ALGEBRA II mtanveer8689@gmail.com
Muzammil Tanveer

Lecture \# 1

For Understanding:

If $(G,+)$ is Abelian group.
If that G is
(i) (G, .) closed and
(ii) (G, .) associative
then $(\mathrm{G},+,$.$) is called a Ring$
And If (G, .) contain "e"
$\Rightarrow(\mathrm{G},+,$.$) called Identity Ring. Or Ring with unity.$

If $(G,$.$) holds commutativity$
$\Rightarrow(\mathrm{G},+$,) called Abelian Ring

$(\mathrm{G},+,$.$) become (\mathrm{F},+$,)
e.g. set of real number is a field and set of rational number is a field.

Vector Space:

Let $(\mathrm{V},+)$ be an abelian group and $(\mathbb{F},+,$.$) be a field define a scalar$ multiplication

$$
" . ": \mathbb{F} \times \mathrm{V} \rightarrow \mathrm{~V} \quad \text { since }(. \text { is function })
$$

Such that $\forall \alpha \in F, \quad v \in V, \quad \alpha . v \in V$
Then V is said to be a Vector space over F if the following axioms are true
(i) $\alpha(u+v)=\alpha u+\alpha v$
(ii) $(\alpha+\beta) u=\alpha u+\beta u$
(iii) $\alpha(\beta \mathrm{u})=(\alpha \beta) \mathrm{u}$
(iv) $1 . \mathrm{u}=\mathrm{u}$
$\forall \alpha, \beta \in \mathbb{F}, \mathrm{u} . \mathrm{v} \in \mathrm{V}$

Example:

Let F be a field consider the set $\mathrm{V}=\{(\alpha, \beta): \alpha, \beta \in \mathrm{F}\}$ then V is vector space. Solution:

Define Addition and scalar multiplication in V as

$$
\text { Let }\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right)=\left(\alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2}\right)
$$

Let $\alpha \in \mathrm{F}$ and $\left(\alpha_{1}, \beta_{1}\right) \in \mathrm{V}$ then $\alpha \cdot\left(\alpha_{1}, \beta_{1}\right)=\left(\alpha \alpha_{1}, \alpha \beta_{1}\right)$
Then V form a vector space over \mathbb{F}
Now we make $(\mathrm{V},+)$ is abelian
(i) $\operatorname{Let}\left(\alpha_{1}, \beta_{1}\right),\left(\bar{\alpha}_{2}, \beta_{2}\right) \in \mathrm{V}$
$\left(\overline{\alpha_{1}}, \beta_{1}\right)+\left(\alpha_{2}, \beta_{2}\right)=\left(\alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2}\right)$
Closure taw is hold
(ii) Associating is trivial
(iii) Let $\mathrm{O}=(0,0) \in \mathrm{V}$

Where $O \in F$
$(\alpha, \beta)+(0,0)=(\alpha+0, \beta+0)=(\alpha, \beta)$
Identity law is hold
(iv) Since $\alpha \in F \perp-\alpha \in F$

Also $\beta \in \mathrm{F} \quad, \quad \Rightarrow \quad-\beta \in \mathrm{F}$
Now $(\alpha, \beta) \in F \quad \Rightarrow \quad(-\alpha,-\beta) \in F$
And $(\alpha, \beta)+(-\alpha,-\beta)=(\alpha-\alpha, \beta-\beta)=(0,0) \in \mathrm{V}$ inverse exist
(v) $\quad\left(\alpha_{1}, \beta_{1}\right)+\left(\alpha_{2}, \beta_{2}\right)=\left(\alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2}\right)$

$$
=\left(\alpha_{2}+\alpha_{1}, \beta_{2}+\beta_{1}\right)
$$

$$
=\left(\alpha_{2}, \beta_{2}\right)+\left(\alpha_{1}, \beta_{1}\right)
$$

Commutative law hold.
Hence $(\mathrm{V},+$) is abelian group. Now we prove V is vector space by following axioms.
(i) Let $\alpha \in \mathrm{F}$ and $\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right) \in \mathrm{V}$
then

$$
\begin{aligned}
\alpha\left[\left(\alpha_{1}, \beta_{1}\right)+\left(\alpha_{2}, \beta_{2}\right)\right] & =\alpha\left[\left(\alpha_{1}+\alpha_{2}, \beta_{1}+\beta_{2}\right)\right] \\
& =\left(\alpha\left[\alpha_{1}+\alpha_{2}\right], \alpha\left[\beta_{1}+\beta_{2}\right]\right) \\
& =\left(\alpha \alpha_{1}+\alpha \alpha_{2}, \alpha \beta_{1}+\alpha \beta_{2}\right)
\end{aligned}
$$

2|Page
Collected By: Muhammad Saleem

$$
\begin{aligned}
& =\left(\alpha \alpha_{1}, \alpha \beta_{1}\right)+\left(\alpha \alpha_{2}, \alpha \beta_{2}\right) \\
& =\alpha\left(\alpha_{1}, \beta_{1}\right)+\alpha\left(\alpha_{2}, \beta_{2}\right)
\end{aligned}
$$

(ii) $[\alpha+\beta]\left(\alpha_{1}, \beta_{1}\right)=\left([\alpha+\beta] \alpha_{1},[\alpha+\beta] \beta_{1}\right)$

$$
\begin{aligned}
& =\left(\alpha \alpha_{1}+\beta \alpha_{1}, \alpha \beta_{1}+\beta \beta_{1}\right) \\
& =\left(\alpha \alpha_{1}+\alpha \beta_{1}\right)+\left(\beta \alpha_{1}, \beta \beta_{1}\right) \\
& =\alpha\left(\alpha_{1}, \beta_{1}\right)+\beta\left(\alpha_{1}, \beta_{1}\right)
\end{aligned}
$$

(iii) $\quad \alpha\left[\beta\left(\alpha_{1}, \beta_{1}\right)\right]=\alpha\left(\beta \alpha_{1}, \beta \beta_{1}\right)$

$$
=\left(\alpha \beta \alpha_{1}, \alpha \beta \beta_{1}\right)
$$

$$
=\alpha \beta\left(\alpha_{1}, \beta_{1}\right)
$$

 All axioms are satisfied. Hence V is vector space.

