ALGEBRA II Muzammil Tanveer 0316-7017457 Available at: http://www.mathcity.org

Lecture # 1

For Understanding:

If (G,+) is Abelian group.

If that G is

- (i) (G, .) closed and
- (G, .) associative (ii)

then (G, +, .) is called a Ring

And If (G, .) contain "e"

 \Rightarrow (G, +, .) called Identity Ring. Or Ring with unity.

If (G, .) contain inverse

 \Rightarrow (G, +, .) called Division Ring

If (G, .) holds commutativity

 \Rightarrow (G, +, .) called Abelian Ring

If (G, +, ..) holds distributive laws (left and right distributive law) then

(G, +, .) is called a Field.

(G, +, .) become (F, +, .)

e.g. set of real number is a field and set of rational number is a field.

Vector Space:

Let (V,+) be an abelian group and $(\mathbb{F},+,.)$ be a field define a scalar multiplication

".":
$$\mathbb{F} \times V \rightarrow V$$

since (. is function)

Such that $\forall \alpha \in F$, $v \in V$, $\alpha.v \in V$

Then V is said to be a Vector space over F if the following axioms are true

- (i) $\alpha(u+v) = \alpha u + \alpha v$
- (ii) $(\alpha + \beta) u = \alpha u + \beta u$
- (iii) $\alpha(\beta u) = (\alpha \beta)u$

(iv) $1.u = u \quad \forall \alpha, \beta \in \mathbb{F}, u.v \in V$

Example:

Let F be a field consider the set $V = \{(\alpha, \beta) : \alpha , \beta \in F\}$ then V is vector space. Solution:

Define Addition and scalar multiplication in V as

Let
$$(\alpha_1, \beta_1)$$
, $(\alpha_2, \beta_2) = (\alpha_1 + \alpha_2, \beta_1 + \beta_2)$

Let $\alpha \in F$ and $(\alpha_1, \beta_1) \in V$ then $\alpha \cdot (\alpha_1, \beta_1) = (\alpha \alpha_1, \alpha \beta_1)$

Then V form a vector space over \mathbb{F}

Now we make (V, +) is abelian

(i) Let
$$(\alpha_1, \beta_1)$$
, $(\alpha_2, \beta_2) \in V$
 $(\alpha_1, \beta_1) + (\alpha_2, \beta_2) = (\alpha_1 + \alpha_2, \beta_1 + \beta_2)$
Closure law is hold

(ii) Associating is trivial

(iii) Let
$$O = (0,0) \in V$$

Where $O \in F$
 $(\alpha,\beta) + (0,0) = (\alpha+0, \beta+0) = (\alpha,\beta)$
Identity law is hold

(iv) Since $\alpha \in F$ \Rightarrow $-\alpha \in F$ Also $\beta \in F$ \Rightarrow $-\beta \in F$ Now $(\alpha, \beta) \in F$ \Rightarrow $(-\alpha, -\beta) \in F$

And $(\alpha,\beta) + (-\alpha,-\beta) = (\alpha-\alpha, \beta-\beta) = (0,0) \in V$ inverse exist

(v)
$$(\alpha_1, \beta_1) + (\alpha_2, \beta_2) = (\alpha_1 + \alpha_2, \beta_1 + \beta_2)$$

= $(\alpha_2 + \alpha_1, \beta_2 + \beta_1)$
= $(\alpha_2, \beta_2) + (\alpha_1, \beta_1)$

Commutative law hold.

Hence (V, +) is abelian group. Now we prove V is vector space by following axioms.

(i) Let
$$\alpha \in F$$
 and (α_1, β_1) , $(\alpha_2, \beta_2) \in V$
then
$$\alpha [(\alpha_1, \beta_1) + (\alpha_2, \beta_2)] = \alpha [(\alpha_1 + \alpha_2, \beta_1 + \beta_2)]$$

$$= (\alpha [\alpha_1 + \alpha_2], \alpha [\beta_1 + \beta_2])$$

$$= (\alpha \alpha_1 + \alpha \alpha_2, \alpha \beta_1 + \alpha \beta_2)$$

2 | Page

Collected By: Muhammad Saleem Composed By: Muzammil Tanveer

$$= (\alpha \alpha_1, \alpha \beta_1) + (\alpha \alpha_2, \alpha \beta_2)$$
$$= \alpha (\alpha_1, \beta_1) + \alpha (\alpha_2, \beta_2)$$

(ii)
$$[\alpha+\beta] (\alpha_1, \beta_1) = ([\alpha+\beta]\alpha_1, [\alpha+\beta]\beta_1)$$

$$= (\alpha\alpha_1 + \beta\alpha_1, \alpha\beta_1 + \beta\beta_1)$$

$$= (\alpha\alpha_1 + \alpha\beta_1) + (\beta\alpha_1, \beta\beta_1)$$

$$= \alpha(\alpha_1, \beta_1) + \beta(\alpha_1, \beta_1)$$
(iii)
$$\alpha[\beta(\alpha_1, \beta_1)] = \alpha(\beta\alpha_1, \beta\beta_1)$$

$$= (\alpha\beta\alpha_1, \alpha\beta\beta_1)$$

$$= \alpha\beta(\alpha_1, \beta_1)$$

 $A \begin{bmatrix} \text{(iv)} & 1 & 1 & (\alpha_1, \beta_1) \neq (1, \alpha_1, 1, \beta_1) \\ & & (\alpha_1, \beta_1) \end{bmatrix} = (1, \alpha_1, 1, \beta_1)$

All axioms are satisfied. Hence V is vector space.

Merging man & maths

3 | Page

Composed By: Muzammil Tanveer

Lecture # 2

Example:

Let **F** be a field and $\phi \neq X$. Let $\mathbb{F}^{X} = \{ f | f : X \rightarrow \mathbb{F} \}$. Define addition and scalar multiplication in \mathbb{F}^{X} as

Let
$$f,g \in \mathbb{F}^X$$
; $(f+g)(x) = f(x) + g(x)$ (1)
 $\forall \alpha \in \mathbb{F} \text{ and } f \in \mathbb{F}^X$ $(\alpha f)(x) = \alpha . f(x)$ (2)

Then show that $\mathbb{F}^{X}(\mathbb{F})$ is a vector space.

Solution: First we show that $(\mathbb{F}^{X},+)$ is an abelian group.

(i)
$$\mathbb{F}^{X}$$
 is closed as

Let
$$f,g \in \mathbb{F}^X$$

 $(f+g)(x) = f(x) + g(x)$
Associativity is trivial.

- (iii) Identity

(iv) Inverse

Let
$$f \in \mathbb{F}^{X} \exists f^{-1} \in \mathbb{F}^{X}$$

Such that $f^{-1}(x) = -f(x)$
Now $(f+f^{-1})(x) = f(x) + f^{-1}(x)$
 $= f(x) - f(x) = 0$
 $= I(x)$
 $\Rightarrow f + f^{-1} = I$
 \Rightarrow Inverse exits in \mathbb{F}^{X}

Commutativity (v)

From (1) we have
$$(f+g)(x) = f(x) + g(x)$$
$$= g(x) + f(x)$$

$$=(g+f)(x) \Rightarrow f+g=g+f$$

Hence $(\mathbb{F}^{X},+)$ is an abelian group.

Now we prove $\mathbb{F}^{X}(\mathbb{F})$ is a vector space.

(i) Let
$$\alpha \in \mathbb{F}$$
 and $f,g \in \mathbb{F}^X$

$$[\alpha(f+g)](x) = (\alpha f + \alpha g)(x) \qquad \text{By (2)}$$

$$= (\alpha f)(x) + (\alpha g)(x) \qquad \text{By (1)}$$

$$= \alpha . f(x) + \alpha . g(x) \qquad \text{By (2)}$$

$$\Rightarrow \alpha(f+g) = \alpha f + \alpha g$$

(ii) Let
$$\alpha$$
, $\beta \in \mathbb{F}$ and $f \in \mathbb{F}^{X}$

$$[(\alpha+\beta)f](x) = (\alpha f + \beta f)(x)$$

$$= (\alpha f)(x) + (\beta f)(x)$$

$$= \alpha f(x) + \beta f(x)$$
By (2)
$$= \alpha f(x) + \beta f(x)$$
By (2)

$$\Rightarrow (\alpha + \beta) f = \alpha f + \beta f$$

(iii) Let
$$\alpha$$
, $\beta \in \mathbb{F}$ and $f \in \mathbb{F}$

$$[\alpha(\beta f)](x) = (\alpha \beta f)(x) \qquad \text{By (2)}$$

$$= \alpha \beta . f(x) \qquad \text{By (2)}$$

$$\Rightarrow \alpha(\beta f) = (\alpha \beta) f \qquad \text{By (2)}$$

(iv) Let
$$1 \in \mathbb{F}$$
 and $f \in \mathbb{F}^{X}$
 $(1.f)(x) = f(x)$
 $\Rightarrow 1.f = f$
 $\Rightarrow \mathbb{F}^{X}(\mathbb{F})$ is a vector space.

Subspace:

Let V be the vector space over the field $\mathbf{F.}\ V(\mathbb{F}\)$ be a vector space.

Let $\phi \neq W \subseteq V$ then W is called subspace of V if W itself becomes a vector space under the same define addition and scalar multiplication as in V.

Theorem:

A non-empty subset W of vector space V over the field \mathbb{F} is a subspace of V

iff $\alpha u + \beta v \in W$, $\forall u,v \in W$ and $\alpha,\beta \in \mathbb{F}$

Mathematically statement

$$\phi \neq W \leq V(\mathbb{F}) \Leftrightarrow \alpha u + \beta v \in W, \forall u, v \in W \& \alpha, \beta \in \mathbb{F}$$

Proof:

Let W be a subspace of $V(\mathbb{F})$

 \Rightarrow W is vector space then \forall u,v \in W & $\alpha,\beta \in \mathbb{F}$

$$\alpha u + \beta v \in W$$

Conversely, Let $\alpha u + \beta v \in W$

Take $\alpha = 1$, $\beta = 1$

$$\alpha u + \beta v = 1.u + 1.v = u + v \in W$$

 \Rightarrow (W, +) is closed.

Take $\alpha = 1$, $\beta = 0$ and vice versa

$$\Rightarrow \alpha u + \beta v = 1.u + 0.v = u \in W$$

$$\Rightarrow \alpha u + \beta v = 0.u + 1.v = v \in W$$

 \Rightarrow (W, .) is closed Hence W is a subspace.

Note: "\(\sigma\)" means subspace, subring, subset.

Question:

Let **F** be a field and $\phi \neq W$. Let $\mathbb{F}^{X} = \{ f | f : X \rightarrow \mathbb{F} \} ; Y \subseteq X \text{ and } Y \subseteq Y \subseteq Y \}$

$$W = \{ f | f : Y \to \mathbb{F} \} \text{ or } W = \{ f | f(y) = 0 \ \forall \ y \in Y \}$$

Then show that W is subspace $\ensuremath{\mathbb{F}}$.

Solution: Let $y_1 y_2 \in Y$ and $\alpha, \beta \in \mathbb{F}$

Such that $f(y_1) = 0$, $f(y_2) = 0$,

$$\alpha f(y_1) + \beta f(y_2) = \alpha(0) + \beta(0) = 0 \in W$$

Lecture #3

Example:

Let V be a vector space of all 2×2 matrices over the field R then check either W is subspace or not.

- (i) W consists of all 2×2 singular matrices.
- (ii) W consists of all 2×2 Idempotent matrices.
- (iii) W consists of all 2×2 symmetric matrices.

Solution:

(i) Let W consist of all 2×2 singular matrices i.e. if $M \in W \Rightarrow |M| = 0$

Let M and $N \in W$ such that

$$ALUM \ni \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ and } N = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$M + N = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

But
$$|M + N| \neq 0 \Rightarrow M + N \notin W$$

$$\Rightarrow W \nleq V$$

(ii) Let W consist of all 2×2 Idempotent matrices i.e. if $M \in W \Rightarrow M^2 = M$

Let $M \in W$ such that

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies M^2 = \mathbf{M}$$

Now

$$2M = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
$$(2M)^2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \neq 2M \notin W$$

$$\Rightarrow W \nleq V$$

(iii) Let W consist of all 2×2 symmetric matrices i.e. if $A \in W \Rightarrow A^t = A$

And if
$$B \in W \Rightarrow B^t = B$$

Let $\alpha, \beta \in F = R$ such that

$$(\alpha A + \beta B)^t = (\alpha A)^t + (\beta B)^t = \alpha A^t + \beta B^t$$
$$\Rightarrow \alpha A + \beta B \in W \qquad \Rightarrow W \le V$$

Example:

Let
$$V = R^3$$
 and $\phi \neq W \subseteq V$

Let
$$W = \{(u,v,1) : u,v \in R, 1 \in R\}$$

Check W is a subspace of V or not.

Solution:

Let $x,y \in W$ such that

$$x = (u_1, v_1, 1)$$
 and $y = \{(u_2, v_2, 1)\}$

Now
$$x + y = (u_1 + u_2, v_1 + v_2, 1+1)$$

$$=(u_1+u_2, v_1+v_2, 2) \notin W$$

A W & RAIBY SYED SHERAZ ASGHAR

Example:

Let
$$V \neq R^3$$
 and $\phi \neq W \subseteq V$

Let W =
$$\{(u,v,\omega) : u+v+w=0\}$$
 Check W is subspace of V or not.

Solution:

Let $x,y \in W$ such that

$$x = (u_1, v_1, w_1)$$
 and $y = (u_2, v_2, w_2)$

Now let $\alpha, \beta \in F$

$$\alpha x + \beta y = \alpha(u_1, v_1, w_1) + \beta(u_2, v_2, w_2)$$

$$= \alpha(u_1 + v_1 + w_1) + \beta(u_2 + v_2 + w_2)$$

$$= \alpha(0) + \beta(0)$$

 $= 0 \in W$ Hence W is a vector space of V

Example:

Let
$$V = R^3$$
 and $\phi \neq W \subset V$

Let W =
$$\{(u,v,w) : u-2v+3w = 0\}$$
 Check W is subspace of V or not.

Solution:

Let
$$x, y \in W$$
 such that

$$x = (u_1, v_1, w_1)$$
 and $y = (u_2, v_2, w_2)$

Now let
$$\alpha, \beta \in F$$

$$\alpha x + \beta y = \alpha(u_1, -2v_1, 3w_1) + \beta(u_2, -2v_2, 3w_2)$$

$$= \alpha(u_1 - 2v_1 + 3w_1) + \beta(u_2 - 2v_2 + 3w_2)$$

$$= \alpha(0) + \beta(0)$$

$$= 0 \in W \text{ Hence W is a vector space of V}$$

Example:

Let V be a vector space of all real valued function. Let $\phi \neq W \subseteq V$.

