha(x+s)\|_{1}=\underset{s \in S}{\operatorname{Inf}}\|\alpha(x+s)\| \\
& =\operatorname{Inf}\|\alpha x+\alpha s\|
\end{aligned}
$$

$$
=|\alpha| \operatorname{Inf}\|x+s\|
$$

$N_{4}:$ Let $\mathrm{x}+\mathrm{S}$ and $\mathrm{y}+\mathrm{S} \in \mathrm{N} / \mathrm{S}$.

Hence for any x, y in N and the def. of Infimum

$$
\begin{gathered}
\|x+s+y+s\|_{1}=\|x+y+S\| \leq\left\|x+y+x_{n}+y_{n}\right\| \\
\left\|x+x_{n}\right\| \leq\left\|y+y_{n}\right\|
\end{gathered}
$$

Taking limit as $\mathrm{n} \rightarrow \infty$
$\|x+s+y+S\|_{1}=\|x+y+S\|_{1} \leq \operatorname{Lim}_{n \rightarrow \infty}\left\|x+x_{n}\right\|+\underset{n \rightarrow \infty}{\operatorname{Lim}}\left\|y+y_{n}\right\|$
$\|x+s+y+S\| \leq\|x+S\|+\|y+S\|$
Hence $(N / S, \|| |)$ is a normed space

Question:

Show that quotient N / S is a Banach space under the norm

$$
\|x+S\|_{1}=\underset{s \in S}{\operatorname{In} f}\|x+s\|
$$

Solution:
Let $\left\{x_{n}+S\right\} ; x_{n} \in \mathrm{~N}$ Cauchy sequence in N/S
Then for $\varepsilon>0 \exists n_{1} \in N, \quad n_{1}=n_{1}(\varepsilon)$ s.t
$\forall m, n ; m, n \geq n_{1} \Rightarrow\left\|\left(x_{m}+S\right)-\left(x_{n}+S\right)\right\|_{1}=\left\|x_{m}-x_{n}+S\right\|<\varepsilon$
$\because\|x+S\|=\operatorname{Inf}_{s \in S}\|x+s\|$
Take $\varepsilon=\frac{1}{2}, m=n_{1}$ and $n=n_{1}+1$
$\left.\forall m, n ; m, n \geq n_{1} \Rightarrow\left\|\left(x_{n_{1}}+S\right)-\left(x_{n_{1+1}}+S\right)\right\|=\left\|x_{n 1}-x_{n 1+1}+S\right\|<\frac{1}{2}\right]$

Continuing in this way

If we choose $\varepsilon=\frac{1}{2^{k}} \exists \quad n_{k} \in N, \quad n_{k}=n_{k}(\varepsilon)$ s.t s.t
$\forall m, n ; m, n \geq n_{k} \Rightarrow\left\|\left(x_{n k}+S\right)-\left(x_{n_{k+1}}+S\right)\right\|=\left\|x_{n k}-x_{n k+1}+S\right\|<\frac{1}{2^{k}}$
In each $x_{n_{k}}+S$ and $x_{n_{k+1}}+S$ select vectors y_{k} and y_{k+1} such that

$$
\left\|y_{k}-y_{k+1}\right\|<\frac{1}{2^{k}} \quad \text { by }(1)
$$

Then for $\mathrm{k}>k^{\prime}$

$$
\begin{aligned}
& \left\|y_{k}-y_{k^{\prime}}\right\|=\left\|y_{k}-y_{k+1}+y_{k+1}-y_{k+2}+y_{k+2} \ldots \ldots \ldots \ldots+y_{k-1}+y_{k^{\prime}}\right\| \\
& \leq\left\|y_{k}-y_{k+1}\right\|+\left\|y_{k+1}-y_{k+2}\right\|+\ldots \ldots \ldots \ldots \ldots \ldots y_{k-1}+y_{k^{\prime}} \| \\
& \left\|y_{k}-y_{k^{\prime}}\right\|<\frac{1}{2^{k}}+\frac{1}{2^{k+1}}+\frac{1}{2^{k+2}}+\ldots . .+\frac{1}{2^{k-1}} \\
& <\frac{\frac{1}{2^{k}}}{1-\frac{1}{2}} \\
& \because S_{\infty}=\frac{a}{1-r} \\
& \left\|y_{k}-y_{k^{\prime}}\right\|<\frac{1}{2^{k-1}} \\
& \text {. }
\end{aligned}
$$

Since N is complete so $y_{k} \rightarrow \mathrm{y} \in \mathrm{N}$

We use this theorem in above proof
"A Cauchy sequence converges iff it has convergent subsequence"

Equivalent Norms:

Let N be a Norm space $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be norms define on N then $\|\cdot\|_{1}$ is said to be equivalent to $\|\cdot\|_{2}\left(\|\cdot\|_{1} \sim\|\cdot\|_{2}\right)$ if $\exists \mathrm{a}>0, \mathrm{~b}>0$ be real numbers such that

$$
\mathrm{a}\|x\|_{2} \leq\|x\|_{1} \leq \mathrm{b}\|x\|_{2} \quad \forall \mathrm{x} \in \mathrm{~N}
$$

Question:

Show that the relation being equivalent to among the norms that can be defined on a linear space N is an equivalence relation.
Solution:

Step-I Reflexive relation

For any $\|\cdot\|$ on N the condition

$$
\mathrm{a}\|x\| \leq\|x\| \leq \mathrm{b}\|x\| \quad \forall \mathrm{x} \in \mathrm{~N}
$$

holds if $\mathrm{a}=1=\mathrm{b}$
$\Rightarrow\|\cdot\| \sim\|\cdot\|$
i.e. Relation is Reflexive

Step-II Symmetric relation:

Let $\|\cdot\|_{1} \sim\|\cdot\|_{2}$ then $\exists \mathrm{a}>0, \mathrm{~b}>0$ real numbers such that

$$
\begin{array}{ll}
\mathrm{a}\|x\|_{2} \leq\|x\|_{1} \leq \mathrm{b}\|x\|_{2} & \forall \mathrm{x} \in \mathrm{~N} \\
\mathrm{a}\|x\|_{2} \leq\|x\|_{1} \quad \Rightarrow \quad\|x\|_{2} \leq \frac{1}{a}\|x\|_{1} &
\end{array}
$$

and
$\left.\Rightarrow \frac{1}{b}\|x\|_{1} \leq\|x\|_{2} \leq \frac{1}{a}\|x\|_{1}\right]$
$\Rightarrow\|\cdot\|_{2} \sim\|\cdot\|_{1}$
i.e. Relation is symmetric

Step-III Transitive Relation:

$$
\begin{gather*}
\mathrm{a}\|x\|_{1} \leq\|x\| \leq \mathrm{b}\|x\|_{1} \tag{1}\\
a_{1}\|x\|_{2} \leq\|x\|_{1} \leq b_{1}\|x\|_{2} \tag{2}
\end{gather*}
$$

From (2)

$$
\begin{align*}
& a_{1}\|x\|_{2} \leq\|x\|_{1} \quad \text { and }\|x\|_{1} \leq b_{1}\|x\|_{2} \\
& a a_{1}\|x\|_{2} \leq a\|x\|_{1} \quad \ldots \ldots \text { (3) } \quad \text { and } b\|x\|_{1} \leq b b_{1}\|x\|_{2} \tag{4}
\end{align*}
$$

Using (1),(3) and (4)

$$
\begin{array}{ll}
\quad a a_{1}\|x\|_{2} \leq a\|x\|_{1} \leq\|x\| \leq b\|x\|_{1} \leq b b_{1}\|x\|_{2} \\
a a_{1}\|x\|_{2} \leq\|x\| \leq b b_{1}\|x\| & \Rightarrow \quad a_{2}\|x\|_{2} \leq\|x\| \leq b_{2}\|x\| \because a a_{1}=a_{2}, b b_{1}=b_{2} \\
\Rightarrow\|\cdot\| \sim\|\cdot\|_{2} & \text { i.e. Relation is transitive }
\end{array}
$$

\Rightarrow Hence Relation is Equivalence

Lecture \# 10

Theorem:

Show that any two-equivalent norm on linear space N define the same topology on N .