Cと C_ _ _
 .org
 Merging man \& maths

Lecture \# 2

Example:

Let \mathbf{F} be a field and $\phi \neq \mathrm{X}$. Let $\mathbb{F}^{X}=\{\mathrm{f} \mid \mathrm{f}: \mathrm{X} \rightarrow \mathbb{F}\}$. Define addition and scalar multiplication in \mathbb{F}^{X} as
Let $\quad \mathrm{f}, \mathrm{g} \in \mathbb{F}^{X} ;(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$
$\forall \alpha \in \mathbb{F}$ and $\mathrm{f} \in \mathbb{F}^{X}$

$$
\begin{equation*}
(\alpha f)(x)=\alpha . f(x) \tag{2}
\end{equation*}
$$

Then show that $\mathbb{F}^{X}(\mathbb{F})$ is a vector space.
Solution: First we show that $\left(\mathbb{F}^{x},+\right)$ is an abelian group.
(i)

Let $\mathrm{f}, \mathrm{g} \in \mathbb{F}^{X}$
$(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$
(ii) Associativity is trivial.
(iii) Identity

Now $(f+I)(x)=f(x)+I(x) \quad B y(1)$

$$
=\mathrm{f}(\mathrm{x})+0
$$

$$
(\mathrm{f}+\mathrm{I})(\mathrm{x})=\mathrm{f}(\mathrm{x})
$$

$\Rightarrow \mathrm{f}+\mathrm{I}=\mathrm{f}$
\Rightarrow identity exist in \mathbb{F}^{X}
(iv) Inverse

Let $\mathrm{f} \in \mathbb{F}^{X} \exists f^{-1} \in \mathbb{F}^{X}$
Such that $f^{-1}(\mathrm{x})=-\mathrm{f}(\mathrm{x})$
Now $\left(\mathrm{f}+f^{-1}\right)(\mathrm{x})=\mathrm{f}(\mathrm{x})+f^{-1}(\mathrm{x})$
$=f(x)-f(x)=0$
$=\mathrm{I}(\mathrm{x})$
$\Rightarrow \quad \mathrm{f}+f^{-1}=\mathrm{I}$
\Rightarrow Inverse exits in \mathbb{F}^{X}
(v) Commutativity

From (1) we have $\quad(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$

$$
=\mathrm{g}(\mathrm{x})+\mathrm{f}(\mathrm{x})
$$

$$
=(\mathrm{g}+\mathrm{f})(\mathrm{x}) \Rightarrow \mathrm{f}+\mathrm{g}=\mathrm{g}+\mathrm{f}
$$

Hence $\left(\mathbb{F}^{X},+\right)$ is an abelian group.
Now we prove $\mathbb{F}^{X}(\mathbb{F})$ is a vector space.
(i) Let $\alpha \in \mathbb{F}$ and $f, g \in \mathbb{F}^{X}$

$$
\begin{aligned}
{[\alpha(\mathrm{f}+\mathrm{g})](\mathrm{x}) } & =(\alpha \mathrm{f}+\alpha \mathrm{g})(\mathrm{x}) & & \text { By (2) } \\
& =(\alpha \mathrm{f})(\mathrm{x})+(\alpha \mathrm{g})(\mathrm{x}) & & \text { By (1) } \\
& =\alpha \cdot \mathrm{f}(\mathrm{x})+\alpha \cdot \mathrm{g}(\mathrm{x}) & & \text { By (2) }
\end{aligned}
$$

$$
\Rightarrow \alpha(\mathrm{f}+\mathrm{g})=\alpha \mathrm{f}+\alpha \mathrm{g}
$$

(ii) $\prod_{\text {Let }} \alpha, \beta \in \mathbb{F} \backslash$ and $\left.f \in \mathbb{F} X^{X}\right]$ $[(\bar{\alpha}+\beta) f](x)=(\alpha f+\beta f)(x) \quad B y(2)$
$=(\alpha f)(x)+(\beta f)(x)$
By (1)

$\Rightarrow(\alpha+\beta) f=\alpha f+\beta f$

$$
=\alpha f(x)+\beta f(x) \quad B y(2)
$$

(iii) Let $\alpha, \beta \in \mathbb{F}$ and $f \in \mathbb{F}^{X}$
(iv) Let $1 \in \mathbb{F}$ and $\mathrm{f} \in \mathbb{F}^{X}$

$$
\begin{aligned}
(1 . \mathrm{f})(\mathrm{x}) & =\mathrm{f}(\mathrm{x}) \\
& \Rightarrow 1 . \mathrm{f}=\mathrm{f} \\
& \Rightarrow \mathbb{F}^{x}(\mathbb{F}) \text { is a vector space. }
\end{aligned}
$$

Subspace:

Let V be the vector space over the field $\mathbf{F} . \mathrm{V}(\mathbb{F})$ be a vector space.
Let $\phi \neq \mathrm{W} \subseteq \mathrm{V}$ then W is called subspace of V if W itself becomes a vector space under the same define addition and scalar multiplication as in V .

$$
\begin{aligned}
& {[\alpha(\beta \mathrm{f})](\mathrm{x})=(\alpha \beta \mathrm{f})(\mathrm{x}) \quad \mathrm{By}(2)}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \alpha(\beta f)=(\alpha \beta) f 115110 \text { OLN }
\end{aligned}
$$

Theorem:

A non-empty subset W of vector space V over the field \mathbb{F} is a subspace of V iff $\alpha u+\beta v \in W, \forall u, v \in W$ and $\alpha, \beta \in \mathbb{F}$

Mathematically statement
$\phi \neq \mathrm{W} \leq \mathrm{V}(\mathbb{F}) \Leftrightarrow \alpha \mathrm{u}+\beta \mathrm{v} \in \mathrm{W}, \forall \mathrm{u}, \mathrm{v} \in \mathrm{W} \& \alpha, \beta \in \mathbb{F}$
Proof:
Let W be a subspace of $\mathrm{V}(\mathbb{F})$
$\Rightarrow \mathrm{W}$ is vector space then $\forall \mathrm{u}, \mathrm{v} \in \mathrm{W} \& \alpha, \beta \in \mathbb{F}$

Conversely, Let $\alpha u+\beta y \in W$

Take $\alpha=1, \beta=1$
$\alpha u+\beta v=1 \cdot u+1, v=u+v \in W$
$\Rightarrow(\mathrm{W},+)$ is closed.
Take $\alpha=1, \beta=0$ and vice yersa
$\Rightarrow \alpha u+\beta v=1 . u+0 . v \equiv u \in W$

$\Rightarrow \alpha \mathrm{u}+\beta \mathrm{v}=0 . \mathrm{u}+1 . \mathrm{v}=\mathrm{v} \in \mathrm{W}$
$\Rightarrow(\mathrm{W},$.$) is closed Hence \mathrm{W}$ is a subspace.
Note: " \leq " means subspace, subring, subset.

Question:

Let \mathbf{F} be a field and $\phi \neq \mathrm{W}$. Let $\mathbb{F}^{X}=\{\mathrm{f} \mid \mathrm{f}: \mathrm{X} \rightarrow \mathbb{F}\} ; \mathrm{Y} \subseteq \mathrm{X}$ and
$\mathrm{W}=\{\mathrm{f} \mid \mathrm{f}: \mathrm{Y} \rightarrow \mathbb{F}\}$ or $\mathrm{W}=\{\mathrm{f} \mid \mathrm{f}(\mathrm{y})=0 \forall \mathrm{y} \in \mathrm{Y}\}$
Then show that W is subspace \mathbb{F}.
Solution: Let $y_{1} y_{2} \in \mathrm{Y}$ and $\alpha, \beta \in \mathbb{F}$
Such that $\mathrm{f}\left(y_{1}\right)=0, \mathrm{f}\left(y_{2}\right)=0$,

$$
\alpha \mathrm{f}\left(y_{1}\right)+\beta \mathrm{f}\left(y_{2}\right)=\alpha(0)+\beta(0)=0 \in \mathrm{~W}
$$

Lecture \# 3

Example:

Let V be a vector space of all 2×2 matrices over the field R then check either W is subspace or not.
(i) W consists of all 2×2 singular matrices.
(ii) W consists of all 2×2 Idempotent matrices.
(iii) W consists of all 2×2 symmetric matrices.