Let W =
$$\{ f : \int_0^1 f = 0 \}$$
. Check W \leq V or W \nleq V.

Solution:

Let $u, v \in W$ such that

$$u = \int_0^1 f = 0$$
 and
$$v = \int_0^1 g = 0$$
 Now let $\alpha, \beta \in \mathbb{F}$

$$\alpha \mathbf{u} + \beta \mathbf{v} = \alpha \int_0^1 f + \beta \int_0^1 g = \alpha(0) + \beta(0)$$

$$\alpha \mathbf{u} + \beta \mathbf{v} = 0 \in \mathbf{W} = \mathbf{U} = \mathbf{W} = \mathbf{U} = \mathbf{W} = \mathbf{U} = \mathbf{W} = \mathbf{U} =$$

Example:

Let
$$V = R^n$$
: let $\phi \neq W$

Let W =
$$\{(x_1, x_2, x_3, \dots, x_n): x_1 + x_2 + x_3 + \dots + x_n = 1\}$$

Check either $W \le V$ or not.

Solution:

Let $u,v \in W$:

$$u = (1,0,0,\ldots,0)$$
 and $v = (0,1,0,\ldots,0)$

Now
$$u + v = (1,0,0,\dots,0) + (0,1,0,\dots,0)$$

$$=(1,1,0,....0) \notin W$$

$$\Rightarrow$$
 W \nleq V

Sum of Subspaces:

Let V(F) be a vector space. Let W_1 and W_2 are the subspaces of V(F) then sum of W_1 and W_2 is defined as

$$W_1 + W_2 = \{x : x = w_1 + w_2, w_1 \in W_1 \land w_2 \in W_2\}$$

This is known as sum of two subspaces.

Note: Sum of two subspaces is again a subspace.

Theorem:

Prove that sum of subspaces is again a subspace.

Proof:

It is clear that
$$W_1 + W_2 \neq \phi$$
 as $0 = 0 + 0$

It is clear that
$$W_1 + W_2 \neq \phi$$
 as $0 = 0 + 0$
Let $u \in W_1 + W_2$: $u = w_1 + w_2$, $w_1 \in W_1$, $w_2 \in W_2$

$$v \in W_1 + W_2 : v = w_1' + w_2' , w_1' \in W_1, w_2' \in W_2$$

$$\text{Let } \alpha, \beta \in \mathbb{F}$$

Now
$$\alpha u + \beta v = \alpha(w_1 + w_2) + \beta(w_1' + w_2')$$

$$= \alpha w_1 + \alpha w_2 + \beta w_1' + \beta w_2'$$

$$= (\alpha w_1 + \beta w_1') + (\alpha w_2 + \beta w_2') \qquad \in W_1 + W_2$$

$$\alpha u + \beta v \in W_1 + W_2$$

$$\Rightarrow W_1 + W_2 \text{ is a subspace of } V(\mathbb{F})$$

Direct Sum:

Let W_1 , W_2, \ldots, W_n are the subspaces of $V(\mathbb{F})$ then the direct sum of W_1 , W_2 ,..... W_n is denoted by and defined as

$$W_1 + W_2 + \dots + W_n = W_1 \oplus W_2 \oplus \dots \oplus W_n = \text{ can be written as}$$

 $x = w_1 + w_2, \dots w_n \text{ uniquely.}$

Theorem:

$$W_1 + W_2 = W_1 \oplus W_2 \Leftrightarrow W_1 \cap W_2 = \{0\}$$

or prove that

$$V = W_1 + W_2 \Leftrightarrow (i) W_1 \oplus W_2 \quad (ii) \qquad W_1 \cap W_2 = \{0\}$$

Proof:

Let
$$V = W_1 \oplus W_2$$

Let
$$u \in W_1 \cap W_2$$
 $\Rightarrow u \in W_1$ and $u \in W_2$

$$u = u + 0 \in W_1 + W_2 = V$$

$$u = 0 + u \in W_1 + W_2 = V$$

 \therefore u has been expressed uniquely as u = u+0 and u = 0+u and the unique which is only possible if u = 0

$$\Rightarrow W_1 \cap W_2 = \{0\}$$

Conversely,

Let
$$v = u_1 + v_1 \& v = u_1' + v_1$$

Let $v = u_1 + v_1 \& v = u_1' + v_1'$ Where $u_1, u_1' \in W_1$ and $v_1, v_1' \in W_2$

$$\Rightarrow u_1 - u_1' \in W_1$$
 and $v_1 - v_1' \in W_2$

$$\Rightarrow u_1 - u_1' \in W_1 \quad \text{and } v_1 - v_1' \in W_2$$

$$\Rightarrow u_1 - u_1' \in W_2 \quad \text{and } v_1 - v_1' \in W_1$$

$$\Rightarrow u_1 - u_1' \in W_1 \cap W_2 \text{ and } v_1 - v_1' \in W_1 \cap W_2$$

$$\Rightarrow u_1 - u_1' = 0$$
 and $v_1 - v_1' = 0$

$$\Rightarrow u_1 = u_1'$$
 and $v_1 = v_1'$

Representation of V is unique in V

$$\Rightarrow V = W_1 \oplus W_2$$

Example:

Let V be vector space of all real valued function

$$\mathbb{V}(f:\mathbb{R}\to\mathbb{R})$$

$$LetX = \{f : fisodd\}, LetY = \{f : fiseven\}$$

$$Showthat X \leq Vand Y \leq V$$

$$V = X \oplus Y$$

Define addition and scalar multiplication

Let
$$f,g \in V$$

$$(f+g)(x) = f(x) + g(x)$$
 (1)

Let $\alpha \in \mathbb{F}$ and $f \in V$

$$(\alpha f)(x) = \alpha f(x) \tag{2}$$

 $X = \{f: f \text{ is odd}\}$ It is clear that $X \neq \phi$ as

$$0(-x) = 0 = -0(x)$$

$$\Rightarrow 0 \in X$$

Let $f,g \in X$

$$f(-x) = -f(x)$$
 and

$$g(-x) = -g(x)$$

Let $\alpha, \beta \in \mathbb{F}$ then

$$(\alpha f + \beta g)(-x) = (\alpha f)(-x) + (\beta g)(-x) \qquad \therefore by(1)$$

$$= \alpha.f(-x) + \beta.g(-x)$$

 $= -\alpha f(x) - \beta g(x)$

$$(\alpha f + \beta g)(-x) = -(\alpha f + \beta g)(x)$$

$$\alpha f + \beta g \in X$$
Now $Y = \{f: f \text{ is even}\}$
 $X \leq Y$
Now $Y = \{f: f \text{ is even}\}$

It is clear that $Y \neq \phi$ as

$$0(-x) = 0 = 0(x)$$

$$\Rightarrow 0 \in Y$$

Let
$$f,g \in Y$$

$$f(-x) = f(x)$$

and
$$g(-x) = g(x)$$

Let $\alpha, \beta \in \mathbb{F}$ then

$$(\alpha f + \beta g)(-x) = (\alpha f)(-x) + (\beta g)(-x)$$

$$\therefore$$
 by(1)

$$= \alpha.f(-x) + \beta.g(-x)$$

$$\because$$
 by(2)

$$= \alpha f(x) + \beta g(x)$$

$$(\alpha f + \beta g)(-x) = (\alpha f + \beta g)(x)$$

$$\alpha f + \beta g \in Y$$

Even Function

$$f(-x) = f(x)$$

12 | Page

n Composed By: Muzammil Tanveer

$$\Rightarrow$$
 $Y \leq V$

Now to show X+Y is subspace

... Sum of two subspaces is again subspace.

It is clear that $X+Y \neq \phi$ as

$$0 = 0 + 0$$

Let
$$u \in X+Y : u = w_1 + w_2$$
, $w_1 \in X$ and $w_2 \in Y$

And
$$v \in X+Y : v = w_1' + w_2'$$
, $w_1' \in X$ and $w_2' \in Y$

Let $\alpha, \beta \in \mathbb{F}$

Now
$$\alpha u + \beta v = \alpha(w_1 + w_2) + \beta(w_1' + w_2')$$

 $= \alpha w_1 + \alpha w_2 + \beta w_1' + \beta w_2'$
 $= (\alpha w_1 + \beta w_1') + (\alpha w_2 + \beta w_2') \in X + Y$

$$\Rightarrow \alpha u + \beta v \in X + Y$$

 $\Rightarrow \overline{X+Y}$ is a subspace.

Now we show $V = X \oplus Y$, Let $f \in V$ such that g(x) = f(-x) $\Rightarrow f = (\frac{1}{2}f + \frac{1}{2}g) + (\frac{1}{2}f - \frac{1}{2}g)$

$$\Rightarrow f = (\frac{1}{2}f + \frac{1}{2}g) + (\frac{1}{2}f - \frac{1}{2}g)$$

$$\Rightarrow f(-x) = \left(\frac{1}{2}f + \frac{1}{2}g\right)(-x) + \left(\frac{1}{2}f - \frac{1}{2}g\right)(-x)$$

$$= \left(\frac{1}{2}f(-x) + \frac{1}{2}g(-x)\right) + \left(\frac{1}{2}f(-x) - \frac{1}{2}g(-x)\right)$$

$$= \left(\frac{1}{2}g(x) + \frac{1}{2}f(x)\right) + \left(\frac{1}{2}g(x) - \frac{1}{2}f(x)\right)$$

$$f(-x) = (\frac{1}{2}f + \frac{1}{2}g)(x) - (\frac{1}{2}f - \frac{1}{2}g)(x)$$

$$\Rightarrow \frac{1}{2}f + \frac{1}{2}g \in Y$$

$$\Rightarrow \frac{1}{2}f + \frac{1}{2}g \in Y$$
 and $\frac{1}{2}f - \frac{1}{2}g \in X$

$$\Rightarrow f \in X+Y$$

Finally let
$$f \in X \cap Y$$
 $\Rightarrow f \in X$ and $f \in Y$

$$f(-x) = -f(x) \in X$$

$$f(-x) = f(x) \in Y$$

$$\Rightarrow$$
 $-f(x) = f(x)$

$$f(x) + f(x) = 0$$
 \Rightarrow $2f(x) = 0$
 $f(x) = 0(x)$
 $\Rightarrow f = 0$
 $\Rightarrow X \cap Y = \{0\}$
Hence the result

ALGEBRA II BY SYED SHERAZ ASGHAR Nathcity.org Merging man & maths

Lecture #4

Linear Transformation or Homomorphism:

Let U and V be two vector spaces over the field \mathbb{F} then a mapping

$$T: V \rightarrow U$$

is said to be a linear transformation if

(i)
$$T(v_1+v_2) = T(v_1)+T(v_2)$$

(ii)
$$T(\alpha v) = \alpha T(v)$$

$$\forall v, v_1, v_2 \in V \text{ and } \alpha \in \mathbb{F}$$

Or A mapping

$$T: V \rightarrow U$$

If
$$T(\alpha v_1 + \beta v_2) = \alpha T(v_1) + \beta T(v_2)$$

And this linear transformation is also known as Homomorphism.

Question:

Let T be a transformation (mapping)

$$T(\alpha,\beta,\gamma) = (\alpha,\beta)$$

Check this transformation is linear or not.

Solution:

Given T
$$(\alpha, \beta, \gamma) = (\alpha, \beta)$$
 (1)

Let
$$v_1 = (\alpha_1, \beta_1, \gamma_1)$$

 $v_2 = (\alpha_2, \beta_2, \gamma_2)$ $\in \mathbb{F}^3$

Now for any scalar $\alpha, \beta \in \mathbb{F}$

Then
$$T(\alpha v_1 + \beta v_2) = T(\alpha(\alpha_1, \beta_1, \gamma_1) + \beta(\alpha_2, \beta_2, \gamma_2))$$

$$= T(\alpha \alpha_1 + \beta \alpha_2, \alpha \beta_1 + \beta, \beta_2, \alpha \gamma_1 + \beta \gamma_2)$$

$$= (\alpha \alpha_1 + \alpha \beta_1, \beta \alpha_2 + \beta \beta_2) \qquad \therefore \text{ by (1)}$$

$$= (\alpha \alpha_1, \alpha \beta_1) + (\beta \alpha_2, \beta \beta_2)$$

$$= \alpha (\alpha_1, \beta_1) + \beta(\alpha_2, \beta_2)$$

$$= \alpha T(\alpha_1, \beta_1, \gamma_1) + \beta T(\alpha_2, \beta_2, \gamma_2) \qquad \Rightarrow \alpha T(v_1) + \beta T(v_2)$$

Hence T is linear space

Composed By: Muzammil Tanveer

Theorem:

Let T: $V \rightarrow U$ be a linear transformation then

- (i) T(0) = 0
- (ii) T(-x) = -T(x)

Proof: (i)

$$T(0) = T(0+0)$$

$$T(0) = T(0) + T(0)$$

∵ by def.

By cancellation law

$$0 = T(0)$$

Proof: (ii)

$$T(-x)+T(x) = T(-x+x)$$

∵ by def.

$$T(-x)+T(x) = 0$$

$$\Rightarrow T(-x) = -T(x)$$

Kernel of T or Kernel of Linear Transformation:

Let T: $V \rightarrow U$ be a linear transformation then Kernel of T is

$$Ker T = \{ V: T(v) = 0 \text{ where } v \in V \text{ and } 0 \in U \}$$

Question:

Let $u, v \in Ker T$ such that

$$T(u) = 0$$
 and $T(v) = 0$

∵ by def.

Let α , $\beta \in \mathbb{F}$: then

$$\alpha u + \beta v = \alpha(u) + \beta(v)$$

$$= \alpha(T(u)) + \beta(T(v))$$

$$=\alpha(0)+\beta(0)$$

$$=0 \in \text{Ker } T$$

Hence Ker T is a subspace.

Theorem:

Let T: V \rightarrow U be a L.T then Ker T = $\{0\}$ iff T is one-one.

Proof:

Suppose Ker
$$T = \{0\}$$

Let $T(v_1) = T(v_2)$

$$\Rightarrow$$
 T(v_1) -T(v_2) = 0

$$T(v_1 - v_2) = 0$$

T is L.T

$$\Rightarrow$$
 $v_1 - v_2 \in \text{Ker T} = 0$

by def. of Kernel

$$\Rightarrow v_1 - v_2 = 0$$

$$\Rightarrow$$
 $v_1 = v_2$

$$\Rightarrow$$
 T is one-one

Conversely,

Let T is one-one

If $v \in Ker\ T$ be any element then by def. of Kernel

$$T(v) = 0 = T(0)$$

 $T(\mathbf{v}) = T(0)$

Given T is one-one

$$\Rightarrow$$
 $v = 0$

ging man & maths

Definition:

Let T: $V \rightarrow U$ be a L.T then Range of T is defined as

Range
$$T = T_R = \{T(v) : v \in V\}$$

Or Range
$$T = \{ u: u \in U \text{ and } u = T(v), v \in V \}$$

Theorem:

Prove that RangeT is a subspace.