Proof:

$$
\begin{align*}
\|\cdot\| \sim\|\cdot\|_{1} \text { on } N \text { then } \exists a, b \in R, \quad a>0, b>0 \quad \text { s.t } & \\
a\|x\|_{1} \leq\|x\| \leq b\|x\|_{1} & \ldots(1) \tag{1}
\end{align*} \quad \forall \quad \mathrm{x} \in \mathrm{~N}
$$

We shall prove that a Basic open set in $(\mathrm{N},\|\cdot\|)$ and conversely.
For this let $\mathrm{x} \in \mathrm{N}$ and $\mathrm{B}(\mathrm{x}, \mathrm{r})$ be an open ball in $(\mathrm{N},\|\cdot\|)$. We show that $\mathrm{B}(\mathrm{x}, \mathrm{r})$ will open in ($\mathrm{N},\|\cdot\|$)

Let $\mathrm{y} \in \mathrm{B}(\mathrm{x}, \mathrm{r})$ and $\|x-y\|=r_{1}<\mathrm{r}$

Where $r^{\prime}=\left(\frac{r-r_{1}}{b^{\circ}}\right)>0$

$$
\begin{aligned}
& \text { Hunctinna } \begin{aligned}
&\|z+y\|_{1}<r^{\prime} \\
& \leq\|z-y\|+\|y-x\| \\
& \leq \mathrm{b}\|z-y\|_{1}+\|y-x\| \quad \because \text { by }(1)\|x\|=b\|x\|_{1} \\
&<\mathrm{b}\left(\frac{r-r_{1}}{b}\right)+r_{1} \\
&\|z-x\|<\mathrm{r}
\end{aligned}
\end{aligned}
$$

Hence $z \in B(x, r)$

$$
\begin{array}{r}
\mathrm{y} \in B_{1}^{*}\left(y, r^{\prime}\right) \subseteq \mathrm{B}(\mathrm{x}, \mathrm{r}) \\
\Rightarrow \mathrm{B}(\mathrm{x}, \mathrm{r}) \text { is open ball in }\left(\mathrm{N},\|\cdot\|_{1}\right)
\end{array}
$$

Similarly, every open ball in ($\mathrm{N},\|.\|_{1}$) will be open in $(\mathrm{N},\|\cdot\|)$ Hence topologies induced by $\|\cdot\|$ and $\|\cdot\|_{1}$ are same.

Theorem:

Let $\|\cdot\| \sim\|\cdot\|_{1}$ then show that every Cauchy sequence in $(\mathrm{N},\|\cdot\|)$ is also a Cauchy sequence in ($\mathrm{N},\|\cdot\|_{1}$)

Proof:

$$
\begin{align*}
& \text { Given }\|\cdot\| \sim\|\cdot\|_{1} \text { on } N \text { then } \exists a, b \in R, \quad a>0, b>0 \text { s.t } \\
& a\|x\|_{1} \leq\|x\| \leq b\|x\|_{1} \quad \ldots \text { (1) } \quad \forall \quad \mathrm{x} \in \mathrm{~N} \tag{1}
\end{align*}
$$

Let $\left\{x_{n}\right\}$ be a Cauchy sequence in ($\left.\mathrm{N},\|\cdot\|\right)$ Then for
Then for $\varepsilon>0 \exists n_{0} \in \mathrm{~N}, n_{0}=n_{0}(\varepsilon)$

$$
\begin{aligned}
& \forall \quad \mathrm{m}, \mathrm{n} ; \mathrm{m}, \mathrm{n} \geq n_{0} \Rightarrow\left\|x_{m}-x_{n}\right\|<\varepsilon \\
& \forall \quad \mathrm{m}, \mathrm{n} ; \mathrm{m}, \mathrm{n} \geq n_{0} \Rightarrow\left\|x_{m}-x_{n}\right\|_{1} \leq \frac{1}{a}\left\|x_{m}-x_{n}\right\|<\frac{\varepsilon}{a} \quad \because \text { by }(1) \\
& \forall \quad \mathrm{m}, \mathrm{n} ; \mathrm{m}, \mathrm{n} \geq n_{0} \Rightarrow\left\|x_{m}-x_{n}\right\|_{1}<\frac{\varepsilon}{a} \\
& \forall \quad \mathrm{~m}, \mathrm{n} ; \mathrm{m}, \mathrm{n} \geq n_{0} \Rightarrow\left\|x_{m}-x_{n}\right\|_{1}<\varepsilon^{\prime}
\end{aligned}
$$

$\Rightarrow\left\{x_{n}\right\}$ is a Cauchy sequence in $\left(\mathrm{N},\|\cdot\|_{1}\right)$

Question:

Let $\|\cdot\| \sim\|\cdot\|_{1}$ then prove that a sequence $\left\{x_{n}\right\}$ in $(\mathrm{N},\|\cdot\|)$ is converges to
 Proof: Given $\|.\| \sim\left\|\|_{1}\right.$ on N then $\exists a, b \in R, \quad a>0, b>0$ s.t

$$
\begin{equation*}
a\|x\|_{1} \leq\|x\| \leq b\|x\|_{1} \tag{1}
\end{equation*}
$$

$\forall \mathrm{x} \in \mathrm{N}$
Let $\left\{x_{n}\right\}$ be a convergent sequence in ($\mathrm{N},\|\cdot\|$)
Then for $\varepsilon>0 \exists n_{0} \in \mathrm{~N}, n_{0}=n_{0}(\varepsilon)$
$\forall \quad \mathrm{n} ; \mathrm{n} \geq n_{0} \Rightarrow\left\|x_{m}-x\right\|<\varepsilon$
$\forall \quad \mathrm{n} ; \mathrm{n} \geq n_{0} \Rightarrow\left\|x_{m}-x\right\|_{1} \leq \frac{1}{a}\left\|x_{m}-x\right\|<\frac{\varepsilon}{a} \quad \because$ by (1)
$\forall \quad \mathrm{n} ; \mathrm{n} \geq n_{0} \Rightarrow\left\|x_{m}-x\right\|_{1}<\frac{\varepsilon}{a}$
$\forall \quad \mathrm{n} ; \mathrm{n} \geq n_{0} \Rightarrow\left\|x_{m}-x\right\|_{1}<\varepsilon^{\prime}$
$\because \varepsilon^{\prime}=\frac{\varepsilon}{a}$
$\Rightarrow\left\{x_{n}\right\}$ is a convergent sequence in $\left(\mathrm{N},\|\cdot\|_{1}\right)$

Topological Linear Space:

A linear space $V(F)$ where F is R or C is said to be topological linear space if
(i) V is linear space
(ii) V is topological space
(iii) The addition and scalar multiplication as function

$$
\begin{array}{ll}
+: \mathrm{V} \times \mathrm{V} \rightarrow \mathrm{~V} & \text { s.t } \\
(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{x}+\mathrm{y} & \forall \mathrm{x}, \mathrm{y} \in \mathrm{~V} \\
\text { And } \cdot,: \mathrm{F} \times \mathrm{V} \rightarrow \mathrm{~V} \text { s.t } & \\
(\alpha, \mathrm{x}) \rightarrow \alpha \mathrm{x} & \forall \alpha \in \mathrm{~F}, \mathrm{x} \in \mathrm{~V}
\end{array}
$$

Linear Operator:

Let N and M are topological linear spaces then function $\mathrm{T}: \mathrm{N} \rightarrow \mathrm{M}$ is said to be linear operator if for every

(i) $\mathrm{T}(\mathrm{x}+\mathrm{y})=\mathrm{T}(\mathrm{x})+\mathrm{T}(\mathrm{y})$
(ii) $T(\alpha x)=\alpha T(x) 1100$ Man, $\& \alpha^{\circ} \in \operatorname{Fand}^{2} x \in N$

Example:

$$
T(x)=x
$$

$$
x \in N
$$

For $a_{1}, a_{2} \in \mathrm{~F}$

$$
x_{1}, x_{2} \in \mathrm{~N}
$$

$$
\begin{aligned}
\mathrm{I}\left(a_{1} x_{1}+a_{2} x_{2}\right) & =\mathrm{I}\left(a_{1} x_{1}\right)+\mathrm{I}\left(a_{2} x_{2}\right) \\
& =a_{1} \mathrm{I}\left(x_{1}\right)+a_{2} \mathrm{I}\left(x_{2}\right)
\end{aligned}
$$

Example:

O linear operator
$\mathrm{O}: \mathrm{N} \rightarrow \mathrm{N} \quad$ s.t

$$
\begin{aligned}
& a_{1}, a_{2} \in \mathrm{~F} \quad, \quad x_{1}, x_{2} \in \mathrm{~N} \\
& \mathrm{O}\left(a_{1} x_{1}+a_{2} x_{2}\right)=\mathrm{O}\left(a_{1} x_{1}\right)+\mathrm{O}\left(a_{2} x_{2}\right) \\
& = \\
& =a_{1} \cdot \mathrm{O}\left(x_{1}\right)+a_{2} \cdot \mathrm{O}\left(x_{2}\right)
\end{aligned}
$$

Lecture \# 11

Theorem:

Let $\mathrm{T}: \mathrm{N} \rightarrow \mathrm{M}$ be surjective linear operation then
(i) $\quad T^{-1}$ exist iff $T(x)=0 \Rightarrow \mathrm{x}=0 \quad, \mathrm{x} \in \mathrm{N}$
(ii) T is bijective $\& \operatorname{dimN}=\mathrm{n}$ Then $\operatorname{dim} \mathrm{M}=\mathrm{n}$

Proof:
(i) Suppose T^{-1} exist then T^{-1} is linear. Also for any
$x \in N$ let $T(x)=0$

$$
\begin{aligned}
& \Rightarrow \mathrm{T}(\mathrm{x})=\mathrm{T}(0) \quad \because \mathrm{T}(0)=0 \\
& \Rightarrow \mathrm{x}=0
\end{aligned}
$$

Conversely,

The function $T^{-1}: \mathrm{N} \rightarrow \mathrm{M}$ defined by $T^{-1}(\mathrm{y})=\mathrm{x} \quad$ where $\mathrm{T}(\mathrm{x})=\mathrm{y}$
is then the inverse of T i.e.

$$
T^{-1}: \mathrm{N} \rightarrow \mathrm{M} \text { exist }
$$

(\because if a function is bijective then inverse exist)

Solution: (ii)
Let $\mathrm{T}: \mathrm{N} \rightarrow \mathrm{M}$ is bijective function and $\operatorname{dimN}=\mathrm{n} \quad \because \operatorname{dim}=$ dimension
Let $\mathrm{B}=\left\{e_{1}, e_{2}, \ldots \ldots, e_{n}\right\}$ be a basis of N we shall prove $B^{*}=\left\{\mathrm{T}\left(e_{1}\right), \mathrm{T}\left(e_{2}\right), \ldots ., \mathrm{T}\left(e_{n}\right)\right\}$ is a Basis of M
(i) $B^{*}=\left\{\mathrm{T}\left(e_{1}\right), \mathrm{T}\left(e_{2}\right), \ldots ., \mathrm{T}\left(e_{n}\right)\right\}$ is L.I

$$
\begin{aligned}
& \text { Let } \sum_{i=1}^{n} a_{i} T\left(e_{i}\right)=0 \quad \text { for some } a_{i} \in \mathbb{F} ; i=1,2, \ldots, n \\
& T\left(\sum_{i=1}^{n} a_{i} e_{i}\right)=T(0) \quad \because T(0)=0 \\
& \sum_{i=1}^{n} a_{i} e_{i}=0 \\
& \Rightarrow B^{*} \text { is L.I } \quad \because B=\left\{e_{1}, e_{2}, \ldots . . ., e_{n}\right\} \text { is Basis of } N \\
& \text { (ii) Let } y \in M \quad \because T \text { is surjective so } \exists \text { an } x \in N \\
& \text { s.t } \quad T(x)=y \\
& \because B=\left\{e_{1}, e_{2}, \ldots \ldots, e_{n}\right\} \text { is Basis of } N \exists a_{1}, a_{2}, \ldots . a_{n} \in \mathbb{F}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hence } \quad \operatorname{dim} N=n=\operatorname{dim} M
\end{aligned}
$$

Theorem:

Let $\mathrm{T}: \mathrm{N} \rightarrow \mathrm{M}$ be a linear operator then prove that T is continuous on N iff T is bounded.

Proof:
Suppose that T is continuous on N then it is continuous $\forall x_{o} \in \mathrm{~N}$ so for $\varepsilon>0 \exists \delta>0$ s.t $\quad \forall x \in N ;\left\|x-x_{0}\right\|<\delta \Rightarrow\left\|T(x)-T\left(x_{0}\right)\right\|<\varepsilon$

Let $\mathrm{y} \in \mathrm{N}$ and put

$$
x=x_{0}+\frac{\delta}{2\|y\|} y
$$

$$
\begin{aligned}
& x-x_{0}=\frac{\delta}{2\|y\|} y \\
& \because T \text { is linear and } \\
& \left\|x-x_{0}\right\|=\left\|\frac{\delta}{2\|y\|} y\right\|=\frac{\delta}{2\|y\|}\|y\| \\
& =\frac{\delta}{2}<\delta
\end{aligned}
$$