Solution:
(i) Let W consist of all 2×2 singular matrices i.e. if $\mathrm{M} \in \mathrm{W} \Rightarrow|M|=0$

$M+N=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
But $\mid M+\widehat{N \mid} \neq 0 \Rightarrow \mathrm{M}+\mathrm{N} \notin \mathrm{W}$
$\Rightarrow \mathrm{W} \not \ddagger \mathrm{V} /\left[{ }^{\circ} \mathrm{N}\right.$ Let $\mathrm{M} \in \mathrm{W}$ such that

$$
\mathrm{M}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \Rightarrow M^{2}=\mathrm{M}
$$

Now

$$
\begin{aligned}
& 2 \mathrm{M}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \\
& (2 M)^{2}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right] \neq 2 \mathrm{M} \notin \mathrm{~W} \\
& \Rightarrow \mathrm{~W} \not \ddagger \mathrm{~V}
\end{aligned}
$$

(iii) Let W consist of all 2×2 symmetric matrices i.e. if $\mathrm{A} \in \mathrm{W} \Rightarrow A^{t}=\mathrm{A}$ And if $\mathrm{B} \in \mathrm{W} \Rightarrow B^{t}=\mathrm{B}$

Let $\alpha, \beta \in \mathrm{F}=\mathrm{R}$ such that

$$
\begin{aligned}
(\alpha A+\beta B)^{t} & =(\alpha A)^{t}+(\beta B)^{t} \quad=\alpha A^{t}+\beta B^{t} \\
& \Rightarrow \alpha \mathrm{~A}+\beta \mathrm{B} \in \mathrm{~W} \quad
\end{aligned} \quad \Rightarrow \mathrm{~W} \leq \mathrm{V}, ~ l
$$

Example:

Let $\mathrm{V}=R^{3}$ and $\phi \neq \mathrm{W} \subseteq \mathrm{V}$
Let $W=\{(u, v, 1): u, v \in R, 1 \in R\}$
Check W is a subspace of V or not.
Solution:
Let $\mathrm{x}, \mathrm{y} \in \mathrm{W}$ such that
$\mathrm{x}=\left(u_{1}, v_{1}, 1\right) \quad$ and $\mathrm{y}=\left\{\left(u_{2}, v_{2}, 1\right)\right.$
Now $\mathrm{x}+\mathrm{y}=\left(u_{1}+u_{2}, v_{1}+v_{2}, 1+1\right)$

$$
=\left(u_{1}+u_{2}, v_{1}+v_{2}, 2\right) \notin \mathrm{W}
$$

Example:

Let $\mathrm{V}=R^{3}$ and $\phi \neq \mathrm{W} \subseteq \mathrm{V}$
Let $\mathrm{W}=\{(\mathrm{u}, \mathrm{v}, \omega): \mathrm{u}+\mathrm{v}+w=0\}$ Check W is subspace of V or not.
Solution:
Let $x, y \in W$ such that

$\mathrm{x}=\left(u_{1}, v_{1}, w_{1}\right)$ and $\mathrm{y}=\left(u_{2}, v_{2}, w_{2}\right)$
Now let $\alpha, \beta \in \mathrm{F}$

$$
\begin{aligned}
\alpha \mathrm{x}+\beta \mathrm{y} & =\alpha\left(u_{1}, v_{1}, w_{1}\right)+\beta\left(u_{2}, v_{2}, w_{2}\right) \\
& =\alpha\left(u_{1}+v_{1}+w_{1}\right)+\beta\left(u_{2}+v_{2}+w_{2}\right) \\
& =\alpha(0)+\beta(0) \\
& =0 \in \mathrm{~W} \text { Hence } \mathrm{W} \text { is a vector space of } \mathrm{V}
\end{aligned}
$$

Example:

Let $\mathrm{V}=R^{3}$ and $\phi \neq \mathrm{W} \subseteq \mathrm{V}$
Let $\mathrm{W}=\{(\mathrm{u}, \mathrm{v}, \mathrm{w}): \mathrm{u}-2 \mathrm{v}+3 w=0\}$ Check W is subspace of V or not.
Solution:
Let $\mathrm{x}, \mathrm{y} \in \mathrm{W}$ such that
$\mathrm{x}=\left(u_{1}, v_{1}, w_{1}\right)$ and $\mathrm{y}=\left(u_{2}, v_{2}, w_{2}\right)$

Now let $\alpha, \beta \in \mathrm{F}$

$$
\begin{aligned}
\alpha \mathrm{x}+\beta \mathrm{y} & =\alpha\left(u_{1},-2 v_{1}, 3 w_{1}\right)+\beta\left(u_{2},-2 v_{2}, 3 w_{2}\right) \\
& =\alpha\left(u_{1}-2 v_{1}+3 w_{1}\right)+\beta\left(u_{2}-2 v_{2}+3 w_{2}\right) \\
& =\alpha(0)+\beta(0) \\
& =0 \in \mathrm{~W} \text { Hence } \mathrm{W} \text { is a vector space of } \mathrm{V}
\end{aligned}
$$

Example:

Let V be a vector space of all real valued function. Let $\phi \neq \mathrm{W} \subseteq \mathrm{V}$.
Let $\mathrm{W}=\left\{\mathrm{f}: \int_{0}^{1} f=0\right\}$. Check $\mathrm{W} \leq \mathrm{V}$ or $\mathrm{W} \not \ddagger \mathrm{V}$.

$\mathrm{u}=\int_{0}^{1} f=0, ~$ and $\mathrm{v}=\int_{0}^{1} g=0$
Now let $\alpha, \beta \in \mathbb{E}$
$\alpha u+\beta v=\alpha \int_{0}^{1} f+\beta \int_{0}^{1} g=\alpha(0)+\beta(0)$
$\alpha u+\beta v=0 \in \underline{W}$

$\Rightarrow \mathrm{W} \leq \mathrm{V}$

Example:

Let $\mathrm{V}=R^{n}:$ let $\phi \neq \mathrm{W}$
Let $\mathrm{W}=\left\{\left(x_{1}, x_{2}, x_{3}, \ldots . . x_{n}\right): x_{1}+x_{2}+x_{3}+\ldots . . .+x_{n}=1\right\}$
Check either $\mathrm{W} \leq \mathrm{V}$ or not.
Solution:
Let $u, v \in W$:
$u=(1,0,0$, \qquad $.0)$ and $\mathrm{v}=(0,1,0$ \qquad
Now $u+v=(1,0,0, \ldots \ldots \ldots 0)+(0,1,0$.0)

$$
=(1,1,0, \ldots \ldots \ldots 0) \notin \mathrm{W}
$$

$\Rightarrow \mathrm{W} \not \ddagger \mathrm{V}$

Sum of Subspaces:

Let $\mathrm{V}(\mathrm{F})$ be a vector space. Let W_{1} and W_{2} are the subspaces of $\mathrm{V}(\mathrm{F})$ then sum of W_{1} and W_{2} is defined as
$W_{1}+W_{2}=\left\{\mathrm{x}: \mathrm{x}=w_{1}+w_{2}, w_{1} \in W_{1} \wedge w_{2} \in W_{2}\right\}$
This is known as sum of two subspaces.
Note: Sum of two subspaces is again a subspace.