Proof:

Let
$$T(0) = 0$$
, $0 \in V$

$$\therefore T(0) \in RangeT \quad i.e. RangeT \neq \emptyset$$

Let $\alpha, \beta \in \mathbb{F}$ and T(x), $T(y) \in T(y)$ be any element. Then

$$\alpha T(x) + \beta T(y) = T(\alpha x + \beta y) \in T(v)$$

Hence Range T is subspace.

Quotient Space:

Let V be a vector space and W be the subspace V. Define a set

$$\frac{v}{w} = \{v + W \colon v \in V\}$$

(i)
$$(v_1+W) + (v_2+W) = (v_1+v_2) + W$$

(ii).
$$\alpha (v_1 + W) = \alpha v_1 + W$$

Theorem:

Let T: $V \rightarrow U$ be a L.T then

$$\frac{V}{KerT} \approx T(V)$$

∴ ≈ (Isomorphic)

Proof:

Let
$$Ker T = K$$

Define a mapping such that

$$\phi \colon \frac{V}{K} \to \mathrm{T}(\mathrm{V})$$

$$\phi(v+K) = T(v) \qquad (1)$$
(i) ϕ is well define. Q

(i)

Let
$$v_1$$
+K and v_2 +K $\in \frac{\overline{v}}{K}$

Let
$$v_1 + K = v_2 + K$$

$$v_1 - v_2 = K - K$$

$$K-K \in K$$

$$v_1 - v_2 \in K = Ker T$$

$$\Rightarrow$$
 T($v_1 - v_2$) = 0

$$\Rightarrow T(v_1) - T(v_2) = 0$$

$$T$$
 is L.T

$$\Rightarrow$$
 T(v_1)= T(v_2)

$$\Rightarrow \phi(v_1+K) = \phi(v_2+K)$$

$$\therefore$$
 by (1)

$$\Rightarrow$$
 ϕ is well define

(ii)φ is one-one

Let
$$\phi(v_1+K) = \phi(v_2+K)$$

$$\Rightarrow$$
 T(v_1)= T(v_2)

$$\Rightarrow$$
 T(v_1) - T(v_2) = 0

$$\Rightarrow$$
 T($v_1 - v_2$) = 0

$$\therefore$$
 by (1)

$$\Rightarrow v_1 - v_2 \in \text{Ker T} = K$$

$$\Rightarrow v_1 - v_2 = K - K$$

$$\Rightarrow v_1 + K = v_2 + K$$

$$\Rightarrow \phi \text{ is one-one}$$

$$K - K \in K$$

(iii) ϕ is Linear

$$\begin{cases} x = v_1 + K \\ \text{Let } y = v_2 + K \end{cases} \in \frac{V}{K}$$

Let $\alpha, \beta \in \mathbb{F}$ then

$$\phi(\alpha x + \beta y) = \phi[\alpha(v_1 + K) + \beta(v_2 + K)]$$

$$= \phi[\alpha v_1 + K + \beta v_2 + K]$$

$$= \phi(\alpha v_1 + \beta v_2 + K)$$

$$K + K \in K$$

$$A \int \frac{\phi(\alpha x + \beta y)}{A} = \frac{T(\alpha v_1 + \beta v_2)}{A} = \alpha T(v_1) + \beta T(v_2)$$

$$= \alpha T(v_1) + \beta T(v_2)$$

$$= \alpha \Phi(v_1 + K) + \beta \Phi(v_2 + K)$$

$$\Rightarrow by (1)$$

 $\Rightarrow \phi \text{ is Linear}$ (iv) ϕ is onto

 ϕ is onto Let $T(v) \in T(V)$ be any element. Then

$$\Rightarrow$$
 $v \in V$ and $\phi(v+K) = T(v)$

Hence
$$\frac{V}{KerT} \approx T(V)$$

Exercise

Check which of the following are linear transformation

Question # 1
$$T:R^2 \to R^2$$
 s.t $T(x_1, x_2) = (1 + x_1, x_2)$ ____(1)

Solution:

$$\begin{array}{l} \mathbf{v}_1 \ = (x_1', x_2') \\ \mathbf{v}_2 \ = \ (x_1'', x_2'') \end{array} \} \quad \in R^2$$

Let $\alpha, \beta \in \mathbb{F}$ Then

$$T(\alpha v_1 + \beta v_2) = T[\alpha(x_1', x_2') + \beta(x_1'', x_2'')]$$

$$= T[(\alpha x_1' + \beta x_1''), (\alpha x_2' + \beta x_2'')]$$

$$= [(1 + (\alpha x_1' + \beta x_1''), (\alpha x_2' + \beta x_2'')] \qquad \therefore \text{ by (1)}$$

$$\neq \alpha T(v_1) + \beta T(v_2)$$

Hence T is not linear transformation.

Question # 2: $T:R^2 \to R^2$ s.t $T(x_1, x_2) = (x_2, x_1)$

Solution:

$$\begin{cases}
 v_1 = (x_1', x_2') \\
 v_2 = (x_1'', x_2'')
 \end{cases} \in R^2$$

s.t
$$T(x'_1, x'_2) = (x'_2, x'_1)$$

 $T(x''_1, x''_2) = (x''_2, x''_1)$

Let $\alpha, \beta \in \mathbb{F}$ Then

$$T(\alpha v_1 + \beta v_2) = T[\alpha(x'_1, x'_2) + \beta(x''_1, x''_2)]$$

$$= T[(\alpha x'_1 + \beta x''_1), (\alpha x'_2 + \beta x''_2)]$$

$$= [(\alpha x'_2 + \beta x''_2), (\alpha x'_1 + \beta x''_1)]$$

$$= \alpha(x'_2, x'_1) + \beta(x''_2, x''_1)$$

$$= \alpha T(x'_1, x'_1) + \beta T(x''_1, x''_2)$$

$$= \alpha T(v_1) + \beta T(v_2)$$

Hence T is linear.

20 | Page

Collected By: Muhammad Saleem Composed By: Muzammil Tanveer

Question #3: T: C \rightarrow C s.t T(z) = \bar{z}

Solution:

Let
$$z = x + iy$$

 $v_1 = z_1 = x_1 + iy_1$
 $v_2 = z_2 = x_2 + iy_2$ $\in C$

Such that $T(z_1) = \overline{z_1} = x_1 - iy_1$

$$T(z_2) = \overline{z_2} = x_2 - iy_2$$

Such that α , $\beta \in \mathbb{F}$ Then

$$T(\alpha v_{1} + \beta v_{2}) = T[\alpha(x_{1} + iy_{1}) + \beta(x_{2} + iy_{2})]$$

$$= T[\alpha x_{1} + i\alpha y_{1} + \beta x_{2} + i\beta y_{2}]$$

$$= T[(\alpha x_{1} + \beta x_{2}) + i(\alpha y_{1} + \beta y_{2})]$$

$$= [(\alpha x_{1} + \beta x_{2}) - i(\alpha y_{1} + \beta y_{2})]$$

$$= [(\alpha x_{1} + \beta x_{2} - i\alpha y_{1} - i\beta y_{2})]$$

$$= [(\alpha(x_{1} - iy_{1}) + \beta(x_{2} - iy_{2})]$$

$$= \alpha T(z_{1}) + \beta T(z_{2})$$

$$= \alpha T(v_{1}) + \beta T(v_{2})$$

⇒ T is Linear Space.

Question #4: T: C \rightarrow C s.t T(z) = \bar{z}

Solution: Let
$$v_1 = z_1 = x_1 + iy_1 \ v_2 = z_2 = x_2 + iy_2$$
 $\in C$

Such that $T(v_1) = T(x_1 + iy_1) = x_1$

$$T(v_2) = T(x_2 + iy_2) = x_2$$

Such that α , $\beta\in\,\mathbb{F}\,$ Then

$$T(\alpha v_1 + \beta v_2) = T[\alpha(x_1 + iy_1) + \beta(x_2 + iy_2)]$$

$$= T[\alpha x_1 + i\alpha y_1 + \beta x_2 + i\beta y_2]$$

$$= T[(\alpha x_1 + \beta x_2) + i(\alpha y_1 + \beta y_2)]$$

=
$$\alpha x_1 + \beta x_2$$

= $\alpha T((x_1 + iy_1) + \beta T(x_2 + iy_2))$
= $\alpha T(v_1) + \beta T(v_2)$

 \Rightarrow T is Linear Space.

Question # 5: T: $R^3 \rightarrow R^3$ s.t $T(x_1, x_2, x_3) = (x_1, x_1 + x_2, x_1 + x_2 + x_3, x_3)$

Solution:

$$\begin{array}{l} \mathbf{v}_1 \ = (x_1', x_2', x_3') \\ \mathbf{v}_2 \ = \ (x_1'', x_2'', x_3'') \end{array} \} \quad \in R^3$$

s.t
$$T(x'_1, x'_2, x'_3) = (x'_1, x'_1 + x'_2, x'_1 + x'_2 + x'_3, x'_3)$$

 $T(x''_1, x''_2, x''_3) = (x''_1, x''_1 + x''_2, x''_1 + x''_2 + x''_3, x''_3)$

Let $\alpha, \beta \in \mathbb{F}$ Then

$$T(\alpha v_1 + \beta v_2) = T[\alpha(x_1', x_2', x_3') + \beta(x_1'', x_2'', x_3'')]$$

$$= T[(\alpha x_1' + \beta x_1''), (\alpha x_2' + \beta x_2''), (\alpha x_3' + \beta x_3'')]$$

$$= [(\alpha x_1' + \beta x_1''), (\alpha x_1' + \beta x_1'' + \alpha x_2' + \beta x_2''), (\alpha x_1' + \beta x_1'' + \alpha x_2' + \beta x_2'' + \alpha x_3' + \beta x_3''), (\alpha x_3' + \beta x_3'')]$$

$$= [\alpha x_1', (\alpha x_1' + \alpha x_2'), (\alpha x_1' + \alpha x_2' + \alpha x_3'), \alpha x_3']$$

$$+[\beta x_1'',(\beta x_1''+\beta x_2''),(\beta x_1''+\beta x_2''+\beta x_3''),\beta x_3'']$$

$$=\alpha[x_1',x_1'+x_2',x_1'+x_2'+x_3',x_3']+\beta[x_1'',x_1''+x_2'',x_1''+x_2''+x_3'',x_3'']$$

$$= \alpha T(x_1', x_2', x_3') + \beta T(x_1'', x_2'', x_3'')$$

$$T(\alpha v_1 + \beta v_2) = \alpha T(v_1) + \beta T(v_2)$$

 \Rightarrow T is Linear Space.

Q6:
$$T:R^3 \to R^3$$
 s.t $T(x_1, x_2) = (x_1, x_1 + x_2, x_2)$

Solution:

$$\begin{array}{l} \mathbf{v}_1 \; = \; (x_1', x_2') \\ \mathbf{v}_2 \; = \; (x_1'', x_2'') \\ \end{array} \} \quad \in R^3$$

s.t
$$T(x'_1, x'_2) = (x'_1, x'_1 + x'_2, x'_2)$$

$$T(x_1'', x_2'') = (x_1'', x_1'' + x_2'', x_2'')$$

Let $\alpha, \beta \in \mathbb{F}$ Then

$$T(\alpha v_1 + \beta v_2) = T[\alpha(x_1', x_2') + \beta(x_1'', x_2'')]$$

$$= T[(\alpha x_1' + \beta x_1''), (\alpha x_2' + \beta x_2'')]$$

$$= [\alpha x_1' + \beta x_1'', \alpha x_1' + \beta x_1'' + \alpha x_2' + \beta x_2'', \alpha x_2' + \beta x_2'']$$

$$= [\alpha x_1', \alpha x_1' + \alpha x_2', \alpha x_2'] + [\beta x_1'', \beta x_1'' + \beta x_2'', \beta x_2'']$$

$$= \alpha[x_1', x_1' + x_2', x_2'] + \beta[x_1'', x_1'' + x_2'', x_2'']$$

$$= \alpha T(x_1', x_2') + \beta T(x_1'', x_2'')$$

 $T(\alpha v_1 + \beta v_2) = \alpha T(v_1) + \beta T(v_2)$ $\Rightarrow T \text{ is Linear Space.}$

Question #7: T: $R \to R^3$ s.t $T(x) = (x, x^2, x^3)$

Solution:

$$v_{1} = (x_{1}) \\v_{2} = (x_{2}) \in R$$

$$x_{1} = (x_{1}) = (x_{1}, x_{1}^{2}, x_{1}^{3})$$

$$T(x_{2}) = (x_{2}, x_{2}^{2}, x_{2}^{3})$$

Let $\alpha,\beta\in\mathbb{F}$ Then

$$T(\alpha v_1 + \beta v_2) = T[\alpha(x_1) + \beta(x_2)]$$

= $[(\alpha x_1 + \beta x_1), (\alpha x_1 + \beta x_1)^2, (\alpha x_1 + \beta x_1)^3]$

is not a Linear Transformation

Lecture # 5

Theorem:

Let $W \le V$ then \exists an onto Linear transformation

$$V \rightarrow \frac{v}{w}$$
 with $W = Ker T$

Proof:

Define a mapping

$$T: V \rightarrow \frac{v}{w}$$

s.t

$$T(\mathbf{v}) = \mathbf{v} + \mathbf{W}$$

(1)

T is well-define.

Let
$$v_1 = v_2$$

 $v_1 + W = v_2 + W$

We add W

Because W = Ker T

$$T(v_1) = T(v_2)$$
 By (1)

*

Let v_1 , $v_2 \in V$,

T is Linear

Cable man & maths

Now $T(\alpha v_1 + \beta v_2) = (\alpha v_1 + \beta v_2) + W$ By (1)

$$= (\alpha v_1 + W) + (\beta v_2 + W)$$

$$= \alpha(v_1 + W) + \beta(v_2 + W)$$

$$= \alpha T(v_1) + \beta T(v_2)$$

T is Linear

• By def. of Quotient space

T is onto

Let
$$v+W \in \frac{v}{w} \exists v \in V$$

Such that
$$T(v) = v + W$$

 \Rightarrow T is onto

Now we show that W = Ker T

Let
$$v \in Ker(T) \Leftrightarrow T(v) = W$$

$$\Leftrightarrow$$
 v + W = W

$$\Leftrightarrow v \in W$$

$$\Rightarrow$$
 Ker T = W Proved

Why we not use one-one in statement as we use onto. Because $W = \ker T$ If $W = \{0\}$ then we use one-one.