We have

$$
\begin{aligned}
\left\|T(x)-T\left(x_{0}\right)\right\| & =\left\|T\left(x-x_{0}\right)\right\| \\
& =\left\|T\left(\frac{\delta}{2\|y\|} y\right)\right\|
\end{aligned}
$$

$$
1-\frac{\delta}{2\|y\| T(y) \|<\varepsilon \quad b y(1)}
$$

Let $\mathrm{T}: \mathrm{N} \rightarrow \mathrm{M}$ is bounded finear operator then $\exists \mathrm{K}>0$ s.t

$$
\|T(x)\| \leq \mathrm{K}\|x\| \quad \forall \mathrm{x} \in \mathrm{~N}
$$

So for any $\varepsilon>0$ choose $\delta=\frac{\varepsilon}{K}$

$$
\begin{aligned}
&\left\|x-x_{0}\right\|< \delta \Rightarrow\left\|T(x)-T\left(x_{0}\right)\right\|=\left\|T\left(x-x_{0}\right)\right\| \\
& \leq \mathrm{K}\left\|x-x_{0}\right\| \\
&<\mathrm{K} . \delta \\
&<\mathrm{K} \frac{\varepsilon}{K} \\
&\left\|T(x)-T\left(x_{0}\right)\right\|<\varepsilon \\
& \Rightarrow \quad \mathrm{T}: \mathrm{N} \rightarrow \mathrm{M} \text { is continuous }
\end{aligned}
$$

Theorem:

Prove that every linear operator on a finite dimensional norm space is bounded.
Proof: Let N be a finite dimensional normed space and $\mathrm{B}=\left\{e_{1}, e_{2}, \ldots \ldots, e_{n}\right\}$ be a basis of N

Let $\mathrm{T}: \mathrm{N} \rightarrow \mathrm{M}$ be a linear operator

$$
\text { For any } \mathrm{x} \in \mathrm{~N}
$$

$$
x=\sum_{i=1}^{n} x_{i} e_{i}
$$

Since T is linear

$$
\begin{aligned}
& T(x)=T\left(\sum_{i=1}^{n} x_{i} e_{i}\right) \Rightarrow T(x)=\sum_{i=1}^{n} x_{i} T\left(e_{i}\right) \\
& \|T(x)\|=\left\|\sum_{i=1}^{n} x_{i} T\left(e_{i}\right)\right\| \leq \sum_{i=1}^{n} \mid x_{i}\left\|T\left(e_{i}\right)\right\| \\
& \leq b \sum_{i=1}^{n}\left|x_{i}\right| \quad
\end{aligned}
$$

$$
\text { By a Lemma "Let (AN, Hit beqnormed space } B=\left\{x_{1}, \alpha_{2},, \ldots, x_{n}\right\} \text { be a basis of } N
$$

In this case $\|x\|=\left\|\sum_{i=1}^{n} x_{i} e_{i}\right\| \geq c \sum_{i=1}^{n}\left|x_{i}\right| \quad \because$ by lemma
$\sum_{i=1}^{n}\left|x_{i}\right| \leq \frac{1}{c}\|x\| \quad$ put in (1)
$\sum_{i=1}^{n}\left|x_{i}\right| \leq \frac{b}{c}\|x\|$
$\leq K\|x\|$
$\because K=\frac{b}{c}>0$
$\Rightarrow \quad \mathrm{T}: \mathrm{N} \rightarrow \mathrm{M}$ is bounded Linear operator

Lecture \# 12
Finite Dimensional Normed Space:
Suppose that N be a normed space $\mathrm{B}=\left\{x_{1}, x_{2}, \ldots \ldots x_{n}\right\}$ is a basis of $N, \forall x \in N$
(i) $\quad x=\sum_{i=i}^{n} a_{i} x_{i} \quad ; \quad a_{i} \in F, i=1,2, \ldots \ldots . . n$
(ii) $\left\{x_{1}, x_{2}, \ldots \ldots x_{n}\right\}$ are L.I then $\operatorname{dim} N=n$

Zero Norm:

$$
\|x\|_{0}=\stackrel{n}{\operatorname{Sup}}\left|a_{i=}\right|
$$

Question:

Suppose that || $\|\sim\| \cdot \|_{0}$

Let N be a finite dimensional subspace on N_{1}. Show that $\left(\mathbb{N},\| \|_{0}\right)$ is complete space or Banach space. $y 11$ olid olid
Solution:

$$
\begin{equation*}
\mathrm{a}\|x\|_{0} \leq\|x\| \leq \mathrm{b}\|x\| \forall \mathrm{x} \in \mathrm{~N} \tag{1}
\end{equation*}
$$

If N is finite dimensional subspace of N and $\left\{x_{1}, x_{2}, \ldots \ldots x_{n}\right\}$ is a basis of N
Then $\forall \mathrm{y} \in \mathrm{N}$ is of the form

$$
y=\sum_{i=i}^{n} a_{i} x_{i}
$$

Let $\left\{y^{p}\right\}$ be a Cauchy sequence in N then for $\varepsilon>0 \exists n_{0} \in \mathrm{~N}, n_{0}=n_{0}(\varepsilon)$ s.t $\forall p, q: p, q \geq n_{0} \Rightarrow\left\|y^{(p)}-y^{(q)}\right\|=\left\|\sum_{i=1}^{n} a_{i} x_{0}^{p}-\sum_{i=1}^{n} a_{i}^{q} x_{i}\right\|$

$$
=\left\|\sum_{i=1}^{n}\left(a_{i}^{(p)}-a_{i}^{(q)}\right) x_{i}\right\|<\varepsilon
$$

Since $\|\cdot\|_{0} \sim \frac{1}{a}\|\cdot\| \quad$ by (1)
$\forall p, q: p, q \geq n_{0} \Rightarrow\left\|y^{(p)}-y^{(q)}\right\|_{0}=\frac{1}{a}\left\|y^{(p)}-y^{(q)}\right\|<\frac{\varepsilon}{a}$
$\forall p, q: p, q \geq n_{0} \Rightarrow \operatorname{Sup}_{i=1}^{n}\left|a_{i}^{p}-a_{i}^{q}\right|<\frac{\varepsilon}{a} \quad \because\|x\|_{0}=\operatorname{Sup}_{i=1}^{n}\left|a_{i}\right|$
$\forall p, q: p, q \geq n_{0} \Rightarrow\left|a_{i}^{(p)}-a_{i}^{(q)}\right|<\frac{\varepsilon}{a}$
$\left\{a_{i}^{(p)}\right\}$ is a cauchy sequence in $\mathrm{F}\left(\mathrm{R}\right.$ or C) Since F is complete so $a_{i}^{(p)} \rightarrow a_{i}$ as $\mathrm{p} \rightarrow \infty$
i.e. $\left|a_{i}^{(p)}-a_{i}^{(q)}\right| \rightarrow 0$ as $\bar{p} \rightarrow \infty$
 ${ }^{\text {put }} \mathrm{My}$

$$
\begin{aligned}
& =\left\|\sum_{i=1}^{n}\left(a_{i}^{p}-a_{i}\right) x_{i}\right\| \\
& \leq \sum_{i=1}^{n}\left|a_{i}^{p}-a_{i}\right|\left\|x_{i}\right\|
\end{aligned}
$$

$\left\|y^{p}-y\right\| \leq k \sum_{i=1}^{n}\left|a_{i}^{p}-a_{i}\right| \rightarrow 0$ as $p \rightarrow \infty \quad$ by (2) $\quad \because k=\operatorname{Sup}_{i=n}^{n}\left\|x_{i}\right\|$
$y^{p} \rightarrow y \in N$
\Rightarrow Nis complete

Theorem:

Any two norms on a finite dimensional linear space are equivalent.
Proof:
Suppose that $\|\cdot\|$ and $\|\cdot\|_{1}$ be any two norms define on any norm space N and $\operatorname{dimN}=\mathrm{n}$