Theorem:

Prove that sum of subspaces is again a subspace.
Proof:
It is clear that $W_{1}+W_{2} \neq \phi$ as $0=0+0$
Let $\mathrm{u} \in W_{1}+W_{2}: u=w_{1}+w_{2}, w_{1} \in W_{1}, w_{2} \in W_{2}$
$\mathrm{v} \in W_{1}+W_{2}: v=w_{1}^{\prime}+w_{2}^{\prime}, w_{1}^{\prime} \in W_{1}, w_{2}^{\prime} \in W_{2}$
Let $\alpha, \beta \in \mathbb{F}$
Now $\alpha \mathbf{u}+\beta \mathrm{v}=\alpha\left(w_{1}+w_{2}^{\prime}\right)+\beta\left(w_{1}{ }^{\prime}+w_{2}{ }^{\prime}\right)$

$$
=\left(\alpha w_{1}+\beta w_{1}^{\prime}\right)+\left(\alpha w_{2}+\beta w_{2}^{\prime}\right) \quad \in W_{1}+W_{2}
$$

$$
\alpha \mathbf{u}+\beta \mathbf{v} \in W_{1}+W_{2}
$$

$$
\Rightarrow W_{1}+W_{2} \text { is a subspace of } \mathrm{V}(\mathbb{F})
$$

Direct Sum:

Let $W_{1}, W_{2}, \ldots \ldots W_{n}$ are the subspaces of $\mathrm{V}(\mathbb{F})$ then the direct sum of $W_{1}, W_{2}, \ldots \ldots W_{n}$ is denoted by and defined as
$W_{1}+W_{2}+, \ldots \ldots+W_{n}=W_{1} \oplus W_{2} \oplus, \ldots \ldots . \oplus W_{n}=$ can be written as $\mathbf{x}=w_{1}+w_{2}, \ldots \ldots w_{n}$ uniquely.

Theorem:

$W_{1}+W_{2}=W_{1} \oplus W_{2} \Leftrightarrow W_{1} \cap W_{2}=\{0\}$
or prove that
$\mathrm{V}=W_{1}+W_{2} \Leftrightarrow(i) W_{1} \oplus W_{2} \quad$ (ii) $\quad W_{1} \cap W_{2}=\{0\}$

Proof:
Let $\mathrm{V}=W_{1} \oplus W_{2}$
Let $\mathrm{u} \in W_{1} \cap W_{2} \quad \Rightarrow \mathrm{u} \in W_{1}$ and $\mathrm{u} \in W_{2}$
$\mathrm{u}=\mathrm{u}+0 \in W_{1}+W_{2}=\mathrm{V}$
$\mathrm{u}=0+\mathrm{u} \in W_{1}+W_{2}=\mathrm{V}$
$\therefore \mathrm{u}$ has been expressed uniquely as $\mathrm{u}=\mathrm{u}+0$ and $\mathrm{u}=0+\mathrm{u}$ and the unique which is only possible if $u=0$

$$
\Rightarrow W_{1} \cap W_{2}=\{0\}
$$

Conversely,
Let $W_{1} \rightarrow W_{2}=\{0\}$
Let $v \in V=w_{1}+w_{2}$
Let $v=u_{1}+v_{1} \& v=u_{1}^{\prime}+v_{1}^{\prime}$
Where $u_{1}, u_{1}^{\prime} \in W_{1} \quad$ and $v_{1}, v_{1}^{\prime} \in W_{2}$
$\Rightarrow u_{1}-u_{1}{ }^{\prime} \in W_{1} \quad$ and $v_{1}-v_{1}{ }^{\prime} \in W_{2}$
$\Rightarrow u_{1}-u_{1}{ }^{\prime} \in W_{2} \underbrace{0}$ and $v_{1}-v_{1}^{\prime} \in\left(W_{1}\right.$
$\Rightarrow u_{1}-u_{1}{ }^{\prime} \in W_{1} \cap W_{2}$ and $v_{1}-v_{1}{ }^{\prime} \in W_{1} \cap W_{2}$
$\Rightarrow u_{1}-u_{1}^{\prime}=0 \quad$ and $\quad v_{1}-v_{1}^{\prime}=0$
$\Rightarrow u_{1}=u_{1}{ }^{\prime} \quad$ and $\quad v_{1}=v_{1}{ }^{\prime}$
Representation of V is unique in V
$\Rightarrow \quad \mathrm{V}=W_{1} \oplus W_{2}$

Example:

Let V be vector space of all real valued function
$\mathbb{V}(f: \mathbb{R} \rightarrow \mathbb{R})$
Let $X=\{f:$ fisodd $\}$, Let $Y=\{f:$ fiseven $\}$
Showthat $X \leq V a n d Y \leq V$
$V=X \oplus Y$
Define addition and scalar multiplication
Let $f, g \in V$
$(\mathrm{f}+\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})$
Let $\alpha \in \mathbb{F}$ and $\mathrm{f} \in \mathrm{V}$
$(\alpha f)(x)=\alpha f(x)$
$X=\{f: f$ is odd $\} \quad$ It is clear that $X \neq \phi$ as
$0(-x)=0=-0(x)$
$\Rightarrow \quad 0 \in X$
Let $f, g \in X$
$f(-x)=-f(x) \quad$ and $\quad g(-x)=-g(x)$
Let $\alpha, \beta \in \mathbb{F}$ then
$(\alpha \mathrm{f}+\beta \mathrm{g})(-\mathrm{x})=(\alpha \mathrm{f})(-\mathrm{x})+(\beta \mathrm{g})(-\mathrm{x})$

$$
=\alpha \cdot \mathrm{f}(-\mathrm{x})+\beta \cdot \mathrm{g}(-\mathrm{x}) \quad \therefore \mathrm{by}(2)
$$

$$
=-\alpha f(x)-\beta \bar{g}(x)
$$

$(\alpha \bar{f}+\beta \mathrm{g})(-\mathrm{x})=-(\alpha \mathrm{f}+\beta \mathrm{g})(\mathrm{x})$

It is clear that $Y \neq \phi$ as

$$
\begin{aligned}
& 0(-\mathrm{x})=0=0(\mathrm{x}) \\
& \Rightarrow 0 \in \mathrm{Y}
\end{aligned}
$$