If
$$W = \{0\}$$

To show T is one-one

$$T(v_1) = T(v_2)$$

$$\Rightarrow v_1 + W = v_2 + W$$

$$\Rightarrow \text{T is one-one } C1V O1S$$
Hence $V \cong \frac{v}{w}$

Example:

Let $V = \{c_1 e^{2x} + c_2 e^{3x}; c_1, c_2 \in \mathbb{R} \}$ be the vector space of solution of differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6 = 0$ Prove that $V \cong \mathbb{R}^2$

Solution:

$$T: V \to \mathbb{R}^2$$
 defined as

$$T(v) = (c_1, c_2)$$
 where $v = c_1 e^{2x} + c_2 e^{3x}$

First, we prove that V is vector space

Let
$$v_1, v_2 \in V$$
 , $\alpha, \beta \in \mathbb{F}$
$$v_1 = c_1 e^{2x} + c_2 e^{3x}$$

$$v_2 = c_1' e^{2x} + c_2' e^{3x}$$
 where $c_1, c_1', c_2, c_2' \in \mathbb{R}$

(i)
$$\alpha(v_1 + v_2) = \alpha(c_1 e^{2x} + c_2 e^{3x} + c_1' e^{2x} + c_2' e^{3x})$$

$$= \alpha c_1 e^{2x} + \alpha c_2 e^{3x} + \alpha c_1' e^{2x} + \alpha c_2' e^{3x})$$

$$= \alpha(c_1 e^{2x} + c_2 e^{3x}) + \alpha(c_1' e^{2x} + c_2' e^{3x})$$

$$= \alpha(v_1) + \alpha(v_2)$$

25 | Page

Collected By: Muhammad Saleem

Composed By: Muzammil Tanveer

(ii) Let
$$\alpha, \beta \in \mathbb{F}$$
 , $v_1 = c_1 e^{2x} + c_2 e^{3x} \in V$
 $(\alpha + \beta)v_1 = (\alpha + \beta) (c_1 e^{2x} + c_2 e^{3x})$
 $= \alpha c_1 e^{2x} + \alpha c_2 e^{3x} + \beta c_1 e^{2x} + \beta c_2 e^{3x}$
 $= \alpha (c_1 e^{2x} + c_2 e^{3x}) + \beta (c_1 e^{2x} + c_2 e^{3x})$
 $= \alpha (v_1) + \beta (v_1)$
(iii) $\alpha(\beta v_1) = \alpha [\beta (c_1 e^{2x} + c_2 e^{3x})]$
 $= \alpha [\beta c_1 e^{2x} + \beta c_2 e^{3x}]$
 $= \alpha \beta (c_1 e^{2x} + c_2 e^{3x})$
 $= \alpha \beta (v_1)$
(iv) $1 \cdot v_1 = 1 \cdot (c_1 e^{2x} + c_2 e^{3x})$

Hence V is vector space.

Now T is well-define

Let
$$v_1 = v_2$$

 $c_1 e^{2x} + c_2 e^{3x} = c_1' e^{2x} + c_2' e^{3x}$ $(c_1 - c_1') e^{2x} + (c_2 - c_2') e^{3x} \in \text{Ker T}$
 $\Rightarrow T[(c_1 - c_1') e^{2x} + (c_2 - c_2') e^{3x}] = 0$
 $\Rightarrow (c_1 - c_1', c_2 - c_2') = (0,0)$
 $\Rightarrow c_1 - c_1' = 0 \text{ and } c_2 - c_2' = 0$
 $\Rightarrow c_1 = c_1' \text{ and } c_2 = c_2'$
 $\Rightarrow T(v_1) = T(v_2)$

Now T is one-one

Let
$$T(v_1) = T(v_2)$$

 $\Rightarrow c_1 = c'_1 \text{ and } c_2 = c'_2$
 $\Rightarrow c_1 - c'_1 = 0 \text{ and } c_2 - c'_2 = 0$
 $\Rightarrow (c_1 - c'_1, c_2 - c'_2) = (0,0)$
 $\Rightarrow T[(c_1 - c'_1) e^{2x} + (c_2 - c'_2) e^{3x}] = 0$

26 | Page

$$(c_1 - c_1') e^{2x} + (c_2 - c_2') e^{3x} \in \text{Ker T}$$
 $c_1 e^{2x} + c_2 e^{3x} - c_1' e^{2x} - c_2' e^{3x} = 0$
 $c_1 e^{2x} + c_2 e^{3x} = c_1' e^{2x} + c_2' e^{3x}$
 $v_1 = v_2$

Now T is Linear

Let
$$\alpha$$
, $\beta \in \mathbb{F}$ and v_1 , $v_2 \in V$

$$T(\alpha v_1 + \beta v_2) = T[\alpha(c_1 e^{2x} + c_2 e^{3x}) + \beta(c_1' e^{2x} + c_2' e^{3x})]$$
$$= T[\alpha c_1 e^{2x} + \alpha c_2 e^{3x} + \beta c_1' e^{2x} + \beta c_2' e^{3x}]$$

$$= T[(\alpha c_1 + \beta c_1') e^{2x} + (\alpha c_2 + \beta c_2') e^{3x}]$$

$$= (\alpha c_1 + \beta c_1', \alpha c_2 + \beta c_2')$$

$$= (\alpha c_1, \alpha c_2) + (\beta c_1', \beta c_2')$$

$$= \alpha (c_1, c_2) + \beta (c'_1 + c'_2)$$

$$= \alpha T(v_1) + \beta T(v_2)$$

T is Linear

Now T is onto

Let
$$(c_1, c_2) \in \mathbb{R}^2$$
 s.t. $c_1 e^{2x} + c_2 e^{3x} \in V$

s.t
$$T(c_1e^{2x}+c_2e^{3x})=(c_1, c_2)$$

 \Rightarrow T is onto

Hence $V \cong \mathbb{R}^2$

Question:

Let V = { $c_1e^x + c_2e^{2x} + c_3e^{3x}$; $c_1, c_2, c_3 \in \mathbb{R}$ } be the vector space of solution of differential equation $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} - 11\frac{dy}{dx} + 6y = 0$ Prove that $V \cong \mathbb{R}^3$

Solution:

$$T: V \to \mathbb{R}^2$$
 defined as

$$T(v) = (c_1, c_2, c_3)$$
 where $v = c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$

First, we prove that V is vector space

Let
$$v_1, v_2 \in V$$
 , $\alpha, \beta \in \mathbb{F}$
 $v_1 = c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$
 $v_2 = c_1' e^x + c_2' e^{2x} + c_3' e^{3x}$ where $c_1, c_1', c_2, c_2', c_3, c_3' \in \mathbb{R}$
(i) $\alpha(v_1 + v_2) = \alpha(c_1 e^x + c_2 e^{2x} + c_3 e^{3x} + c_1' e^x + c_2' e^{2x} + c_3' e^{3x})$
 $= \alpha c_1 e^x + \alpha c_2 e^{2x} + \alpha c_3 e^{3x} + \alpha c_1' e^x + \alpha c_2' e^{2x} + \alpha c_3' e^{3x}$
 $= \alpha(c_1 e^x + c_2 e^{2x} + c_3 e^{3x}) + \alpha(c_1' e^x + c_2' e^{2x} + c_3' e^{3x})$
 $= \alpha(v_1) + \alpha(v_2)$
(ii) Let $\alpha, \beta \in \mathbb{F}$, $v_1 = c_1 e^x + c_2 e^{2x} + c_3 e^{3x} \in V$
 $(\alpha + \beta)v_1 = (\alpha + \beta) (c_1 e^x + c_2 e^{2x} + c_3 e^{3x})$
 $= \alpha c_1 e^x + \alpha c_2 e^{2x} + \alpha c_3 e^{3x} + \beta c_1 e^x + \beta c_2 e^{2x} + \beta c_3 e^{3x}$
 $= \alpha(c_1 e^x + c_2 e^{2x} + c_3 e^{3x}) + \beta(c_1 e^x + c_2 e^{2x} + c_3 e^{3x})$
 $= \alpha(b_1) + \beta(b_1)$
(iii) $\alpha(\beta v_1) = \alpha[\beta(c_1 e^x + c_2 e^{2x} + c_3 e^{3x})]$
 $= \alpha[\beta c_1 e^x + \beta c_2 e^{2x} + \beta c_3 e^{3x}]$
 $= \alpha[\beta c_1 e^x + c_2 e^{2x} + c_3 e^{3x}]$
 $= \alpha[\beta(c_1 e^x + c_2 e^{2x} + c_3 e^{3x})]$

$$= \alpha \beta(c_1 e^x + c_2 e^{2x} + c_3 e^{3x})$$

$$= \alpha \beta(v_1)$$

$$= 1 . (c_1 e^x + c_2 e^{2x} + c_3 e^{3x})$$

$$= (c_1 e^x + c_2 e^{2x} + c_3 e^{3x})$$

$$= v_1$$

Hence V is vector space.

★ Now T is well-define

Let
$$v_1 = v_2$$

 $c_1 e^x + c_2 e^{2x} + c_3 e^{3x} = c'_1 e^x + c'_2 e^{2x} + c'_3 e^{3x}$
 $(c_1 - c'_1) e^x + (c_2 - c'_2) e^{2x} + (c_3 - c'_3) e^{3x} \in \text{Ker T}$
 $\Rightarrow T[(c_1 - c'_1) e^x + (c_2 - c'_2) e^{2x} + (c_3 - c'_3) e^{3x}] = 0$
 $\Rightarrow (c_1 - c'_1, c_2 - c'_2), (c_3 - c'_3) = (0,0)$
 $\Rightarrow c_1 - c'_1 = 0, c_2 - c'_2 = 0, c_3 - c'_3 = 0$
 $\Rightarrow c_1 = c'_1, c_2 = c'_2, c_3 = c'_3$
 $\Rightarrow T(v_1) = T(v_2)$

28 | Page

Collected By: Muhammad Saleem

Composed By: Muzammil Tanveer

Now T is one-one

Let
$$T(v_1) = T(v_2)$$

 $\Rightarrow c_1 = c'_1, c_2 = c'_2, c_3 = c'_3$
 $\Rightarrow c_1 - c'_1 = 0, c_2 - c'_2 = 0, c_3 - c'_3 = 0$
 $\Rightarrow (c_1 - c'_1, c_2 - c'_2), (c_3 - c'_3) = (0,0)$
 $\Rightarrow T[(c_1 - c'_1)e^x + (c_2 - c'_2)e^{2x} + (c_3 - c'_3)e^{3x}] = 0$
 $(c_1 - c'_1)e^x + (c_2 - c'_2)e^{2x} + (c_3 - c'_3)e^{3x} \in \text{Ker } T$
 $c_1e^x - c'_1e^x + c_2e^{2x} - c'_2e^{2x} + c_3e^{3x} - c'_3e^{3x} = 0$
 $c_1e^x + c_2e^{2x} + c_3e^{3x} = c'_1e^x + c'_2e^{2x} + c'_3e^{3x}$

Now T is Linear

Let
$$\alpha$$
, $\beta \in \mathbb{F}$ and v_1 , $v_2 \in V$

$$T(\alpha v_1 + \beta v_2) = T[\alpha(c_1 e^x + c_2 e^{2x} + c_3 e^{3x}) + \beta(c_1' e^x + c_2' e^{2x} + c_3' e^{3x})]$$

$$= T[\alpha c_1 e^x + \alpha c_2 e^{2x} + \alpha c_3 e^{3x} + \beta c_1' e^x + \beta c_2' e^{2x} + \beta c_3' e^{3x}]$$

$$= T[(\alpha c_1 + \beta c_1') e^x + (\alpha c_2 + \beta c_2') e^{2x} + (\alpha c_3 + \beta c_3') e^{3x}]$$

$$= (\alpha c_1 + \beta c_1'), (\alpha c_2 + \beta c_2'), (\alpha c_3 + \beta c_3')$$

$$= (\alpha c_1, \alpha c_2, \alpha c_3) + (\beta c_1', \beta c_2', \beta c_3')$$

$$= \alpha(c_1, c_2, c_3) + \beta(c_1', c_2', c_3')$$

$$= \alpha T(v_1) + \beta T(v_2)$$

T is Linear

Now T is onto

Let
$$(c_1, c_2, c_3) \in \mathbb{R}^2$$
 s.t $c_1 e^x + c_2 e^{2x} + c_3 e^{3x} \in V$
s.t $T(c_1 e^x + c_2 e^{2x} + c_3 e^{3x}) = (c_1, c_2, c_3)$
 \Rightarrow T is onto

Hence $V \simeq \mathbb{R}^3$

Assignment:

If X and Y be two subspaces of vector space V over the field ${\mathbb F}\,$. Then prove

that
$$\frac{X+Y}{X} \cong \frac{Y}{X \cap Y}$$

Solution:

Define a mapping

$$T: Y \to \frac{X+Y}{X}$$

s.t
$$T(y) = y + X$$
, $y \in Y$

(i) T is well-define

ALGEBRASHER T(
$$y_1$$
) = y_2 DV SVED SHERAZ ASGHAR
$$T(y_1) = T(y_2)$$

Let
$$y_1, y_2 \in Y$$
 and $\alpha, \beta \in \mathbb{F}$ s.t

$$T(\alpha y_1 + \beta y_2) = (\alpha y_1 + \beta y_2) + X$$

$$= (\alpha y_1 + X) + (\beta y_2 + X) \quad \therefore \text{ by def. of quot}$$

$$= \alpha (y_1 + X) + \beta (y_2 + X)$$

$$= \alpha T(y_1) + \beta T(y_2)$$

 \Rightarrow T is linear

(iii) T is onto

Let
$$y + X \in \frac{X+Y}{X}$$
 s.t $y \in Y$

$$s.t T(y) = y + X$$

$$\Rightarrow$$
 T is onto

By Fundamental Theorem

$$\frac{X+Y}{X} = \frac{Y}{Ker T}$$

We claim Ker
$$T = X \cap Y$$

Let $a \in \text{Ker } T$

$$\Rightarrow T(a) = X$$
$$a + X = X$$

$$a \in X$$
, also $a \in Ker T \subseteq Y$

$$a \in X$$
, $a \in Y$

$$a \in X \cap Y$$

$$KerT \subseteq X \cap Y$$
(1)

Conversely,

$$a \in X \cap Y$$

 $\Rightarrow a \in X, a \in Y$
 $a + X = X$
 $\Rightarrow T(a) = X$
 $\Rightarrow a \in \text{Ker T}$
 $\Rightarrow X \cap Y \subseteq \text{Ker T}$ (2)
By (1) and (2)

Hence Ker T = X \cap Y $\frac{x+y}{x} \neq \frac{y}{x \cap y} \text{ Proved LRAZ ASGAR}$

Mathcity.org Merging man & maths

Lecture # 6

Linear Combination:

Let V be a vector space over the field \mathbb{F} .