Let $\left\{x_{1}, x_{2}, \ldots \ldots x_{n}\right\}$ be a Basis of N . Then $\forall \mathrm{x} \in \mathrm{N}$

$$
x=\sum_{i=i}^{n} a_{i} x_{i}
$$

We know if $\left\{x_{1}, x_{2}, \ldots \ldots x_{n}\right\}$ is a Basis of N then $\exists \mathrm{c}>0$ s.t

$$
\begin{aligned}
& \|x\|=\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\| \geq c \sum_{i=1}^{n}\left|a_{i}\right| \ldots . .(1) \quad \forall x \in N \\
& \text { - Math (indy .org } \\
& \Rightarrow \quad=\text { stw Herting man \& maths }
\end{aligned}
$$

$$
\begin{align*}
& \leq \sum_{i=1}^{n}\left|a_{i}\right|\left\|x_{i}\right\|_{1} \\
& \|x\|_{1} \leq k S \quad \because \quad k=\operatorname{Sup}_{i=1}^{n}\left\|x_{i}\right\|_{1} \\
& \|x\|_{1} \leq \frac{k}{c}\|x\| \\
& \frac{c}{k}\|x\|_{1} \leq\|x\| \\
& a\|x\|_{1} \leq\|x\| \tag{3}\\
& \because \quad \frac{c}{k}=a>0
\end{align*}
$$

Similarly, $\quad\|x\|_{1}=\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|_{1} \geq c^{\prime} \sum_{i=1}^{n}\left|a_{i}\right| \quad \forall \quad x \in N$

$$
\begin{gather*}
\|x\|_{1} \geq c^{\prime} S \\
S \leq \frac{1}{c^{\prime}}\|x\|_{1} \tag{4}
\end{gather*}
$$

So, $\quad\|x\|=\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|$
$\leq \sum_{i=1}^{n}\left|a_{i}\right|\left\|x_{i}\right\|$
$\leq K^{\prime} \sum_{i=1}^{n}\left|a_{i}\right| \quad \because K^{\prime}=\operatorname{Sup}_{i=1}^{n}\left\|x_{i}\right\|$ $\left.1 \begin{array}{l}\|x\| \leq K^{\prime} S \\ \|x\| \leq \frac{K^{\prime}}{c^{\prime}}\|x\|_{1}\end{array}\right]$

$$
\Rightarrow \quad\|\cdot\|_{1} \sim\|\cdot\|
$$

Hence any two norms on a finite dimensional Linear space are equivalent

Lecture \# 13

Question:

Show that $\|.\|_{0} \sim\|.\|_{1}$ where $\|x\|_{0}=\operatorname{Sup}_{i=1}^{n}\left|x_{i}\right|, \quad x=\left(x_{1}, x_{2}, \ldots . ., x_{n}\right) \in R^{n}$ $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|, \quad x \in R^{n}$

Solution:

$$
\text { Let } \begin{aligned}
& x=\left(x_{1}, x_{2}, \ldots ., x_{n}\right) \\
y & =(1,1, \ldots \ldots, 1)
\end{aligned}
$$

Then $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
Mattictity org
Merging

$$
\begin{align*}
& \text { Also }\|x\|_{0}=\operatorname{Sup}_{i=1}^{n}\left|x_{i}\right| \leq \sum_{i=1}^{n}\left|x_{i}\right| \\
& \|x\|_{0} \leq\|x\|_{1} \tag{2}
\end{align*}
$$

From (1) and (2)

$$
\text { 1. } \begin{array}{rlr}
\|x\|_{0} & \leq\|x\|_{1} \leq \mathrm{n}\|x\|_{0} & \forall \mathrm{x} \in R^{n} \\
& \Rightarrow\|\cdot\|_{0} \sim\|\cdot\|_{1} &
\end{array}
$$

Question:

Show that $\|.\|_{1} \sim\|.\|_{2}$ where $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \quad,\|x\|_{2}=\sqrt{\left.\sum_{i=1}^{n} x_{i}\right|^{2}}, x \in R^{n}$
Solution: We know $a^{2}+b^{2} \leq(a+b)^{2}, a \geq 0, b \geq 0$

$$
\begin{align*}
& \sum_{i=1}^{2}\left|x_{i}\right|^{2} \leq\left(\sum_{i=1}^{2}\left|x_{i}\right|\right)^{2} \\
\text { For n } & \sum_{i=1}^{n}\left|x_{i}\right|^{2} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)^{2} \\
& \sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}} \leq \sqrt{\left(\sum_{i=1}^{n}\left|x_{i}\right|^{n}\right)^{2}} \\
& \sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}} \leq \sum_{i=1}^{n}\left|x_{i}\right| \\
& \left.\|x\|\right|_{2} \leq\|x\|{ }_{1} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& \text { Also }\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \\
& \text { Mathe Citymorg } \\
& \text { Merfififlyman \& maths }
\end{aligned}
$$

$$
\begin{aligned}
& \|x\|_{1} \leq \sqrt{n}\|x\|_{2} \\
& \frac{1}{\sqrt{n}}\|x\|_{1} \leq\|x\|_{2} \\
& \text { By (1) and (2) } \\
& \frac{1}{\sqrt{n}}\|x\|_{1} \leq\|x\|_{2} \leq\|x\|_{1} \\
& \Rightarrow \quad\|\cdot\|_{1} \sim\|\cdot\|_{2}
\end{aligned}
$$

Question:

Show that $\mathrm{d}(\mathrm{x}, \mathrm{y})=\sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|}$ is metric space.
Solution:

$$
\begin{aligned}
& M_{1}: \quad \mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 0 \\
& \because \sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|} \geq 0 \\
& M_{2}: \mathrm{d}(\mathrm{x}, \mathrm{y})=0 \Leftrightarrow \sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|}=0 \\
& \Leftrightarrow \frac{1}{2^{1}} \frac{\left|x_{1}-y_{1}\right|}{1+\left|x_{1}+y_{1}\right|}+\frac{1}{2^{2}} \frac{\left|x_{2}-y_{2}\right|}{1+\left|x_{2}+y_{2}\right|}+\ldots . .+\frac{1}{2^{n}} \frac{\left|x_{n}-y_{n}\right|}{1+\left|x_{n}+y_{n}\right|}=0 \\
& \begin{array}{l}
\Leftrightarrow \frac{1}{2^{1}} \frac{\left|x_{1}-y_{1}\right|}{1+\left|x_{1}+y_{1}\right|}=0, \frac{1}{2^{2}} \frac{\left|x_{2}-y_{2}\right|}{1+\left|x_{2}+y_{2}\right|}=0, \ldots ., \frac{1}{2^{n}} \frac{\left|x_{n}-y_{n}\right|}{1+\left|x_{n}+y_{n}\right|}=0 \\
\Leftrightarrow\left|x_{1}-y_{1}\right|=0,\left|x_{2}-y_{2}\right|=0, \ldots \ldots .,\left|x_{n}-y_{n}\right|=0
\end{array} \\
& \Leftrightarrow x_{1}-y_{1}=0, x_{2}-\theta y_{2}=0, \ldots \ldots x_{1} y_{r}=0 \text { maths }
\end{aligned}
$$

$$
\begin{aligned}
& d(x, y)=0 \Leftrightarrow x=y \\
& M_{3}: \mathrm{d}(\mathrm{x}, \mathrm{y})=\sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|} \\
& =\sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left|y_{i}-x_{i}\right|}{1+\left|y_{i}-x_{i}\right|}=\mathrm{d}(\mathrm{y}, \mathrm{x}) \\
& M_{4}: \mathrm{d}(\mathrm{x}, \mathrm{z})=\sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left|x_{i}-z_{i}\right|}{1+\left|x_{i}-z_{i}\right|}=\sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left|x_{i}-y_{i}+y_{i}-z_{i}\right|}{1+\left|x_{i}-y_{i}+y_{i}-z_{i}\right|} \\
& \leq \sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|}{1+\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{i=1}^{n} \frac{1}{2^{i}}\left(\frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|}+\frac{\left|y_{i}-z_{i}\right|}{1+\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|}\right) \\
& \mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|}+\sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left|y_{i}-z_{i}\right|}{1+\left|y_{i}-z_{i}\right|} \\
& \mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{z}) \\
& \Rightarrow \mathrm{d}(\mathrm{x}, \mathrm{y}) \text { is metric space }
\end{aligned}
$$