Let $f, g \in Y$
$f(-x)=f(x) \quad$ and $g(-x)=g(x)$
Let $\alpha, \beta \in \mathbb{F}$ then

$$
\begin{aligned}
(\alpha \mathrm{f}+\beta \mathrm{g})(-\mathrm{x}) & =(\alpha \mathrm{f})(-\mathrm{x})+(\beta \mathrm{g})(-\mathrm{x}) & \because b y(1) \\
& =\alpha \cdot f(-\mathrm{x})+\beta \cdot g(-\mathrm{x}) & \ddots b y(2) \\
& =\alpha \mathrm{f}(\mathrm{x})+\beta \mathrm{g}(\mathrm{x}) & \\
(\alpha \mathrm{f}+\beta \mathrm{g})(-\mathrm{x}) & =(\alpha \mathrm{f}+\beta \mathrm{g})(\mathrm{x}) &
\end{aligned}
$$

$$
\Rightarrow \quad \mathrm{Y} \leq \mathrm{V}
$$

Now to show $\mathrm{X}+\mathrm{Y}$ is subspace
\therefore Sum of two subspaces is again subspace.
It is clear that $\mathrm{X}+\mathrm{Y} \neq \phi$ as

$$
0=0+0
$$

Let $\mathrm{u} \in \mathrm{X}+\mathrm{Y}: \mathrm{u}=w_{1}+w_{2}, w_{1} \in \mathrm{X}$ and $w_{2} \in \mathrm{Y}$
And $\mathrm{v} \in \mathrm{X}+\mathrm{Y}: \mathrm{v}=w_{1}{ }^{\prime}+w_{2}{ }^{\prime}, w_{1}{ }^{\prime} \in \mathrm{X}$ and $w_{2}{ }^{\prime} \in \mathrm{Y}$
Let $\alpha, \beta \in \mathbb{F}$
Now

$$
=\left(\alpha w_{1}+\beta w_{1}^{\prime}\right)+\left(\alpha w_{2}+\beta w_{2}^{\prime}\right) \in \mathrm{X}+\mathrm{Y}
$$

$\Rightarrow \alpha u+\beta v \in X+Y$
$\Rightarrow X+Y$ is a subspace.
Now we show $V=X \oplus Y$, Let $f \in V$ such that $g(x)=f(-x)$

$$
\Rightarrow \quad \mathrm{f}=\left(\frac{1}{2} f+\frac{1}{2} g\right)+\left(\frac{1}{2} f-\frac{1}{2} g\right)
$$

$$
\Rightarrow \quad \mathrm{f}(-\mathrm{x})=\left(\frac{1}{2} f+\frac{1}{2} g\right)(-\mathrm{x})+\left(\frac{1}{2} f-\frac{1}{2} g\right)(-\mathrm{x})
$$

$$
=\left(\frac{1}{2} f(-\mathrm{x})+\frac{1}{2} g(-\mathrm{x})\right)+\left(\frac{1}{2} f(-\mathrm{x})-\frac{1}{2} g(-\mathrm{x})\right)
$$

$$
=\left(\frac{1}{2} g(\mathrm{x})+\frac{1}{2} f(\mathrm{x})\right)+\left(\frac{1}{2} g(\mathrm{x})-\frac{1}{2} f(\mathrm{x})\right)
$$

$$
\mathrm{f}(-\mathrm{x})=\left(\frac{1}{2} f+\frac{1}{2} g\right)(\mathrm{x})-\left(\frac{1}{2} f-\frac{1}{2} g\right)(\mathrm{x})
$$

$$
\Rightarrow \frac{1}{2} f+\frac{1}{2} g \in \mathrm{Y} \quad \text { and } \frac{1}{2} f-\frac{1}{2} g \in \mathrm{X}
$$

$$
\Rightarrow \mathrm{f} \in \mathrm{X}+\mathrm{Y}
$$

Finally let $\mathrm{f} \in \mathrm{X} \cap \mathrm{Y} \quad \Rightarrow \mathrm{f} \in \mathrm{X}$ and $\mathrm{f} \in \mathrm{Y}$

$$
f(-x)=-f(x) \in X
$$

$$
f(-x)=f(x) \in Y
$$

$$
\Rightarrow-\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x})
$$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{x})=0 \quad \Rightarrow \quad 2 \mathrm{f}(\mathrm{x})=0 \\
& \mathrm{f}(\mathrm{x})=0(\mathrm{x}) \\
& \Rightarrow \mathrm{f}=0 \\
& \Rightarrow \mathrm{X} \cap \mathrm{Y}=\{0\}
\end{aligned}
$$

Hence the result

Lecture \# 4

Linear Transformation or Homomorphism:

Let U and V be two vector spaces over the field \mathbb{F} then a mapping

$$
\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}
$$

is said to be a linear transformation if
(i) $\mathrm{T}\left(v_{1}+v_{2}\right)=\mathrm{T}\left(v_{1}\right)+\mathrm{T}\left(v_{2}\right)$
(ii) $\mathrm{T}(\alpha \mathrm{v})=\alpha \mathrm{T}(\mathrm{v})$
$\forall \mathrm{v}, v_{1}, v_{2} \in \mathrm{~V}$ and $\alpha \in \mathbb{F}$
Or A mapping
$\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$
If $\cap D \mathrm{~T}\left(\alpha \bar{v}_{1}+\beta v_{2}\right)=\alpha \mathrm{T}\left(v_{1}\right)+\beta \mathrm{T}\left(v_{2}\right)$
And this linear transformation is also known as Homomorphism.

Question:

Let T be a transformation (mapping)

$$
T(\alpha, \beta, \gamma)=(\alpha, \beta)
$$

Check this transformation is linear or not.
Solution:

$$
\begin{aligned}
& \text { Given } T(\alpha, \beta, \gamma)=(\alpha, \beta) \\
& \text { Let } \left.\begin{array}{c}
v_{1}=\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right) \\
v_{2}=\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)
\end{array}\right\} \in \mathbb{F}^{3}
\end{aligned}
$$

Now for any scalar $\alpha, \beta \in \mathbb{F}$
Then $\mathrm{T}\left(\alpha v_{1}+\beta v_{2}\right)=\mathrm{T}\left(\alpha\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)+\beta\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)\right)$

$$
\begin{aligned}
& =\mathrm{T}\left(\alpha \alpha_{1}+\beta \alpha_{2}, \alpha \beta_{1}+\beta, \beta_{2}, \alpha \gamma_{1}+\beta \gamma_{2}\right) \\
& =\left(\alpha \alpha_{1}+\alpha \beta_{1}, \beta \alpha_{2}+\beta \beta_{2}\right) \quad \therefore \text { by }(1) \\
& =\left(\alpha \alpha_{1}, \alpha \beta_{1}\right)+\left(\beta \alpha_{2}, \beta \beta_{2}\right) \\
& =\alpha\left(\alpha_{1}, \beta_{1}\right)+\beta\left(\alpha_{2}, \beta_{2}\right) \\
& =\alpha T\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)+\beta T\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right) \quad \Rightarrow \alpha \mathrm{T}\left(v_{1}\right)+\beta T\left(v_{2}\right)
\end{aligned}
$$

Hence T is linear space

Theorem:

Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ be a linear transformation then
(i) $\mathrm{T}(0)=0$
(ii) $T(-x)=-T(x)$

Proof: (i)

$$
\mathrm{T}(0)=\mathrm{T}(0+0)
$$

$$
\mathrm{T}(0)=\mathrm{T}(0)+\mathrm{T}(0) \quad \because \text { by def. }
$$

By cancellation law

$$
0=\mathrm{T}(0)
$$

Proof: (ii)
$\mathrm{T}(-\mathrm{x})+\mathrm{T}(\mathrm{x})=\mathrm{T}(-x+\mathrm{x}) \quad \because$ by def.