Let
$$v_1, v_2,, v_n \in V$$

And

$$\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{F}$$

Then the element

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \dots + \alpha_n v_n$$

 $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 - 3$ is called a linear combination of v_1, v_2, \dots, v_n in V

$$\mathbf{x} = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \dots + \alpha_n v_n$$

$$\mathbf{x} = \sum_{i=1}^{n} \alpha_i v_i$$

Write a vector $\mathbf{v} = (1,-2,5)$ in the Linear combination (L.C) of $e_1 = (1,1,1)$, $e_2 = (1,2,3)$ and $e_3 = (3,0,-2)$

Solution:

$$\mathbf{v} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3$$

$$(1,-2,5) = \alpha_1(1,1,1) + \alpha_2(1,2,3) + \alpha_3(3,0,-2)$$

$$(1,-2,5) = (\alpha_1 + \alpha_2 + 3\alpha_3, \alpha_1 + 2\alpha_2 + 0\alpha_3, \alpha_1 + 3\alpha_2 - 2\alpha_3)$$

$$\alpha_1 + \alpha_2 + 3\alpha_3 = 1$$
 , $\alpha_1 + 2\alpha_2 + 0\alpha_3 = -2$, $\alpha_1 + 3\alpha_2 - 2\alpha_3 = 5$

In matrix form

$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 2 & 0 \\ 1 & 3 & -2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix}$$

$$A_B = \begin{bmatrix} 1 & 1 & 3 & 1 \\ 1 & 2 & 0 & -2 \\ 1 & 3 & -2 & 5 \end{bmatrix}$$

$$A_{B} = \begin{bmatrix} 1 & 1 & 3 & 1 \\ 0 & 1 & -3 & -3 \\ 0 & 2 & -5 & 4 \end{bmatrix} \sim R_{2} - R_{1} , \sim R_{3} - R_{1}$$

$$A_{B} = \begin{bmatrix} 1 & 0 & 6 & 4 \\ 0 & 1 & -3 & -3 \\ 0 & 2 & 1 & 10 \end{bmatrix} \sim R_{1} - R_{1} , \sim R_{3} - 2R_{2}$$

$$A_{B} = \begin{bmatrix} 1 & 0 & 0 & -56 \\ 0 & 1 & 0 & 27 \\ 0 & 0 & 1 & 10 \end{bmatrix} \sim R_{1} - 6R_{3} , \sim R_{2} + 3R_{3}$$

$$\Rightarrow$$
 $\alpha_1 = -56$, $\alpha_2 = 27$, $\alpha_3 = 10$

Exercise:

Write v = (1, -2, K) in the L.C of $e_1 = (0, 1, -2), e_2 = (-2, -1, -5)$ also find the value of 'K'.

Solution:

tion:

$$v = \alpha_{1}e_{1} + \alpha_{2}e_{2}$$

$$= \alpha_{1}(0,1,-2) + \alpha_{2}(-2,-1,-5)$$

$$(1,-2,K) = (0\alpha_{1} + (-2)\alpha_{2}, \alpha_{1} - \alpha_{2}, -2\alpha_{1} - 5\alpha_{2})$$

$$0\alpha_{1} + (-2)\alpha_{2} = 1, \alpha_{1} - \alpha_{2} = -2, -2\alpha_{1} - 5\alpha_{2} = K$$

$$\Rightarrow \alpha_{2} = -\frac{1}{2}$$
And
$$\alpha_{1} - \alpha_{2} = -2$$

$$\alpha_{1} - (-\frac{1}{2}) = -2$$

$$\Rightarrow \alpha_{1} = -2 - \frac{1}{2}$$

$$\Rightarrow \alpha_{1} = -\frac{5}{2}$$
Now
$$-2\alpha_{1} - 5\alpha_{2} = K$$

$$-2\left(-\frac{5}{2}\right) - 5\left(-\frac{1}{2}\right) = K$$

$$\Rightarrow K = 5 + \frac{5}{2} = \frac{10 + 5}{2}$$

$$\Rightarrow K = \frac{15}{2}$$

33 | Page

Composed By: Muzammil Tanveer

Linearly Dependent:

Let V be a vector space over the field $\mathbb F\,$. Let $v_1,\,v_2,.....\,v_n\!\in\mathrm V$ and $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{F}$ then v_1, v_2, \ldots, v_n are said to be linearly dependent if

$$\sum_{i=1}^{n} \alpha_i v_i = 0$$

for some
$$\alpha_i \neq 0$$

Otherwise they are called Linearly independent.

Linear Span:

Let $\phi \neq S$ is a subset of vector space V over the field \mathbb{F} then S is called Linear span if every element of S is a linear combination of finite number of elements of V and it is denoted by

L(S) =
$$\langle S \rangle = \{x : x = \sum_{i=1}^{n} \alpha_i v_i, v_i \in V\}$$

And this set is also known as generating set.

Exercise:

Prove that L(S) is a subspace of V. Solution:

Then
$$\mathbf{x} = \sum_{i=1}^{n} \alpha_i v_i$$
, $\mathbf{y} = \sum_{i=1}^{n} \beta_i v_i$

Now
$$\alpha \mathbf{x} + \beta \mathbf{y} = \alpha \sum_{i=1}^{n} \alpha_{i} v_{i} + \beta \sum_{i=1}^{n} \beta_{i} v_{i}$$

$$= \sum_{i=1}^{n} (\alpha \alpha_{i}) v_{i} + \sum_{i=1}^{n} (\beta \beta_{i}) v_{i} \qquad \therefore \mathbf{T}(\mathbf{x}) + \mathbf{T}(\mathbf{y}) = \mathbf{T}(\mathbf{x} + \mathbf{y})$$

$$= \sum_{i=1}^{n} (\alpha \alpha_{i} + \beta \beta_{i}) v_{i}$$

$$= \sum_{i=1}^{n} \gamma_{i} v_{i} \qquad \therefore \gamma_{i} = \alpha \alpha_{i} + \beta \beta_{i}, 1 \leq i \leq n$$

$$\Rightarrow \alpha x + \beta y \in L(S)$$

Hence L(S) is subspace of V.

Theorem:

L(S) is a smallest subspace of V.

Proof:

First, we prove $L(S) \neq \phi$

Let
$$s_1 \in S \subseteq V$$

$$s_1 = 1. s_1 ,$$

$$s_1 \in L(S)$$

$$\Rightarrow$$
 $S \subseteq L(S)$

$$\Rightarrow$$
 L(S) $\neq \phi$

Now we prove $L(S) \le V$

Let
$$x, y \in L(S)$$
, $\alpha, \beta \in \mathbb{F}$

Then
$$x = \sum_{i=1}^{n} \alpha_i v_i$$
, $y = \sum_{i=1}^{n} \beta_i v_i$

$$\alpha x + \beta y = \alpha \sum_{i=1}^{n} \alpha_i v_i + \beta \sum_{i=1}^{n} \beta_i v_i$$

$$= \sum_{i=1}^{n} (\alpha \alpha_i) v_i + \sum_{i=1}^{n} (\beta \beta_i) v_i \qquad T(x) + T(y) = T(x+y)$$

 $1 \in \mathbb{F}$

$$= \sum_{i=1}^{n} (\alpha \alpha_i + \beta \beta_i) v_i$$

$$= \sum_{i=1}^{n} \gamma_i v_i \qquad \qquad : \gamma_i = \alpha \alpha_i + \beta \beta_i , \ 1 \le i \le n$$

$$\Rightarrow$$
 $\alpha x + \beta y \in L(S)$

$$\Rightarrow$$
 L(S) \leq V(\mathbb{F})

Let
$$x \in L(S)$$

Then
$$x = \sum_{i=1}^{n} \alpha_i v_i$$

Let
$$v_i \in S$$
, $\alpha \in \mathbb{F}$

 $v_i \in S \subseteq W \quad \forall i \text{ and } W \text{ is subspace.}$

$$\Rightarrow \sum_{i=1}^{n} \alpha_i v_i \in W$$

$$\Rightarrow$$
 $x \in W$

$$\Rightarrow$$
 L(S) \subseteq W

 \Rightarrow L(S) is smallest subspace of V.

Remark:

Since L(S) is a subspace and L(T) is subspace then

$$L(S) \le L(T)$$

Lemma:

Let $\phi \neq S \subseteq V(\mathbb{F})$ then the following axioms are true.

(i) If
$$S \subset T$$

 $\Rightarrow L(S) \subset L(T)$

(ii)
$$L(S \cup T) = L(S) + L(T)$$

(iii)
$$L(L(S)) = L(S)$$

Proof: (i)

Let
$$S = \{v_1, v_2, \dots, v_n\}$$
 and $T = \{v_1, v_2, \dots, v_n, v_{n+1}, \dots, v_m\}$; $m > n$

Now let $x \in L(S)$

$$\Rightarrow x = \sum_{i=1}^{n} \alpha_i v_i \quad \forall \quad \alpha_i \in \mathbb{F} \quad , 1 \le i \le n$$

$$\Rightarrow x = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \dots + \alpha_n v_n$$

$$= \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \dots + \alpha_n v_n + 0 v_{n+1} + 0 v_{n+2} + \dots + 0 v_m$$

$$= \sum_{i=1}^n \alpha_i v_i = L(T) \qquad \forall \quad \alpha_i = 0 \text{ if } i > n$$

$$\Rightarrow x \in L(T)$$

Proof: (ii)

If
$$S \subset T \Rightarrow L(S) \leq L(T)$$

∵ by Remark

 $:: S \subseteq S \cup T$ where S and T contain distinct element

$$\Rightarrow$$
 L(S) \subseteq L (S \cup T)

: by proof (i)

Also $T \subseteq S \cup T$

$$\Rightarrow$$
 L(T) \subseteq L (S \cup T)

$$\Rightarrow$$
 L(S) + L(T) \subseteq L (S \cup T) (1)

$$\therefore$$
 S \subset L(S) \subset L(S) + L(T)

And $T \subseteq L(T) \subseteq L(S) + L(T)$

$$\Rightarrow S \cup T \subseteq L(S) + L(T)$$

 $S \cup T \subseteq L(S \cup T)$ Also

$$L(S \cup T) \subset L(S) + L(T) \dots (2)$$

Collected By: Muhammad Saleem

$$L(S \cup T) = L(S) + L(T)$$

Proof: (iii)

$$S \subseteq L(S)$$

$$\Rightarrow$$
 $L(S) \subseteq L(L(S))$

Let $x \in L(L(S))$

s.t
$$x = t_i \sum_{i=1}^{n} \alpha_i v_i$$
$$= \sum_{i=1}^{n} \alpha_i t_i v_i$$

$$\forall t_i = 0 \text{ if } i > n$$

 $\sum_{i=1}^{n} \beta_i v_i$

 $\sum_{i=1}^{n} \beta_{i} v_{i}$ L(S)

$$\Rightarrow L(L(S)) \subseteq L(S)$$

From (1) and (2)

$$L(L(S)) = L(S)$$

Merging man & maths

37 | Page

Theorem:

Let V be a vector space over the field \mathbb{F} . Let $v_1, v_2 \in V$ are said to be linearly independent iff $v_1 + v_2$ and $v_1 - v_2$ are linearly independent.

Proof:

Let v_1 , v_2 are linearly independent.

Now let $\alpha, \beta \in \mathbb{F}$ Then

$$\alpha(v_1 + v_2) + \beta(v_1 - v_2) = 0$$

$$\Rightarrow \alpha v_1 + \alpha v_2 + \beta v_1 - \beta v_2 = 0$$

$$\Rightarrow (\alpha + \beta)v_1 + (\alpha - \beta)v_2 = 0$$
Since v_1 and v_2 are linearly independent then
$$\alpha + \beta = 0$$

$$\alpha - \beta = 0$$
....(1)

Put
$$\alpha = \beta$$
 in (1) $\Rightarrow \beta + \beta = 0$ $\Rightarrow \beta = 0$ $\Rightarrow \alpha = \beta$

 \Rightarrow $v_1 + v_2$ and $v_1 - v_2$ are linearly independent

Conversely,

Let $v_1 + v_2$ and $v_1 - v_2$ are L.I. Now let $\beta v_1 + \gamma v_2 = 0$ where $\beta, \gamma \in \mathbb{F}$

Let
$$\beta = \beta_1 + \beta_2$$
, $\gamma = \beta_1 - \beta_2$
 $\Rightarrow (\beta_1 + \beta_2)v_1 + (\beta_1 - \beta_2)v_2 = 0$
 $\Rightarrow \beta_1 v_1 + \beta_2 v_1 + \beta_1 v_1 - \beta_2 v_2 = 0$
 $\Rightarrow (v_1 + v_2)\beta_1 + (v_1 - v_2)\beta_2 = 0$

Since $v_1 + v_2$ and $v_1 - v_2$ are linearly independent then $\beta_1 = \beta_2 = 0$

$$\Rightarrow \beta = 0$$
 and $\gamma = 0$

 $\Rightarrow v_1$ and v_2 are L.I

Theorem:

The vectors $v_1, v_2, v_3 \in V$ are said to be linearly independent iff $v_1 + v_2$ and $v_2 + v_3$ and $v_3 + v_1$ are linearly independent.

Proof:

Let
$$v_1$$
, v_2 , v_3 are L.I

Let
$$\alpha, \beta, \gamma \in \mathbb{F}$$
 Now

$$\alpha(v_1 + v_2) + \beta(v_2 + v_3) + \gamma(v_3 + v_1) = 0$$

$$\Rightarrow \alpha v_1 + \alpha v_2 + \beta v_2 + \beta v_3 + \gamma v_3 + \gamma v_1 = 0$$

$$\Rightarrow \alpha v_1 + \gamma v_1 + \alpha v_2 + \beta v_2 + \beta v_3 + \gamma v_3 = 0$$

$$\Rightarrow (\alpha + \gamma)v_1 + (\alpha + \beta)v_2 + (\beta + \gamma)v_3 = 0$$
Since v_1, v_2, v_3 are L.I then

$$\Rightarrow \alpha + \gamma = 0 \qquad ...(1) \quad , \quad \alpha + \beta = 0 \quad ...(2) \quad , \quad \beta + \gamma = 0 \qquad ...(3)$$

$$\Rightarrow \alpha = -\gamma \quad \text{put in (2)}$$

$$\Rightarrow -\gamma + \beta = 0 \Rightarrow \beta = \gamma \text{ put in (3)}$$

$$\Rightarrow \gamma + \gamma = 0 \Rightarrow 2\gamma = 0 \Rightarrow \gamma = 0$$

$$\Rightarrow \beta = 0, \quad \gamma = 0$$

$$\Rightarrow \alpha = \beta = \gamma = 0$$

$$\Rightarrow v_1 + v_2 \text{ and } v_2 + v_3 \text{ and } v_3 + v_4 \text{ are L.I}$$

Conversely, let $v_1 + v_2$ and $v_2 + v_3$ and $v_3 + v_1$ are L.I

Now
$$\alpha = \beta_1 + \gamma_1$$
, $\beta = \alpha_1 + \gamma_1$, $\gamma = \alpha_1 + \beta_1$
 $\Rightarrow (\beta_1 + \gamma_1)v_1 + (\alpha_1 + \gamma_1)v_2 + (\alpha_1 + \beta_1)v_3 = 0$
 $\Rightarrow \beta_1 v_1 + \gamma_1 v_1 + \alpha_1 v_2 + \gamma_1 v_2 + \alpha_1 v_3 + \beta_1 v_3 = 0$
 $\Rightarrow \beta_1 (v_1 + v_3) + (v_1 + v_2)\gamma_1 + (v_2 + v_3)\alpha_1 = 0$

Since $v_1 + v_2$ and $v_2 + v_3$ and $v_3 + v_1$ are linearly independent

$$\Rightarrow \quad \alpha_1 = 0 \ , \, \beta_1 = 0 \ , \, \gamma_1 = 0 \qquad \Rightarrow \quad \alpha = 0 \ , \, \beta = 0 \ , \, \gamma = 0$$

 \Rightarrow v_1, v_2 and v_3 are L.I.