Question:

Show that $\mathrm{d}(\mathrm{x}, \mathrm{y})=\frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|}$ is metric space.
Solution:

$$
\begin{aligned}
& \because \sum_{i=1}^{n} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|} \geq 0 \\
& M_{2}: \mathrm{d}(\mathrm{x}, \mathrm{y})=0 \Leftrightarrow \sum_{i=1}^{n} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|}=0
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow\left|x_{1}-y_{1}\right|=0,\left|x_{2}-y_{2}\right|=0, \ldots \ldots .,\left|x_{n}-y_{n}\right|=0 \\
& \Leftrightarrow x_{1}-y_{1}=0, x_{2}-y_{2}=0, \ldots \ldots ., x_{n}-y_{n}=0 \\
& \Leftrightarrow x_{1}=y_{1}, x_{2}=y_{2}, \ldots \ldots, x_{n}=y_{n} \\
& \Rightarrow \quad\left(x_{1}, x_{2}, \ldots . ., x_{n}\right)=\left(y_{1}, y_{2}, \ldots ., y_{n}\right) \\
& d(x, y)=0 \Leftrightarrow x=y \\
& M_{3}: \mathrm{d}(\mathrm{x}, \mathrm{y})=\sum_{i=1}^{n} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \frac{\left|y_{i}-x_{i}\right|}{1+\left|x_{i}-y_{i}\right|}=\mathrm{d}(\mathrm{y}, \mathrm{x}) \\
& M_{4}: \mathrm{d}(\mathrm{x}, \mathrm{z})=\sum_{i=1}^{n} \frac{\left|x_{i}-z_{i}\right|}{1+\left|x_{i}-z_{i}\right|}=\sum_{i=1}^{n} \frac{\left|x_{i}-y_{i}+y_{i}-z_{i}\right|}{1+\left|x_{i}-y_{i}+y_{i}-z_{i}\right|} \\
& =\sum_{i=1}^{n} \frac{\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|}{1+\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|} \\
& \leq \sum_{i=1}^{n}\left(\frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|}+\frac{\left|y_{i}-z_{i}\right|}{1+\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|}\right) \\
& \mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \sum_{i=1}^{n} \frac{\left|x_{i}-y_{i}\right|}{1+\left|x_{i}-y_{i}\right|}+\sum_{i=1}^{n} \frac{\left|y_{i}-z_{i}\right|}{1+\left|y_{i}-z_{i}\right|} \\
& \begin{array}{l}
\mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{z}) \\
\Rightarrow \mathrm{d}(\mathrm{x}, \mathrm{y}) \text { is metric space }
\end{array}
\end{aligned}
$$

Question:

Show that $\mathrm{d}(\mathrm{x}, \mathrm{y})=\sqrt{|x|^{2}+|y|^{2}}$ is metric space.
sofifiagctional Analysis by Prof. Mumtaz Ahmad

$$
\begin{array}{cc}
M_{1}: \mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 0 & \because \sqrt{|x|^{2}+|y|^{2}} \geq 0 \\
M_{2}: \mathrm{d}(\mathrm{x}, \mathrm{y})=0 & \Leftrightarrow \sqrt{|x|^{2}+|y|^{2}}=0 \\
& \Leftrightarrow|x|^{2}+|y|^{2}=0 \\
& \Leftrightarrow|x|^{2}=0 \quad,|y|^{2}=0 \\
& \Leftrightarrow x=0, y=0 \\
& \mathrm{~d}(\mathrm{x}, \mathrm{y})=0 \quad \Leftrightarrow x=y \\
M_{3}: \mathrm{d}(\mathrm{x}, \mathrm{y})=\sqrt{|x|^{2}+|y|^{2}}
\end{array}
$$

$=\sqrt{|y|^{2}+|x|^{2}} \quad \Rightarrow \mathrm{~d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$
$M_{4}: \mathrm{d}(\mathrm{x}, \mathrm{z})=\sqrt{|x|^{2}+|z|^{2}}=\sqrt{|x|^{2}+|y-y|^{2}+|z|^{2}}$
$\leq \sqrt{|x|^{2}+|y|^{2}+|-y|^{2}+|z|^{2}} \leq \sqrt{|x|^{2}+|y|^{2}}+\sqrt{|y|^{2}+|z|^{2}}$
$d(x, z) \leq d(x, y)+d(x, z) \quad \Rightarrow d(x, y)$ is metric space
Merging man \& maths
Functional Analysis by Prof. Mumtaz Ahmad

Lecture \# 14

Cauchy Schwarz Inequality:

For any $x, y \in V \quad, \quad V$ is an inner product space then

$$
|<x, y>| \leq\|x\|\|y\|
$$

Proof:
Case-I If $x=0, y=0$ then
$|<x, y\rangle \mid \leq\|x\|\|y\|$ holds trivially
Case-II \quad Suppose at least one of x and y say $x \neq 0, \lambda \in F$ then $0 \leq<x+\lambda y, x+\lambda y>=<x, x>+<x, \lambda y>+<\lambda y, x>+<\lambda y, \lambda y>$

$$
=<x, x>+\bar{\lambda}<x, y>+\lambda<y, x>+\lambda \bar{\lambda}<y, y>
$$

$$
\begin{aligned}
& 1 \begin{aligned}
\text { Take } \mathrm{a} & =\langle\mathrm{x}, \mathrm{x}\rangle, \mathrm{b}=\langle\mathrm{x}, \mathrm{y}\rangle \\
0 & \leq a+\bar{\lambda} b+\lambda \bar{b}+\lambda \bar{\lambda} c
\end{aligned} \quad, \mathrm{c}=\langle\mathrm{y}, \mathrm{y}\rangle \\
& \text { Let } \mathrm{q} \neq 0 \text { then } y^{\circ} \neq 0 \text { Define } \lambda=\frac{-b}{c} \text { maths }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{a c-|b|^{2}}{c} \\
& 0 \leq \mathrm{ac}-|b|^{2} \\
& |b|^{2} \leq \mathrm{ac} \\
& |\langle x, y\rangle|^{2} \leq\langle x, x\rangle .\langle y, y\rangle \\
& \because<x, x\rangle=\|x\|^{2},<y, y>=\|y\|^{2} \\
& |\langle x, y\rangle|^{2} \leq\|x\|^{2} \cdot\|y\|^{2} \\
& |<x, y\rangle \mid \leq\|x\|\|y\|
\end{aligned}
$$