Kernel of T or Kernel of Linear Transformation:

Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ be a linear transformation then Kernel of T is \qquad
Ker $T=\{V: T(v)=0$ where $v \in V$ and $0 \in U\}$

Question:

Let $u, v \in$ Ker T such that
$\mathrm{T}(\mathrm{u})=0$ and $\mathrm{T}(\mathrm{v})=0$
\because by def.
Let $\alpha, \beta \in \mathbb{F}:$ then

$$
\begin{aligned}
\alpha u+\beta v & =\alpha(u)+\beta(v) \\
& =\alpha(T(u))+\beta(T(v)) \\
& =\alpha(0)+\beta(0) \\
& =0 \in \operatorname{Ker} T
\end{aligned}
$$

Hence Ker T is a subspace.

Theorem:

Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ be a L.T then Ker $\mathrm{T}=\{0\}$ iff T is one-one.

Proof:

Suppose Ker T $=\{0\}$

$$
\begin{array}{llll}
\text { Let } & \mathrm{T}\left(v_{1}\right)=\mathrm{T}\left(v_{2}\right) \\
\Rightarrow & \mathrm{T}\left(v_{1}\right)-\mathrm{T}\left(v_{2}\right)=0 & & \\
& \mathrm{~T}\left(v_{1}-v_{2}\right)=0 & \because & \mathrm{~T} \text { is L.T } \\
\Rightarrow & v_{1}-v_{2} \in \operatorname{Ker} \mathrm{~T}=0 & \ddots & \text { by def. of Kernel } \\
\Rightarrow & v_{1}-v_{2}=0 & & \\
\Rightarrow & v_{1}=v_{2} & & \\
\Rightarrow & \mathrm{~T} \text { is one-one } & &
\end{array}
$$

Conversely,

Let T is one-one

If $v \in \operatorname{Ker} T$ be any element then by def. of Kernel

$$
\mathrm{T}(\mathrm{v})=0=\mathrm{T}(0)
$$

Definition:

Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ be a L.T then Range of T is defined as
Range $\mathrm{T}=T_{R}=\{\mathrm{T}(\mathrm{v}): \mathrm{v} \in \mathrm{V}\}$
Or Range $T=\{u: u \in U$ and $u=T(v), v \in V\}$

Theorem:

Prove that RangeT is a subspace.
Proof:
Let $\mathrm{T}(0)=0,0 \in \mathrm{~V}$

$$
\therefore \quad \mathrm{T}(0) \in \text { Range } \mathrm{T} \quad \text { i.e. Range } \mathrm{T} \neq \phi
$$

Let $\alpha, \beta \in \mathbb{F}$ and $\mathrm{T}(\mathrm{x}), \mathrm{T}(\mathrm{y}) \in \mathrm{T}(\mathrm{v})$ be any element. Then

$$
\alpha \mathrm{T}(\mathrm{x})+\beta \mathrm{T}(\mathrm{y})=\mathrm{T}(\alpha \mathrm{x}+\beta \mathrm{y}) \in \mathrm{T}(\mathrm{v})
$$

Hence Range T is subspace.

Quotient Space:

Let V be a vector space and W be the subspace V. Define a set $\frac{V}{W}=\{\mathrm{v}+\mathrm{W}: \mathrm{v} \in \mathrm{V}\}$

If \quad (i) $\quad\left(v_{1}+\mathrm{W}\right)+\left(v_{2}+\mathrm{W}\right)=\left(v_{1}+v_{2}\right)+\mathrm{W}$
(ii). $\quad \alpha\left(v_{1}+\mathrm{W}\right)=\alpha v_{1}+\mathrm{W}$

Theorem:

Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{U}$ be a L.T then

Define a mapping such that
$\phi: \frac{V}{K} \rightarrow \mathrm{~T}(\mathrm{v})$
$\phi(\mathrm{v}+\mathrm{K})=\mathrm{T}(\mathrm{v})$
(i) ϕ is well define.

Let $v_{1}+\mathrm{K}$ and $v_{2}+\mathrm{K} \in \frac{V}{K}$
Let $v_{1}+\mathrm{K}=v_{2}+\mathrm{K}$

$$
v_{1}-v_{2}=\mathrm{K}-\mathrm{K} \quad \because \quad \mathrm{~K}-\mathrm{K} \in \mathrm{~K}
$$

$$
v_{1}-v_{2} \in \mathrm{~K}=\operatorname{Ker} \mathrm{T}
$$

$$
\Rightarrow \quad \mathrm{T}\left(v_{1}-v_{2}\right)=0
$$

$$
\Rightarrow \quad \mathrm{T}\left(v_{1}\right)-\mathrm{T}\left(v_{2}\right)=0 \quad \because \quad \mathrm{~T} \text { is L.T }
$$

$$
\Rightarrow \quad \mathrm{T}\left(v_{1}\right)=\mathrm{T}\left(v_{2}\right)
$$

$$
\Rightarrow \phi\left(v_{1}+\mathrm{K}\right)=\phi\left(v_{2}+\mathrm{K}\right) \quad \because \text { by }(1)
$$

$\Rightarrow \quad \phi$ is well define
(ii) ϕ is one-one

Let $\phi\left(v_{1}+\mathrm{K}\right)=\phi\left(v_{2}+\mathrm{K}\right)$
$\Rightarrow \quad \mathrm{T}\left(v_{1}\right)=\mathrm{T}\left(v_{2}\right) \quad \because$ by (1)
$\Rightarrow \quad \mathrm{T}\left(v_{1}\right)-\mathrm{T}\left(v_{2}\right)=0$
$\Rightarrow \quad \mathrm{T}\left(v_{1}-v_{2}\right)=0$
\because by def. T is L.T
$18 \mid P a g e$
Collected By: Muhammad Saleem

$$
\begin{array}{llll}
\Rightarrow & v_{1}-v_{2} \in \mathrm{Ker} \mathrm{~T}=\mathrm{K} & \\
\Rightarrow & v_{1}-v_{2}=\mathrm{K}-\mathrm{K} & \because & \mathrm{~K}-\mathrm{K} \in \mathrm{~K} \\
\Rightarrow & v_{1}+\mathrm{K}=v_{2}+\mathrm{K} & & \\
\Rightarrow & \phi \text { is one-one } &
\end{array}
$$

(iii) ϕ is Linear

$$
\left.\begin{array}{rl}
x & =\mathrm{v}_{1}+K \\
\text { Let } y & =\mathrm{v}_{2}+K
\end{array}\right\} \in \frac{v}{K}
$$