Example:

Let
$$A = \begin{pmatrix} 1 & 2 & -3 \\ 6 & -5 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 6 & -5 & 4 \\ 1 & 2 & -3 \end{pmatrix}$

Prove that A and B are L.I

Solution:

Let
$$\alpha, \beta \in \mathbb{F}$$
 then
$$\alpha A + \beta B = 0$$

$$\alpha \begin{pmatrix} 1 & 2 & -3 \\ 6 & -5 & 4 \end{pmatrix} + \beta \begin{pmatrix} 6 & -5 & 4 \\ 1 & 2 & -3 \end{pmatrix} = 0$$

$$\begin{pmatrix} \alpha & 2\alpha & -3\alpha \\ 6\alpha & -5\alpha & 4\alpha \end{pmatrix} + \begin{pmatrix} 6\beta & -5\beta & 4\beta \\ \beta & 2\beta & +3\beta \end{pmatrix} = 0$$

$$\begin{pmatrix} \alpha + 6\beta & 2\alpha + 5\beta & -3\alpha + 4\beta \\ 6\alpha + \beta & -5\alpha + 2\beta & 4\alpha - 3\beta \end{pmatrix} = 0$$

$$\Rightarrow \alpha + 6\beta =$$

And all others elements are zero

(1)
$$\Rightarrow \alpha = -6\beta$$
 put in (2) III (1) $2(-6\beta) - 5\beta = 0$ $\Rightarrow -12\beta - 5\beta = 0$
 $\Rightarrow -17\beta = 0$ $\Rightarrow \beta = 0$
 $\Rightarrow \alpha = 0$

Hence A and B are L.I

Example:

Let V be a vector space of polynomial over the field $\mathbb{F}(R^3\{x\})$ and let $u,v \in V$ let

$$u = 2-5t+6t^2-t^3$$

$$v = 3+2t-4t^2+5t^3 \text{ check either u,v are L.I or not}$$

Solution:

Let
$$\alpha, \beta \in \mathbb{F}$$
 then u and v are L.I if $\alpha u + \beta v = 0$
$$\alpha(2-5t+6t^2-t^3) + \beta(3+2t-4t^2+5t^3) = 0$$

$$2\alpha-5\alpha t + 6\alpha t^2 - \alpha t^3 + 3\beta + 2\beta t - 4\beta t^2 - 5\beta t^3 = 0$$

40 | Page

Collected By: Muhammad Saleem

$$(2\alpha+3\beta)+(-5\alpha+2\beta)t+(6\alpha-4\beta)t^2+(-\alpha+5\beta)t^3=0$$

t is L.I then

$$2\alpha + 3\beta = 0$$
 ...(1), $-5\alpha + 2\beta = 0$ (2), $6\alpha - 4B = 0$ (3), $-\alpha + 5\beta = 0$ (4)

 $(4) \Rightarrow \alpha = 5\beta$ put in (1)

$$2(5\beta) + 3\beta = 0 \implies 10\beta + 3\beta = 0$$

$$\Rightarrow$$
 13 β = 0

$$\Rightarrow \beta = 0$$

$$\Rightarrow \alpha = 0$$

 \Rightarrow u and v are L.I

Lemma:

The non-zero vectors are L.D iff one of them say v_i is the L.C of its preceding one's. (L.C $\longrightarrow v_i$)

Proof:

Let v_i be the L.C of its preceding vectors i.e.

$$v_{i} = \alpha_{1}v_{1} + \alpha_{2}v_{2} + \alpha_{3}v_{3} \dots + \alpha_{i-1}v_{i-1}$$

$$\Rightarrow \alpha_{1}v_{1} + \alpha_{2}v_{2} + \alpha_{3}v_{3} \dots + \alpha_{i-1}v_{i-1} + (-1)v_{i} = 0$$

As $\alpha_i = -1 \neq 0$

⇒ vectors are L.D

Conversely,

Let the vectors are L.D then \exists

$$\alpha_1, \alpha_2, \dots, \alpha_m \in \mathbb{F}$$
 of which at least one $\alpha_i \neq 0$ s.t

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_i v_i + \alpha_{i+1} v_{i+1} + \dots + \alpha_m v_m = 0$$
 : $i < m$

Take $\alpha_{i+1} = \alpha_{i+2} = \dots = \alpha_m = 0$

$$\Rightarrow$$
 $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \dots + \alpha_i v_i = 0$

$$\Rightarrow -\alpha_i v_i = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_{i-1} v_{i-1}$$

$$\Rightarrow v_i = \left(-\frac{\alpha_1}{\alpha_i}\right)v_1 + \left(-\frac{\alpha_2}{\alpha_i}\right)v_2 + \dots + \left(-\frac{\alpha_{i-1}}{\alpha_i}\right)v_{i-1}$$

 $\Rightarrow v_i$ is the L.C of its preceding one's.

Theorem:

The vectors are L.I if each element in their Linear span has unique representation.

Proof:

Let
$$S = \{v_1, v_2, \dots, v_n\} \subseteq V(\mathbb{F})$$

Let
$$L(S) = \{\sum_{i=1}^{n} \alpha_i v_i : \alpha_i \in \mathbb{F} \}$$

Let $v \in S$

$$\Rightarrow$$
 $\mathbf{v} = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n$, $\forall \alpha_i \in \mathbb{F}$, $1 \le i \le n$

Let
$$\mathbf{v}=\beta_1v_1+\beta_2v_2+\beta_3v_3.....+\beta_nv_n$$
 , $\forall \ \beta_i\in \mathbb{F}$, $1\leq i\leq n$ be another representation of \mathbf{v}

$$\Rightarrow \quad \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \dots + \alpha_n v_n = \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 \dots + \beta_n v_n$$

$$\Rightarrow (\alpha_1 - \beta_1)v_1 + (\alpha_2 - \beta_2)v_2 + \dots + (\alpha_n - \beta_n)v_n = 0$$
Since v_1, v_2, \dots, v_n are Linearly independent then

$$\alpha_1 - \beta_1 = 0$$
, $\alpha_2 - \beta_2 = 0$, ..., $\alpha_n - \beta_n = 0$
 $\Rightarrow \alpha_1 = \beta_1$, $\alpha_2 = \beta_2$, ..., $\alpha_n = \beta_n$

$$\Rightarrow \alpha_1 = \beta_1, \alpha_2 = \beta_2, \dots, \alpha_n = \beta_n$$

⇒ v has unique representation

Theorem:

Let V be a vector space over the field ${\mathbb F}^-$. Let $S \subseteq V$

$$S = \{v_1, v_2, \dots, v_n\}$$
 then

- (i) S is L.I if any of its subset is L.I
- (ii) S is L.D if any of its superset is L.D

Proof (i).:

Let S is L.I

Let
$$T = \{v_1, v_2, \dots, v_n\} \subseteq V$$
 where $i < n$

Let $\alpha_i \in \mathbb{F}$

Let
$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_i v_i = 0$$

 $\Rightarrow \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_i v_i + \alpha_{i+1} v_{i+1} + \dots + \alpha_n v_n = 0$

42 | Page

Collected By: Muhammad Saleem

Since
$$v_1, v_2, \dots, v_n$$
 are L.I

Take
$$\alpha_{i+1} + \alpha_{i+2} + \alpha_{i+3} + \dots + \alpha_n = 0$$

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_i v_i + 0 v_{i+1} + 0 v_{i+2} + 0 v_{i+3} + \dots + 0 v_n = 0$$

Since v_1, v_2, \dots, v_n are L.I

$$\Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_i = 0$$

$$\Rightarrow$$
 T is L.I

Proof (ii):

Let S is L.D

$$S = \{v_1, v_2, \dots, v_n\}$$

$$\Rightarrow \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n = 0 \quad \text{for some } \alpha_i \neq 0$$

$$\Rightarrow \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_n v_n + 0 \quad \text{for some } \alpha_i \neq 0$$

$$\Rightarrow T = \{v_1, v_2, \dots, v_n, v\} \supseteq S \quad \text{is L.D}$$

$$A = \{v_1, v_2, \dots, v_n, v\} \supseteq S \quad \text{is L.D}$$

$$A = \{v_1, v_2, \dots, v_n, v\} \supseteq S \quad \text{is L.D}$$

Basis:

Let V be a vector space over the field \mathbb{F} . Let S be non-empty subset of V then S is called basis for V if

- (i) S is linearly independent
- (ii) V = L(S)

Example:

Let $S = \{(1,0),(0,1)\} \subseteq \mathbb{R}^2(\mathbb{R})$ then prove that S is basis of \mathbb{R}^2

Solution:

Let
$$u_1 = (1,0)$$
 , $u_2 = (0,1)$ and $\alpha = 1$ $\beta = -4 \in \mathbb{R}$ then
$$\alpha u_1 + \beta u_2 = 1(1,0) - 4(0,1)$$

$$= (1,0) + (0,-4)$$

$$= (1,-4) \in \mathbb{R}^2$$

Hence S is Basis of \mathbb{R}^2

Example:

Let S = $\{(1,0,0) (0,1,0), (0,0,1)\} \subseteq \mathbb{R}^3(\mathbb{R})$ then prove that S is basis of \mathbb{R}^3

Let
$$u_1 = (1,0,0)$$
, $u_2 = (0,1,0)$, $u_3 = (0,0,1)$
and $\alpha = 1$ $\beta = 2$, $\gamma = 3$ then
$$\alpha u_1 + \beta u_2 + \gamma u_3 = 1(1,0,0) + 2(0,1,0) + 3(0,0,1)$$

$$= (1,0,0) + (0,2,0) + (0,0,3)$$

$$= (1,2,3) \in \mathbb{R}^3$$

Hence S is Basis of \mathbb{R}^3

Dimension:

Number of elements in the basis of vector space $V(\mathbb{F})$ is called Dimension.

Theorem:

Every Finite dimensional vector space (F.D.V.S) contain Basis

Proof: Let V be a F.D.V.S over the field \mathbb{F} .Let

 $T = \{v_1, v_2, \dots, v_n\}$ be a finite subset of V which is spanning set (generating set) for V.

Case-I

If T is L.I then there is nothing to prove i.e. Every element of T spans the vector space $V(L(T) = V) \Rightarrow T$ is basis for V

Case-II

If T is L.D then any vector (say) V_r is Linear combination of its preceding ones. Then eliminating that vector from T the remaining vectors are $\{v_1, v_2, \dots, v_{r-1}\}$ still spans V

Now If $\{v_1, v_2, \dots, v_{r-1}\}$ is L.I then there is nothing to prove. (Then $\{v_1, v_2, \dots, v_{r-1}\}$ will be basis of V)

If $\{v_1, v_2, \dots, v_{r-1}\}$ is L.D then any other vector (say) V_{r-1} is L.C of its preceding one's. By eliminating this vector, the remaining vectors $\{v_1, v_2, \dots, v_{r-2}\}$ still spans V

Continuing this process until we get as set of vectors $\{v_1, v_2, \dots, v_n\}$

Where $n \le r$ which is L.I. This being a spanning set it will be basis for V

⇒ Every F.D.V.S contain Basis.

Theorem:

Let V be a F.D.V.S of dimension 'n' then any set of n+1 or more vectors is Linearly dependent.

Proof:

Since V be F.D.V.S so it contains basis. Let

B =
$$\{v_1, v_2, ..., v_n\}$$
 be the basis for V.

Let
$$S = \{v_1, v_2, \dots, v_r\}$$
 where $r > n$

We need to prove that S is L.D

i.e.
$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_r v_r = 0$$
(1)

45 | Page

Collected By: Muhammad Saleem Composed By: Muzammil Tanveer

$$\Rightarrow$$
 $\alpha_i \neq 0$ for some α_i where $1 \leq I \leq r$

Where $\alpha_i \in \mathbb{F}$ Since B is Basis for V

$$\Rightarrow$$
 L(B) = V

∵ by def.

i.e. for all $v_i \in V = L(B)$; $1 \le i \le r$ can be expressed uniquely as a L.C of basis vectors

$$\Rightarrow$$
 $\mathbf{v}_1 = \mathbf{a}_{11} u_1 + \mathbf{a}_{12} u_2 + \dots + \mathbf{a}_{1n} u_n$

$$\Rightarrow$$
 $v_2 = a_{21}u_1 + a_{22}u_2 + \dots + a_{2n}u_n$

.

Using (2) in (1) we have

$$\alpha_1(a_{11}u_1 + a_{12}u_2 + \dots + a_{1n}u_n) + \alpha_2(a_{21}u_1 + a_{22}u_2 + \dots + a_{2n}u_n) + \dots + \alpha_r(a_{r1}u_1 + a_{r2}u_2 + \dots + a_{rn}u_n) = 0$$

$$(\alpha_1 a_{11} + \alpha_2 a_{21} + \dots + \alpha_r a_{r1}) u_1 + (\alpha_1 a_{12} + \alpha_2 a_{22} + \dots + \alpha_r a_{r2}) u_2 + \dots$$

...+
$$(\alpha_1 a_{1n} + \alpha_2 a_{2n} + ... + \alpha_r a_{rn}) u_n = 0$$

Since $u_1, u_2, \dots u_n$ are L.I

$$\Rightarrow \alpha_1 a_{11} + \alpha_2 a_{21} + \dots + \alpha_r a_{r1} = 0$$

$$\alpha_1 a_{12} + \alpha_2 a_{22} + \ldots + \alpha_r a_{r2} = 0$$

.

$$\alpha_1 \mathbf{a}_{1n} + \alpha_2 \mathbf{a}_{2n} + \ldots + \alpha_r \mathbf{a}_{rn} = 0$$

Which is homogeneous system of 'n' equation in r unknowns. Which gives us a non-trivial solution which indicates that one of the scalar is non-zero

$$\Rightarrow$$
 S is L.D

Maximal L.I Set: Let $\phi \neq S \subseteq V$. Let $T \supset S$ if T is L.D then S is called Maximal L.I set.