Case-III

If $y=0$ then

$$
\begin{aligned}
&<\mathrm{x}, \mathrm{y}>=<\mathrm{x}, 0> \\
&=<\mathrm{x}, 0 . \mathrm{z}> \\
&= 0<\mathrm{x}, \mathrm{z}> \\
&<\mathrm{x}, \mathrm{y}>=0=\|x\|\|y\|
\end{aligned}
$$

In all three cases

$$
|<x, y>| \leq\|x\|\|y\|
$$

Question:

(a) For any sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in inner product space V. $x_{n} \rightarrow \mathrm{x}$, $y_{n} \rightarrow \mathrm{y}$ then prove $<x_{n}, y_{n}>\rightarrow<\mathrm{x}, \mathrm{y}>$
(b) If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequence in V then $\left\langle x_{n}, y_{n}>\right.$ is - convergent sequence in $\mathrm{F}(\mathrm{R}$ or C$)$

Solution (a):
Consider

$$
\leq\left|<x_{n}-x, y_{n}>++\left|<x, y_{n}-y>|\quad \because| a+b\right| \leq|a|\right| b \mid
$$

$$
\begin{equation*}
\leq\left\|x_{n}-x\right\|\left\|y_{n}\right\|+\|x\|\left\|y_{n}-y\right\| \quad \because|<x, y>| \leq\|x\|\|y\| \tag{1}
\end{equation*}
$$

Given $\left.\begin{array}{l}x_{n} \rightarrow \mathrm{x} \Rightarrow\left\|x_{n}-x\right\| \rightarrow 0 \\ y_{n} \rightarrow \mathrm{y} \Rightarrow\left\|y_{n}-y\right\| \rightarrow 0\end{array}\right]$
$\Rightarrow\left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right| \rightarrow 0$ by (1)
$\left.\left.\Rightarrow \quad<x_{n}, y_{n}\right\rangle \rightarrow<\mathrm{x}, \mathrm{y}\right\rangle$
(b). If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequence in V

So $\left\|x_{n}-x_{m}\right\| \rightarrow 0$ and $\left\|y_{n}-y_{m}\right\| \rightarrow 0 \quad$ as every Cauchy sequence is bounded

Consider
$\Rightarrow \quad\left\{<x_{n}, y_{n}>\right\}$ is a Cauchy sequence in $\mathrm{F}(\mathrm{R}$ or C$)$.
Since $\mathrm{F}(\operatorname{Ror} \mathrm{C})$ is complete so $<x_{n}, y_{n}>$ is convergent in F (R or C)
Question: What is meant by orthogonal system in an inner product space?
Solution:

Orthogonal System:

For any inner product space $V ; x, y \in V$ are said to be orthogonal (perpendicular) if $<\mathrm{x}, \mathrm{y}>=0$ and can be written as $\mathrm{x} \perp \mathrm{y}$

Question:
 Define Pythagorean theorem in particular and general form.

In any inner product space V and $\mathrm{x}, \mathrm{y} \in \mathrm{V}, \mathrm{x} \perp \mathrm{y}$. Then

$$
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}
$$

L.H.S $=\|x+y\|^{2}$
$=<x+y, x+y>$

$$
=<\mathrm{x}, \mathrm{x}>+<\mathrm{x}, \mathrm{y}>+<\mathrm{y}, \mathrm{x}>+<\mathrm{y}, \mathrm{y}>
$$

Since $\mathrm{x} \perp \mathrm{y} \Rightarrow<\mathrm{x}, \mathrm{y}>=<\mathrm{y}, \mathrm{x}>=0$

$$
=<\mathrm{x}, \mathrm{x}>+0+0+<\mathrm{y}, \mathrm{y}>
$$

$$
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}=\text { R.H.S }
$$

Or $\left\|\sum_{i=1}^{2} x_{i}\right\|^{2}=\sum_{i=1}^{2}\left\|x_{i}\right\|^{2}$

Generalized form of Pythagorean Theorem:

\[

\]

Question:

(a) Define orthonormalsystemin an inner product space.

Where $S_{n}(\mathrm{t})=\frac{1}{\sqrt{\pi}} \sin n t, \mathrm{n}=1,2, \ldots . \quad, c_{0}(\mathrm{t})=\frac{1}{\sqrt{2 \pi}}$

$$
c_{n}(\mathrm{t})=\frac{1}{\sqrt{\pi}} \operatorname{cosn} \mathrm{t} \quad, \mathrm{n}=1,2, \ldots \ldots \ldots
$$

In the real space $\mathrm{c}[0,2 \pi]$ with inner product space V defined by $<\mathrm{x}, \mathrm{y}>=\int_{0}^{2 \pi} x(t) y(t) d t$. Then show that S is an orthonormal system.

Solution: (a)
A set $\mathrm{A}=\left\{x_{\alpha} ; \alpha \in \Omega\right\}$ of non-zero vectors in an inner product space V is said to be orthonormal system if $<x_{\alpha}, x_{\beta}>=0, \alpha \neq \beta, \alpha, \beta \in \Omega$ and $<x_{\alpha}, x_{\alpha}>=1$

$$
\left\|x_{\alpha}\right\|^{2}=1 \Rightarrow\left\|x_{\alpha}\right\|=1, \alpha \in \Omega
$$

Solution: (b) L.H.S $=\left\|x_{\alpha}-x_{\beta}\right\|^{2}$

$$
\begin{aligned}
& =<x_{\alpha}-x_{\beta}, x_{\alpha}-x_{\beta}> \\
& =<x_{\alpha}, x_{\alpha}>-<x_{\beta}, x_{\alpha}>-<x_{\alpha}, x_{\beta}>+<x_{\beta}, x_{\beta}> \\
& \because<x_{\alpha}, x_{\beta}>=<x_{\beta}, x_{\alpha}>=0, \alpha \neq \beta \\
& =<x_{\alpha}, x_{\alpha}>+<x_{\beta}, x_{\beta}> \\
& =\left\|x_{\alpha}\right\|^{2}+\left\|x_{\beta}\right\|^{2} \\
& =1+1=2 \\
& \left\|x_{\alpha}-x_{\beta}\right\|^{2}=2 \\
& \left\|x_{\alpha}-x_{\beta}\right\|=\sqrt{2}
\end{aligned}
$$

Solution (c) :
Step-I: To prove $\left\langle S_{n}, C_{m}>=0 \quad \forall m, n=1,2, \ldots \ldots\right.$ for $m=n$

$$
\begin{aligned}
& <S_{n}, C_{m}>=<\frac{1}{\sqrt{\pi}} \sin n t, \frac{1}{\sqrt{\pi}} \cos n t> \\
& <S_{n}, C_{m}>=\frac{1}{\pi}<\sin n t, \cos n t>=\frac{1}{\pi} \int_{0} \sin n t \cos n t d t
\end{aligned}
$$