Let $\alpha, \beta \in \mathbb{F}$ then

$$
\begin{aligned}
& \phi(\alpha \mathrm{x}+\beta \mathrm{y})=\phi\left[\alpha\left(\mathrm{v}_{1}+K\right)+\beta\left(\mathrm{v}_{2}+K\right)\right] \\
& =\phi\left[\alpha \mathrm{v}_{1}+\mathrm{K}+\beta \mathrm{v}_{2}+\mathrm{K}\right] \quad \because \text { by def. of Quotient } \\
& =\phi\left(\alpha v_{1}+\beta v_{2}+K\right) \quad \because K+K \in K
\end{aligned}
$$

(iv) $\Rightarrow \phi$ is Linear
(iv) ϕ is onto

Let $T(v) \in T(V)$ be any element. Then

Hence $\frac{V}{\text { KerT }} \approx \mathrm{T}(\mathrm{v})$

Exercise

Check which of the following are linear transformation
Question \# $1 \quad \mathrm{~T}: R^{2} \rightarrow R^{2}$ s.t $\mathrm{T}\left(x_{1}, x_{2}\right)=\left(1+x_{1}, x_{2}\right)$
Solution:

$$
\left.\begin{array}{c}
\mathrm{v}_{1}=\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \\
\mathrm{v}_{2}=\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)
\end{array}\right\} \in R^{2}
$$

Let $\alpha, \beta \in \mathbb{F}$ Then

$$
\begin{aligned}
& \mathrm{T}\left(\alpha \mathrm{v}_{1}+\beta \mathrm{v}_{2}\right)=\mathrm{T}\left[\alpha\left(x_{1}^{\prime}, x_{2}^{\prime}\right)+\beta\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \neq \alpha \mathrm{T}\left(\mathrm{v}_{1}\right)+\beta \mathrm{T}\left(\mathrm{v}_{2}\right) \text { 。 }
\end{aligned}
$$

Hence T is not linear transformation.
Question \# 2: $\mathrm{T}: R^{2} \rightarrow R^{2}$ s.t $\mathrm{T}\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$
Solution:

$$
\begin{aligned}
& \left.\mathrm{v}_{1}=\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right] \\
& \left.\mathrm{v}_{2}=\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)\right\} \in R^{2} \\
& \text { s.t } \quad \mathrm{T}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=\left(x_{2}^{\prime}, x_{1}^{\prime}\right) \\
& \\
& \quad \mathrm{T}\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)=\left(x_{2}^{\prime \prime}, x_{1}^{\prime \prime}\right)
\end{aligned}
$$

Let $\alpha, \beta \in \mathbb{F}$ Then

$$
\begin{aligned}
\mathrm{T}\left(\alpha \mathrm{v}_{1}+\beta \mathrm{v}_{2}\right) & =\mathrm{T}\left[\alpha\left(x_{1}^{\prime}, x_{2}^{\prime}\right)+\beta\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)\right] \\
& =\mathrm{T}\left[\left(\alpha x_{1}^{\prime}+\beta x_{1}^{\prime \prime}\right),\left(\alpha x_{2}^{\prime}+\beta x_{2}^{\prime \prime}\right)\right] \\
& =\left[\left(\alpha x_{2}^{\prime}+\beta x_{2}^{\prime \prime}\right),\left(\alpha x_{1}^{\prime}+\beta x_{1}^{\prime \prime}\right)\right] \\
& =\alpha\left(x_{2}^{\prime}, x_{1}^{\prime}\right)+\beta\left(x_{2}^{\prime \prime}, x_{1}^{\prime \prime}\right) \\
& =\alpha \mathrm{T}\left(x_{1}^{\prime}, x_{1}^{\prime}\right)+\beta \mathrm{T}\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right) \\
& =\alpha \mathrm{T}\left(\mathrm{v}_{1}\right)+\beta \mathrm{T}\left(\mathrm{v}_{2}\right)
\end{aligned}
$$

Hence T is linear.

Question \# 3: $\quad \mathrm{T}: \mathrm{C} \rightarrow \mathrm{C}$ s.t $\mathrm{T}(\mathrm{z})=\bar{z}$

Solution:
Let $\quad z=x+i y$

$$
\left.\begin{array}{l}
v_{1}=z_{1}=x_{1}+i y_{1} \\
v_{2}=z_{2}=x_{2}+i y_{2}
\end{array}\right\} \quad \in C
$$

Such that $\mathrm{T}\left(z_{1}\right)=\overline{z_{1}}=x_{1}-i y_{1}$

$$
\mathrm{T}\left(z_{2}\right)=\overline{z_{2}}=x_{2}-i y_{2}
$$

Such that $\alpha, \beta \in \mathbb{F}$ Then

Question \# 4: $\mathrm{T}: \mathrm{C} \rightarrow \mathrm{C}$ s.t $\mathrm{T}(\mathrm{z})=\bar{z}$

Solution: Let

$$
\left.\begin{array}{l}
v_{1}=z_{1}=x_{1}+i y_{1} \\
v_{2}=z_{2}=x_{2}+i y_{2}
\end{array}\right\} \quad \in C
$$

Such that $\mathrm{T}\left(v_{1}\right)=\mathrm{T}\left(x_{1}+i y_{1}\right)=x_{1}$

$$
\mathrm{T}\left(v_{2}\right)=\mathrm{T}\left(x_{2}+i y_{2}\right)=x_{2}
$$

Such that $\alpha, \beta \in \mathbb{F}$ Then

$$
\begin{aligned}
\mathrm{T}\left(\alpha \mathrm{v}_{1}+\beta \mathrm{v}_{2}\right) & =\mathrm{T}\left[\alpha\left(x_{1}+i y_{1}\right)+\beta\left(x_{2}+i y_{2}\right)\right] \\
& =\mathrm{T}\left[\alpha x_{1}+i \alpha y_{1}+\beta x_{2}+i \beta y_{2}\right] \\
& =\mathrm{T}\left[\left(\alpha x_{1}+\beta x_{2}\right)+i\left(\alpha y_{1}+\beta y_{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\alpha x_{1}+\beta x_{2} \\
& =\alpha \mathrm{T}\left(\left(x_{1}+i y_{1}\right)+\beta \mathrm{T}\left(x_{2}+i y_{2}\right)\right. \\
& =\alpha \mathrm{T}\left(\mathrm{v}_{1}\right)+\beta \mathrm{T}\left(\mathrm{v}_{2}\right)
\end{aligned}
$$

$\Rightarrow \mathrm{T}$ is Linear Space.
Question \# 5: $\mathrm{T}: R^{3} \rightarrow R^{3}$ s.t $\mathrm{T}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3}, x_{3}\right)$
Solution:

$$
\begin{gathered}
\mathrm{v}_{1}=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right) \\
\left.\mathrm{v}_{2}=\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, x_{3}^{\prime \prime}\right)\right\} \quad \in R^{3} \\
\end{gathered}
$$