Minimal Set of generators: Let G be set of generators of a vector space $V(\mathbb{F})$ Then $H \subset G$ is not a generating set for V then G is called Minimal generating set.

46 | Page

Theorem:

If V is F.D.V.S and $\{v_1, v_2, \dots, v_r\}$ is L.I subset of V. Then it can be extended to form a basis of V.

Proof:

If $\{v_1, v_2, \dots, v_r\}$ spans V then it itself forms a basis of V and there is nothing to prove.

Let $S = \{v_1, v_2, \dots, v_r, v_{r+1}, \dots, v_n\}$ be the maximal L.I subset of V containing $\{v_1, v_2, \dots, v_r\}$ we show S is a basis of V for which it is enough to prove that S spans V.

Let
$$v \in V$$
 be any element then
$$T = \{v_1, v_2, \dots, v_n, v\} \text{ is L.D.}$$

Then $\exists \alpha_1, \alpha_2, \ldots, \alpha_n, \alpha \in \mathbb{F}$ s,t

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \dots + \alpha_n v_n + \alpha v = 0$$
 where $\alpha \neq 0$

$$-\alpha \mathbf{v} = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \dots + \alpha_n v_n$$

$$\mathbf{v} = \left(\frac{-\alpha_1}{\alpha}\right) v_1 + \left(\frac{-\alpha_2}{\alpha}\right) v_2 + \dots + \left(\frac{-\alpha_n}{\alpha}\right) v_n$$

v is a linear combination of v_1, v_2, \dots, v_n which is required result.

Theorem:

Let V be a vector space over the field $\mathbb F$. Let $B\subseteq V$ the following statement are equivalent.

- (i) B is basis for V
- (ii) B is a minimal set of generators for V
- (iii) B is maximal L.I set of vectors.

Proof: (i) \Rightarrow (ii)

Suppose B is Basis for $V \Rightarrow B$ is L.I

Let $H \subset B$ let $v_i \in B$ but $v_i \notin H$

We claim that H is not a set of generators on the contrary, suppose H is generating set of V for $\alpha_1, \alpha_2, \ldots, \alpha_i \in \mathbb{F}$ and $v_1, v_2, \ldots, v_i \in H$ s.t $v_i = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \cdots + \alpha_i v_i$ where $v_i \in B$ and $B \subseteq V$

47 | Page

Collected By: Muhammad Saleem

But
$$v_i = 1. v_i$$
 $1 \in \mathbb{F}$

- \Rightarrow A contradiction i.e. v_i does not have the unique representation
- \Rightarrow H is not a set of generators
- \Rightarrow B is a minimal set of generators for V

$$(ii) \Rightarrow (iii)$$

Suppose that B is a minimal set of generators for V

We need to prove that B is maximal L.I set of vectors

 \Rightarrow If B is not L.I

Then at least one of the vector is a L.C of its preceding vectors.

If we delete this vector then the remaining set of vectors (subset of B) still span V and producing a contradiction against the minimality of B

Now we prove that B is maximal set $(H \supset B)$ H is superset of B

Let
$$h \in H$$
 but $h \notin B$

$$\Rightarrow$$
 h = $\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \dots + \alpha_n v_n$

Because B is minimal set of generators

$$\Rightarrow$$
 h \in H \hookrightarrow H is L.D.

 \Rightarrow B is maximal

(iii).
$$\Rightarrow$$
 (i)

Suppose that B is maximal L.I set of vectors we need to prove that B is basis for V. Let $v \in V$ and $v \neq \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \cdots + \alpha_k v_k$

Where
$$\alpha_i \in \mathbb{F}$$
 and $1 \le i \le k \& v_i \in B$; $1 \le i \le k$ $\Rightarrow B \cup \{v\}$ is L.I

As none of the vectors of $B \cup \{v\}$ is a L.C of its preceding one's which implies contradiction with the fact B is maximal L.I set of vectors

$$\Rightarrow \ v \in L(B)$$

$$\Rightarrow V = L(B)$$

Theorem:

Let V be a F.D.V.S over the field \mathbb{F} . Let W \leq V then

- (i) W is F.D and $dim(W) \leq dim(V)$ Moreover, if dim(W) = dim(V) then W = V
- $\dim(V/W) = \dim(V) \dim(W)$ (ii)

Proof: (i)

Let V be of dimension 'n' or let dim(V) = n

Let $W \leq V(\mathbb{F})$

Let $\{w_1, w_2, \ldots, w_k\}$ be the largest set of L.I vectors of W. Now we show that $\{w_1, w_2, \dots, w_k\}$ is a basis for W.

Let $w \in W$ such that $w \neq w_i \ \forall i \ ; \ 1 \leq i \leq k$

Then the set $\{w_1, w_2, \dots, w_k\}$ is L.D

i.e.
$$\mathbf{w} = \sum_{i=1}^{k} a_i w_i$$

$$\mathbf{w} = \mathbf{a}_1 w_1 + \mathbf{a}_2 w_2 + \mathbf{a}_3 w_3 \dots + \mathbf{a}_k w_k$$

$$\Rightarrow \mathbf{w} \in \mathbf{L} \left(\{ w_1, w_2, \dots, w_k \} \right)$$

Now when $w = w_i$ for $1 \le i \le k$

Then $w = 0. w_1 + 0. w_2 + + 1. w_i + 0. w_{i+1} + + 0. w_k$

$$\Rightarrow$$
 w \in L ({ w_1, w_2, \dots, w_k })

So in each case $w \in L(\{w_1, w_2, ..., w_k\})$

$$\Rightarrow \{w_1, w_2, \dots, w_k\}$$
 spans W

$$\Rightarrow$$
 w = L ({ w_1, w_2, \dots, w_k })

$$\Rightarrow \{w_1, w_2, \dots, w_k\}$$
 is a basis for W

$$\Rightarrow$$
 W is F.D

Since
$$dim(V) = n$$
 (maximal)

And
$$dim(W) = k < dim(V) = n$$

$$\Rightarrow$$
 dim(W) \leq dim(V)

Now if dim(W) = dim(V)

 \Rightarrow Every basis of W is a basis of V

$$\Rightarrow W = V$$

Proof (ii)

Let $\{w_1, w_2, \dots, w_k\}$ be the basis for W.

Let $\{w_1, w_2, \dots, w_k, v_1, v_2, \dots, v_m\}$ be the basis for V then

$$\{v_1 + W, v_2 + W, \dots, v_m + W\}$$
 be the basis for V/W

First we show that the set

$$\{v_1 + W, v_2 + W, \dots, v_m + W\}$$
 is L.I.

Let $\alpha_1(v_1 + W) + \alpha_2(v_2 + W) + \dots + \alpha_m(v_m + W) = 0 + W + \dots + (1)$

$$\Rightarrow \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_m v_m + W = W$$

$$\Rightarrow \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \dots + \alpha_m v_m \in W$$

$$\Rightarrow \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \cdots + \alpha_m v_m = w_0$$

for some $w \in W$

$$\Rightarrow \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \dots + \alpha_m v_m = a_1 w_1 + a_2 w_2 + a_3 w_3 \dots + a_k w_k$$

because $\{w_1, w_2, \dots, w_k\}$ are the basis for W.

$$\Rightarrow \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \dots + \alpha_m v_m + (-a_1 w_1) + (-a_2 w_2) + \dots + (-a_k w_k) = 0$$

Since

 $\{w_1, w_2, \dots, w_k, v_1, v_2, \dots, v_m\}$ are basis for V

$$\Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_m = (-a_1) = (-a_2) \dots = (-a_k) = 0$$

$$\Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_m = (a_1) = (a_2) \dots = (a_k)$$

$$\Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_m = 0$$

$$\Rightarrow$$
 { $v_1 + W$, $v_2 + W$,..., $v_m + W$ } is L.I

Let $v + W \in V/W$ by def of quotient

 \because v \in V therefore

$$v = \alpha_1 w_1 + \alpha_2 w_2 + \alpha_3 w_3 + \cdots + \alpha_k w_k + a_1 v_1 + a_2 v_2 + a_3 v_3 + \cdots + a_m v_m$$

$$\Rightarrow v + W = \alpha_1 w_1 + \alpha_2 w_2 + \alpha_3 w_3 + \dots + \alpha_k w_k + a_1 v_1 + a_2 v_2 + a_3 v_3 + \dots + a_m v_m + W$$

$$\Rightarrow v+W = a_1v_1+a_2v_2+a_3v_3.... + a_mv_m+W$$

Because $\alpha_1 w_1 + \alpha_2 w_2 + \alpha_3 w_3 + \dots + \alpha_k w_k \in W$

$$\Rightarrow$$
 W+W = W

$$\Rightarrow \{v_1 + W, v_2 + W, \dots, v_m + W\}$$
 spans V/W

$$\Rightarrow$$
 v + W \in L({ $v_1 + W, v_2 + W, \dots, v_m + W$ })

$$\Rightarrow$$
 v+W = L({ $v_1 + W, v_2 + W, \dots, v_m$ +W})

$$\Rightarrow \{v_1 + W, v_2 + W, \dots, v_m + W\}$$
 is basis for V/W

$$\Rightarrow \dim(V/W) = m$$

Dim(V/W) = dim(V) = dim(W) =

Theorem:

Let T be an isomorphism of V_1 and V_2 . Then basis of V_1 maps onto the basis of V_2 .

Proof:

Let T: $V_1 o V_2$ be an isomorphism where V_1 and V_2 are vector space over \mathbb{F} Let $\{v_1, v_2, \dots, v_2, \dots\}$ be the basis for V_1 then we need to show that $\{T(v_1), T(v_2), \dots, v_n\}$ are the basis for V_2

(i) Let
$$\alpha_1 T(v_1) + \alpha_1 T(v_2) + \dots = 0$$
(1)
 \Rightarrow Since T is linear
 $\Rightarrow T(\alpha_1 v_1) + T(\alpha_2 v_2) + \dots = 0$ \therefore T is linear
 $\Rightarrow T(\alpha_1 v_1 + \alpha_2 v_2 + \dots = 0$ \therefore T is linear
 $\Rightarrow \alpha_1 v_1 + \alpha_2 v_2 + \dots = 0$

Since v_1, v_2, \dots are the basis for V_1

$$\Rightarrow \alpha_1 = \alpha_2 = \dots = 0$$

From (1) $\{T(v_1), T(v_2), \dots \}$ are L.I

(ii) Let $w \in V_2$ then \exists an element $v \in V_1$ such that T(v) = w $\Rightarrow T(\alpha_1 v_1 + \alpha_2 v_2 + \dots) = w$

51 | Page

Collected By: Muhammad Saleem

$$\Rightarrow T(\alpha_1 v_1 + \alpha_2 v_2 + \dots) = w$$

$$\Rightarrow T(\alpha_1 v_1) + T(\alpha_2 v_2) + \dots = w$$

$$\Rightarrow \alpha_1 T(v_1) + \alpha_1 T(v_2) + \dots = w$$

$$\Rightarrow w \in L(\{T(v_1) + T(v_2) + \dots \})$$

$$\Rightarrow V_2 = L(\{T(v_1) + T(v_2) + \dots \})$$

$$\Rightarrow \{T(v_1) + T(v_2) + \dots \}$$
 are the basis for V_2

Exercise:

If A and B are F.D.V.S then A+B is also F.D Morever

$$Dim(A+B) = dim(A) + dim(B) - dim(A \cap B)$$

Proof:

First we prove that

Define a mapping

$$s.t T(b) = b+A$$

 $\Delta y, b \in B$ rell define

Let
$$b_1 = b_2$$

 $\Rightarrow b_1 + A = b_2 + A$
 $\Rightarrow T(b_1) = T(b_2)$

T is linear (ii).

Let b_1 , $b_2 \in B$ and $\alpha, \beta \in \mathbb{F}$ s.t

$$T(\alpha b_1 + \beta b_2) = \alpha b_1 + \beta b_2 + A \qquad \therefore \qquad \text{by (1)}$$

$$= (\alpha b_1 + A) + (\beta b_2 + A)$$

$$= \alpha (b_1 + A) + \beta (b_2 + A)$$

$$= \alpha T(b_1) + \beta T(b_2)$$

(iii) T is onto Let $b+A \in \frac{A+B}{A}$ s.t $b \in B$ $T(b) = b+A \implies T \text{ is onto}$

$$\frac{A+B}{A} = \frac{B}{KerT}$$

We claim $KerT = A \cap B$

Let
$$\alpha \in \text{KerT} \Rightarrow T(\alpha) = A$$

$$\alpha + A = A$$

$$\because$$
 by (1)

$$\Rightarrow \alpha \in A$$

Also
$$\alpha \in KerT \subseteq B$$

$$\Rightarrow \alpha \in A \qquad \text{Also } \alpha \in \text{Ref} \subseteq B$$
$$\Rightarrow \alpha \in A \qquad \text{and } \alpha \in B \Rightarrow \alpha \in A \cap B$$

$$\Rightarrow$$
 Ker T \subseteq A \cap B(2)

Conversely

Let
$$\alpha \in A \cap B$$

$A \bigcup_{i=1}^{n} \alpha \in A \text{ and } \alpha \in B$ $A \bigcup_{i=1}^{n} \alpha + A = A \Rightarrow T(\alpha) = A$ $A \bigcup_{i=1}^{n} \alpha + A = A \Rightarrow T(\alpha) = A$

$$\Rightarrow \alpha \in \text{KerT}$$

$$\Rightarrow A \cap B \subseteq Ker T$$

From (2) and (3) KerT =
$$A \cap B$$

Hence
$$\frac{A+B}{A} \cong \frac{B}{A \cap B}$$

$$\dim(\frac{A+B}{A}) = \dim(\frac{B}{A \cap B})$$

$$\therefore$$
 dim(V/W= dimV-dimW

$$\Rightarrow$$
 dim(A+B) - dim A = dimB - dim(A \cap B)

$$\Rightarrow$$
 dim(A+B) = dim A +dimB - dim(A \cap B) proved

53 | Page

d Saleem Composed By: Muzammil Tanveer

Theorem:

Two F.D.V.S are isomorphic to each other iff they are of same dimensions.

Proof:

Let V and W be the two-finite dimensional vector space over the field ${\mathbb F}$.

Let dimV = n = dimW (same dimensions) we need to prove that V is isomorphic to W.