Step-II \quad For $\mathrm{n} \neq \mathrm{m}$

$$
\begin{aligned}
<S_{n}, C_{m}>= & <\frac{1}{\sqrt{\pi}} \sin n t, \frac{1}{\sqrt{\pi}} \cos m t> \\
<S_{n}, C_{m}>= & \frac{1}{\pi}<\sin n t, \cos m t>=\frac{1}{\pi} \int_{0}^{2 \pi} \sin n t \cos m t d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} 2 \sin n t \cos m t d t=\frac{1}{2 \pi} \int_{0}^{2 \pi}(\sin (n+m)+\sin (n-m)) t d t
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2 \pi}\left|\frac{-\cos (n+m) t}{n+m}\right|_{0}^{2 \pi}+\frac{1}{2 \pi}\left|\frac{-\cos (n-m) t}{n+m}\right|_{0}^{2 \pi} \\
& =0+0=0
\end{aligned}
$$

$$
\begin{aligned}
\text { Also }<S_{n}, S_{n}> & =<\frac{1}{\sqrt{\pi}} \sin n t, \frac{1}{\sqrt{\pi}} \sin n t>=\frac{1}{\pi}<\sin n t, \sin n t> \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} \sin ^{2} t d t \\
& =\frac{1}{\pi} \int_{0}^{2 \pi}\left(\frac{1-\cos n t}{2}\right) t d t \\
& =\frac{1}{2 \pi}\left|t-\frac{\sin 2 n t}{2 n}\right|_{0}^{2 \pi}
\end{aligned}
$$

$$
\cdots]=\frac{1}{2 \pi}(2 \pi)=1 \quad \square \square \square
$$

Similarly, $\quad<C_{\bar{n}}, C_{\bar{n}}>=1, \quad<C_{0}, C_{0}>=1$
 $\Rightarrow \mathrm{S}$ is orthenormal system 1 adi oc maths

Functional Analysis by Prof. Mumtaz Ahmad

Lecture \# 15

Dual Space (Conjugate Space)

Let N be a normed space. Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{F}$ be a Linear functionals.
Then $(\mathrm{f}+\mathrm{g}): \mathrm{N} \rightarrow \mathrm{F}$ defined by

$$
(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x}), \quad \mathrm{x} \in \mathrm{~N}
$$

And for any $\alpha \in \mathrm{F}$,

$$
\begin{array}{ll}
\alpha \mathrm{f}: \mathrm{N} \rightarrow \mathrm{~F} & \text { defined by } \\
(\alpha \mathrm{f})(\mathrm{x})=\alpha \cdot \mathrm{f}(\mathrm{x}) & , \mathrm{x} \in \mathrm{~N}
\end{array}
$$

are also Linear functionals. If N^{\prime} be the set of all Linear functionals defined on N then N^{\prime} itself a linear space called Algebraic dual space of N .

If we consider only the continuous or bounded Linear functional on N then corresponding space is called dual or conjugate and it is denoted by N^{*}.
Let N be a normed space and N^{*} be the dual space of N. Let $N^{* *}$ be the dual space of N^{*} then $N^{* *}$ is called the second dual space or second conjugate space of N .

A norm space N is said to be reflexive if there is an isometric isomorphism b / w N and $N^{* *}$
somimenticisinororphism!: Ssis by Prof. Mumtaz Ahmad
Let N and M are normed space A function $\phi: \mathrm{N} \rightarrow \mathrm{M}$ is said to be a isometric isomorphism if
(i) ϕ is bijective
(ii) ϕ is linear i.e. for $a, b \in F, x, y \in N$

$$
\phi(a x+b y)=a \phi(x)+b \phi(y)
$$

(iii) ϕ preserves norms i.e. for any $\mathrm{x} \in \mathrm{N}$

$$
\|\phi(x)\|=\|x\|
$$

Theorem:

A finite dimensional normed or Linear Space N is isomorphic to its second dual space $N^{* *}$ i.e. $\mathrm{N} \cong N^{* *}$

Proof: Let N be a finite dimensional normed or linear space of $\operatorname{dim}=\mathrm{n}$ and $N^{* *}$ be its second dual space. Define

$$
\phi: \mathrm{N} \rightarrow N^{* *} \text { s.t }
$$

For each $\mathrm{x} \in \mathrm{N}$ we put

$$
\phi(\mathrm{x})=g_{x}
$$

Where $\quad g_{x}: \quad N^{*} \rightarrow \mathrm{~F}$ is defined by $g_{x}(\mathrm{f})=\mathrm{f}(\mathrm{x}), \quad \mathrm{f} \in N^{*}$
(i) ϕ is linear
$\phi\left(a x+a^{\prime} x^{\prime}\right)=g_{a x+a^{\prime} x^{\prime}}$
And $g_{a x+a^{\prime} x^{\prime}}(\mathrm{f})=\mathrm{f}\left(a x+a^{\prime} x^{\prime}\right)$

$$
=\mathrm{a} . \mathrm{f}(\mathrm{x})+a^{\prime} \cdot f\left(x^{\prime}\right)
$$

$$
=\mathrm{a} \cdot g_{x}(\mathrm{f})+a^{\prime} \cdot g_{x^{\prime}}(\mathrm{f}) \quad, \quad \mathrm{f} \in N^{*}
$$

$$
=\mathrm{a} \phi(\mathrm{x})+a^{\prime} \phi\left(x^{\prime}\right)
$$

$$
\Rightarrow \phi \text { is linear }
$$

(ii) ϕ is injective (one-one)

For $x, x^{\prime} \in \mathrm{N}$

We use "If N is finite dimensional normed space and $x_{0} \in \mathrm{~N}$ s.t

$$
\begin{aligned}
& \mathrm{f}\left(x_{0}\right)=0 \quad \forall x_{0}=0 \quad \forall \mathrm{f} \in N^{*} " \\
& \Rightarrow \phi \text { is one-one }
\end{aligned}
$$

(iii) ϕ is onto

Also $\phi(\mathrm{N})$ is subspace of $N^{* *}$
$\because \mathrm{N}$ has finite dimension
$\operatorname{dimN}=\operatorname{dim} N^{*}=\operatorname{dim} N^{* *}$
so that $\phi(\mathrm{N})=N^{* *}$
we use "Let N be a n-dimensional normed space then its dual N^{*} is also n dimensional"
\Rightarrow Hence N and $N^{* *}$ are isomorphic to each other.

Annihilators:

Let H be Hilbert space and $\mathrm{A} \subseteq \mathrm{H}$ for $\mathrm{x} \in \mathrm{H}$ we say x is orthogonal to A written as $\mathrm{x} \perp \mathrm{A} \operatorname{iff}<\mathrm{x}, \mathrm{y}>=0 \forall \mathrm{y} \in \mathrm{A}$. The set of all vectors which are orthogonal to A is called the Annihilators and denoted by A^{\perp}.

Thus

$$
A^{\perp}=\{\mathrm{x} \in \mathrm{H}, \mathrm{x} \perp \mathrm{~A}\}
$$

For MCQ

(i) $\mathrm{A} \subseteq A^{\perp \perp}$
(ii) $\mathrm{A} \subseteq \mathrm{B} \Rightarrow A^{\perp} \subseteq B^{\perp}$
(iii) $(A \cup B)^{\perp}=A^{\perp} \cap B^{\perp}$
(iv) $A^{\perp} \cup B^{\perp} \subseteq(A \cap B)^{\perp}$
(v) $A^{\perp}=A^{\perp \perp \perp}$
(vi) $A \cap A^{\perp} \subseteq\{0\}$
(vii) A^{\perp} is closed subspace of H
(viii) $\{0\}^{\perp}=\mathrm{H}$
(ix) $H^{1}=\{0\}$
Complete Space:
$\underset{\substack{\text { if } x_{n} \rightarrow x \in \text { yiffrerging man } \\ \text { Banach Space: }}}{ }$ maths
Frumationdilanalysis by Poof Mumaza Ammad
Hilbert Space:
If $x_{n} \rightarrow x \in(\mathrm{X},<., .>)$