Let $\{v_1, v_2, \dots, v_n\}$ and $\{w_1, w_2, \dots, w_n\}$ be the basis for V and W respectively. Define a mapping

$$s.t \ \phi(v) = w \ where \ v \in V \ , \ w \in W$$

 \Rightarrow we can write as

$$a_1 w_1 + a_2 w_2 + a_3 w_3 \dots + a_n w_n = \phi(a_1 v_1 + a_2 v_2 + a_3 v_3 \dots + a_n v_n) \dots (1)$$

$$\forall a_i \in \mathbb{F}, 1 \le i \le n$$

Now we show that ϕ is Homomorphism (Linear)

Let
$$\alpha, \beta \in \mathbb{F}$$
 and $v, v' \in V$

Then

$$\phi(\alpha v + \beta v') = \phi[\alpha(a_1v_1 + a_2v_2 + a_3v_3.. + a_nv_n) + \beta(b_1v_1 + b_2v_2 + .. + b_nv_n)]$$
 Where $a_i, b_i \in \mathbb{F}$, $1 \le i \le n$

$$\phi(\alpha \mathbf{v} + \beta \mathbf{v}') = \phi[\alpha \mathbf{a}_1 \mathbf{v}_1 + \alpha \mathbf{a}_2 \mathbf{v}_2 + \dots + \alpha \mathbf{a}_n \mathbf{v}_n + \beta \mathbf{b}_1 \mathbf{v}_1 + \beta \mathbf{b}_2 \mathbf{v}_2 + \dots + \beta \mathbf{b}_n \mathbf{v}_n]$$

$$\Rightarrow \phi(\alpha v + \beta v') = \phi [(\alpha a_1 + \beta b_1)v_1 + (\alpha a_2 + \beta b_2)v_2 + \dots + (\alpha a_n + \beta b_n)v_n]$$

$$= (\alpha a_1 + \beta b_1)w_1 + (\alpha a_2 + \beta b_2)w_2 + \dots + (\alpha a_n + \beta b_n)w_n \qquad \text{by (1)}$$

$$= \alpha(a_1w_1 + a_2w_2 + a_3w_3 + \dots + a_nw_n) + \beta(b_1w_1 + b_2w_2 + b_3w_3 + \dots + b_nw_n)$$

$$\phi(\alpha \mathbf{v} + \beta \mathbf{v}') = \alpha \phi(\mathbf{v}) + \beta \phi(\mathbf{v}')$$

 \Rightarrow ϕ is linear

Now by def. we have

$$\forall w \in W \exists v \in V s.t$$

$$\phi(v) = w$$

 \Rightarrow ϕ is onto

Let
$$\phi(\mathbf{v}) = \phi(\mathbf{v}')$$

$$\phi(a_1v_1+a_2v_2+a_3v_3....+a_nv_n) = \phi(b_1v_1+b_2v_2+...+b_nv_n)$$

$$\Rightarrow a_1 w_1 + a_2 w_2 + a_3 w_3 + \dots + a_n w_n = b_1 w_1 + b_2 w_2 + b_3 w_3 + \dots + b_n w_n$$

$$\Rightarrow$$
 $(a_1-b_1) w_1+(a_2-b_2) w_2+\dots+(a_n-b_n) w_n=0$

Since
$$\{w_1, w_2, \dots, w_n\}$$
 is basis for W

So are linearly independent

$$\Rightarrow a_1 - b_1 = 0, a_2 - b_2 = 0, \dots, a_n - b_n = 0$$

$$\Rightarrow a_1 = b_1, a_2 = b_2, \dots, a_n = b_n$$

$$\Rightarrow$$
 $y = v'$

φ is an isomorphism b/w V an W

Let $V \cong W$

Let $\{v_1, v_2, \dots, v_n\}$ be the basis for V

We prove that $\{\phi(v_1), \phi(v_2), \dots, \phi(v_n)\}\$ are the basis of W

Let B =
$$\{\phi(v_1), \phi(v_2),, \phi(v_n)\}$$

First we prove that B is L.I

Let
$$\alpha_i \in \mathbb{F}$$
, $1 \le i \le n$ s.t

$$\sum_{i=1}^{n} \alpha_i \phi(v_i) = 0$$

$$\Rightarrow \sum_{i=1}^{n} \phi(\alpha_i v_i) = 0$$

∵ \phi is linear

$$\Rightarrow \phi \sum_{i=1}^{n} (\alpha_i v_i) = 0$$

∵ \phi is linear

$$v_i$$
 where $1 \le i \le n$ are the basis for V are L.I

$$\alpha_i = 0$$
 ; $1 \le i \le n$

⇒ B is linearly independent

Secondly, we show that L(B) = WLet $w \in W$ and $v \in V$ $s.t \ w = \phi(v)$ $\Rightarrow \ w = \phi(\ a_1v_1 + a_2v_2 + a_3v_3 + a_nv_n)$ $\Rightarrow \ w = \phi(\ a_1v_1) + \phi(\ a_2v_2) + + \phi(\ a_nv_n)$ \vdots ϕ is linear $\Rightarrow \ w = a_1\phi(v_1) + a_2\phi(v_2) + + a_n\phi(v_n)$ \vdots ϕ is linear $\Rightarrow \ W = L(B)$ $\Rightarrow \ B$ is basis for W $\Rightarrow \ dim W = n = dim V$ $\Rightarrow \ dim V = dim W$

ALGEBRA II BY SYED SHERAZ ASGHAR Nathcity.org Merging man & maths

Internal direct sum:

Let $V(\mathbb{F})$ be a vector space. Let u_1, u_2, \dots, u_n be the subspace of V. Then V is called the internal direct sum of u_1, u_2, \dots, u_n if $\forall v \in V$ written in one and only one way as

$$v = u_1 + u_2 + \dots + u_n$$
 , $u_i \in U_i$; $1 \le i \le n$

External direct sum:

Let v_1, v_2, \ldots, v_n be the vector space over the same field $\mathbb F$. Let V be the set of all ordered n-tuple i.e. (v_1, v_2, \ldots, v_n) ; $v_i \in V$ then we can say that two elements are equal (v_1, v_2, \ldots, v_n) and $(v_1', v_2', \ldots, v_n')$ where

$$v_i, v_i' \in V; 1 \le i \le n$$

We can define addition and scalar multiplication in V

$$x + y = (v_{1}, v_{2}, \dots, v_{n}) + (v'_{1}, v'_{2}, \dots, v'_{n})$$

$$= (v_{1} + v'_{1}, v_{2} + v'_{2}, \dots, v_{n} + v'_{n}) \qquad (1)$$

$$\alpha.x = \alpha (v_{1}, v_{2}, \dots, v_{n})$$

$$= (\alpha v_{1}, \alpha v_{2}, \dots, \alpha v_{n}) \qquad (2)$$

Then V is called external direct sum of (v_1, v_2, \dots, v_n)

$$\mathbf{v} = v_1 \oplus v_2 \oplus \dots \oplus v_n$$

Direct Sum:

A vector space V is said to be direct sum of its subspace U and W if

- (i) V = U+W
- (ii) $U \cap W = \{0\}$

Theorem:

If V is the internal direct sum of u_1, u_2, \dots, u_n the V is isomorphic to the external direct sum of u_1, u_2, \dots, u_n

Proof:

Let
$$v \in V$$

$$\Rightarrow$$
 $v = u_1 + u_2 + \dots + u_n$ (1) $u_i \in U$; $1 \le i \le n$
Define a mapping

T: V
$$\rightarrow u_1 \oplus u_2 \oplus \dots \oplus u_n$$
 s.t T(v) = (u_1, u_2, \dots, u_n)
i.e. T($u_1 + u_2 + \dots + u_n$) = (u_1, u_2, \dots, u_n) ...(2)

- (1) Now mapping is well-defined because each element of V is written one and only one way (unique representation)
- (2) Mapping is linear

Let
$$\alpha, \beta \in \mathbb{F} \mid v, w \in V$$

$$T(\alpha v + \beta w) = T(\alpha (u_1 + u_2 + \dots + u_n) + \beta (u'_1, u'_2, \dots + u'_n)$$
$$u_i, u'_i \in U_i ; 1 \le i \le n$$

$$= T(\alpha u_1 + \alpha u_2 + \dots + \alpha u_n + \beta u'_1 + \beta u'_2 + \dots + \beta u'_n)$$

$$= T((\alpha u_1 + \beta u'_1 + \alpha u_2 + \beta u'_2 + \dots + \alpha u_n + \beta u'_n)$$

$$= (\alpha u_1 + \beta u'_1, \alpha u_2 + \beta u'_2, \dots, \alpha u_n + \beta u'_n)$$

$$= (\alpha u_1, \alpha u_2, \dots, \alpha u_n) + (\beta u'_1, \beta u'_2, \dots, \beta u'_n)$$

$$= \alpha (u_1, u_2, \dots, u_n) + \beta (u'_1, u'_2, \dots, u'_n)$$

$$= \alpha T(v) + \beta T(w)$$

 \Rightarrow T is linear 0110 1

(3).
$$\forall u_1, u_2, \dots, u_n \in u_1 \oplus u_2 \oplus \dots \oplus u_n$$
$$\exists v = v_1, v_2, \dots, v_n \in V \text{ s.t}$$
$$T(v) = u_1, u_2, \dots, u_n$$

Which shows that each element of $u_1 \oplus u_2 \oplus \dots \oplus u_n$ is the image of some element of $V \implies T$ is surjective (onto)

(4) Let
$$T(v) = T(w)$$

$$T(u_1 + u_2 + \dots + u_n) = T(u'_1 + u'_2 + \dots + u'_n)$$

$$(u_1, u_2, \dots, u_n) = (u'_1, u'_2, \dots, u'_n)$$

$$u_1 = u'_1, u_2 = u'_2, \dots, u_n = u'_n$$

$$\Rightarrow u_i = u'_i \quad \forall i, 1 \le i \le n$$

$$\Rightarrow v = w$$

$$\Rightarrow T \text{ is injective (one-one)}$$

 \Rightarrow T is isomorphism Hence $V \cong u_1 \oplus u_2 \oplus \dots \oplus u_n$

Non-Singular Linear Transformation:

A linear transformation is said to be non-singular if its inverse exists or A linear transformation is non-singular (invertible) if it is one-one or A linear transformation is non-singular if it is an isomorphism.

The set of all non-singular linear transformation is denoted by L(V,V)

Theorem:

Prove that the set L(V,W) is a semi-group under the composition.

Proof:

First, we prove that composition of two linear transformation is also L.T.

$$T_1 \circ T_2 (\alpha v_1 + \beta v_2) = T_1 (T_2 (\alpha v_1 + \beta v_2))$$

$$= T_1(T_2(\alpha v_1) + T_2(\beta v_2)) \qquad \because T_2 \text{ is linear}$$

$$= T_1(\alpha T_2(v_1) + \beta T_2(v_2)) \qquad \because T_2 \text{ is linear}$$

$$= T_1(\alpha T_2(v_1)) + T_1(\beta T_2(v_2)) \qquad \because T_1 \text{ is linear}$$

$$= \alpha T_1(T_2(v_1)) + \beta T_1(T_2(v_2)) \qquad \because T_1 \text{ is linear}$$

$$= \alpha T_1(T_2(v_1)) + \beta T_1(T_2(v_2)) \qquad \because T_1 \text{ is linear}$$

$$= \alpha T_1(T_2(v_1)) + \beta T_1(T_2(v_2)) \qquad \therefore T_2(v_2)$$

- $\Rightarrow T_1 \circ T_2$ is Linear
- $\Rightarrow T_1 \circ T_2 \in L(V,W)$
- \Rightarrow L(V,W) is closed under composition
- (ii). Associativity is trivial
 - \Rightarrow L(V,W) is a semi-group under composition

Exercise:

The set L(V,W) of all linear transformation from V to W is abelian group then prove it is a vector space.

Solution:

First we prove L(V,W) is abelian group then vector space

(i) Closure law $T_1 \circ T_2 (\alpha v_1 + \beta v_2) = T_1 (T_2 (\alpha v_1 + \beta v_2))$

$$= T_1(T_2(\alpha v_1) + T_2(\beta v_2)) \qquad \qquad \because \quad T_2 \text{ is linear}$$

$$= T_1(\alpha T_2(v_1) + \beta T_2(v_2)) \qquad \qquad \because \quad T_2 \text{ is linear}$$

$$= T_1(\alpha T_2(v_1)) + T_1(\beta T_2(v_2)) \qquad \qquad \because \quad T_1 \text{ is linear}$$

$$= \alpha T_1(T_2(v_1)) + \beta T_1(T_2(v_2)) \qquad \qquad \because \quad T_1 \text{ is linear}$$

- $\Rightarrow T_1 \circ T_2$ is Linear
- $T_1 \circ T_2 \in L(V,W)$
- L(V,W) is closed under composition

 $= \alpha.T_1 \circ T_2(v_1) + \beta.T_1 \circ T_2(v_2)$

- Associative law (ii) Associativity is trivial
- Identity law

I:V \rightarrow W is linear s.t

where $v \in V$, $v \in W$

Becomes I:V \rightarrow V is identity element of L(V,W)

 \Rightarrow identity exist in L(V,W)

$$\Rightarrow$$
 L(V,W) is monoid and $x = x^2 + x^2 +$

(iv) Inverse law

The regular element of this monoid are the non-singular linear transformation i.e. every element has its inverse.

- \Rightarrow inverse exist in L(V,W)
- \Rightarrow L(V,W) become group

Now we define addition and scalar multiplication

$$(T_1+T_2)(v) = T_1(v) + T_2(v)$$
(i)

$$(\alpha T)(v) = \alpha . T(v) \qquad(ii)$$

(v) Commutative law

$$(T_1+T_2)(v) = T_1(v) + T_2(v)$$

= $T_2(v) + T_1(v)$
= $(T_2+T_1)(v)$

- \Rightarrow Commutative law holds in L(V,W)
- \Rightarrow L(V,W) become abelian group

Now we show L(V,W) is vector space

(i) Let
$$\alpha \in \mathbb{F}$$
, $T_1, T_2 \in L(V, W)$

$$\alpha(T_1 + T_2)(v) = (\alpha T_1 + \alpha T_2)(v)$$

$$\alpha[(T_1 + T_2)(v)] = \alpha . T_1(v) + \alpha T_2(v)$$

$$\therefore \text{ by (ii)}$$

(ii)
$$\alpha, \beta \in \mathbb{F} \text{ and } T \in L(V, W)$$

$$(\alpha + \beta)T(v) = (\alpha T + \beta T)(v)$$

$$= \alpha T(v) + \beta T(v)$$

$$\therefore \text{ by (ii)}$$

$$\therefore \text{ by (i)}$$

(iii)
$$\alpha, \beta \in \mathbb{F}$$
 and $T \in L(V, W)$
 $\alpha(\beta T)(v) = (\alpha \beta T)(v)$ \therefore by (ii)
 $= \alpha \beta. T(v)$ \therefore by (ii)

(iv) $1 \in \mathbb{F}$ and $T \in L(V,W)$ 1. T(v) = (1.T)(v)

All axioms are satisfied. Hence L(V,W) is vector space.

* A set which is ring as well as vector space that set is called **Algebra**.

Merging man & maths

61 | Page