Let $\alpha, \beta \in \mathbb{F}$ Then

$$
\begin{aligned}
& \mathrm{T}\left(\alpha \mathrm{v}_{1}+\beta \mathrm{v}_{2}\right)=\mathrm{T}\left[\alpha\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)+\beta\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, x_{3}^{\prime \prime}\right)\right] \\
& =\mathrm{T}\left[\left(\alpha x_{1}^{\prime}+\beta x_{1}^{\prime \prime}\right),\left(\alpha x_{2}^{\prime}+\beta x_{2}^{\prime \prime}\right),\left(\alpha x_{3}^{\prime}+\beta x_{3}^{\prime \prime}\right)\right] \\
& =\left[\left(\alpha x_{1}^{\prime}+\beta x_{1}^{\prime \prime}\right),\left(\alpha x_{1}^{\prime}+\beta x_{1}^{\prime \prime}+\alpha x_{2}^{\prime}+\beta x_{2}^{\prime \prime}\right),\left(\alpha x_{1}^{\prime}+\beta x_{1}^{\prime \prime}+\alpha x_{2}^{\prime \prime}+\beta x_{2}^{\prime \prime}+\alpha x_{3}^{\prime}+\beta x_{3}^{\prime \prime}\right),\right. \\
& \left.\quad\left(\alpha x_{3}^{\prime}+\beta x_{3}^{\prime \prime}\right)\right] \\
& =\left[\alpha x_{1}^{\prime},\left(\alpha x_{1}^{\prime}+\alpha x_{2}^{\prime}\right),\left(\alpha x_{1}^{\prime}+\alpha x_{2}^{\prime}+\alpha x_{3}^{\prime}\right), \alpha x_{3}^{\prime}\right] \\
& +\left[\beta x_{1}^{\prime \prime},\left(\beta x_{1}^{\prime \prime}+\beta x_{2}^{\prime \prime}\right),\left(\beta x_{1}^{\prime \prime}+\beta x_{2}^{\prime \prime}+\beta x_{3}^{\prime \prime}\right), \beta x_{3}^{\prime \prime}\right] \\
& =\alpha\left[x_{1}^{\prime}, x_{1}^{\prime}+x_{2}^{\prime}, x_{1}^{\prime}+x_{2}^{\prime}+x_{3}^{\prime}, x_{3}^{\prime}\right]+\beta\left[x_{1}^{\prime \prime}, x_{1}^{\prime \prime}+x_{2}^{\prime \prime}, x_{1}^{\prime \prime}+x_{2}^{\prime \prime}+x_{3}^{\prime \prime}, x_{3}^{\prime \prime}\right] \\
& =\alpha \mathrm{T}\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)+\beta \mathrm{T}\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, x_{3}^{\prime \prime}\right) \\
& \quad \mathrm{T}\left(\alpha \mathrm{v}_{1}+\beta \mathrm{v}_{2}\right)=\alpha \mathrm{T}\left(\mathrm{v}_{1}\right)+\beta \mathrm{T}\left(\mathrm{v}_{2}\right) \\
& \Rightarrow \mathrm{T} \text { is Linear Space. }
\end{aligned}
$$

Q6: $\mathrm{T}: R^{3} \rightarrow R^{3}$ s.t $\mathrm{T}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{1}+x_{2}, x_{2}\right)$
Solution:

$$
\begin{aligned}
& \left.\begin{array}{l}
\mathrm{v}_{1}=\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \\
\mathrm{v}_{2}=\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)
\end{array}\right\} \in R^{3} \\
& \text { s.t } \quad \mathrm{T}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=\left(x_{1}^{\prime}, x_{1}^{\prime}+x_{2}^{\prime}, x_{2}^{\prime}\right)
\end{aligned}
$$

$$
\mathrm{T}\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)=\left(x_{1}^{\prime \prime}, x_{1}^{\prime \prime}+x_{2}^{\prime \prime}, x_{2}^{\prime \prime}\right)
$$

Let $\alpha, \beta \in \mathbb{F}$ Then

$$
\begin{aligned}
& \mathrm{T}\left(\alpha \mathrm{v}_{1}+\beta \mathrm{v}_{2}\right)=\mathrm{T}\left[\alpha\left(x_{1}^{\prime}, x_{2}^{\prime}\right)+\beta\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)\right] \\
& =\mathrm{T}\left[\left(\alpha x_{1}^{\prime}+\beta x_{1}^{\prime \prime}\right),\left(\alpha x_{2}^{\prime}+\beta x_{2}^{\prime \prime}\right)\right] \\
& =\left[\alpha x_{1}^{\prime}+\beta x_{1}^{\prime \prime}, \alpha x_{1}^{\prime}+\beta x_{1}^{\prime \prime}+\alpha x_{2}^{\prime}+\beta x_{2}^{\prime \prime}, \alpha x_{2}^{\prime}+\beta x_{2}^{\prime \prime}\right] \\
& =\left[\alpha x_{1}^{\prime}, \alpha x_{1}^{\prime}+\alpha x_{2}^{\prime}, \alpha x_{2}^{\prime}\right]+\left[\beta x_{1}^{\prime \prime}, \beta x_{1}^{\prime \prime}+\beta x_{2}^{\prime \prime}, \beta x_{2}^{\prime \prime}\right] \\
& =\alpha\left[x_{1}^{\prime}, x_{1}^{\prime}+x_{2}^{\prime}, x_{2}^{\prime}\right]+\beta\left[x_{1}^{\prime \prime}, x_{1}^{\prime \prime}+x_{2}^{\prime \prime}, x_{2}^{\prime \prime}\right] \\
& =\alpha \mathrm{T}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)+\beta \mathrm{T}\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}\right)
\end{aligned}
$$

Question \#7: $\mathrm{T}: R \rightarrow R^{3}$ s.t $\mathrm{T}(x)=\left(x, x^{2}, x^{3}\right)$

Solution:

Let $\alpha, \beta \in \mathbb{F}$ Then

$$
\begin{aligned}
\mathrm{T}\left(\alpha \mathrm{v}_{1}+\beta \mathrm{v}_{2}\right) & =\mathrm{T}\left[\alpha\left(x_{1}\right)+\beta\left(x_{2}\right)\right] \\
& =\left[\left(\alpha x_{1}+\beta x_{1}\right),\left(\alpha x_{1}+\beta x_{1}\right)^{2},\left(\alpha x_{1}+\beta x_{1}\right)^{3}\right]
\end{aligned}
$$

is not a Linear Transformation

Lecture \# 5

Theorem:

Let $\mathrm{W} \leq \mathrm{V}$ then \exists an onto Linear transformation
$\mathrm{V} \rightarrow \frac{V}{W}$ with $\quad \mathrm{W}=\operatorname{Ker} \mathrm{T}$
Proof:
Define a mapping

$$
\mathrm{T}: \mathrm{V} \rightarrow \frac{V}{W}
$$

s.t

$$
\begin{equation*}
T(v)=v+W \tag{1}
\end{equation*}
$$

By (1)
T is Linear

Let $v_{1}, v_{2} \in \mathrm{~V}, \quad \Theta{ }^{0} \alpha, \beta \in \mathbb{F}$
Now $\mathrm{T}\left(\alpha v_{1}+\beta v_{2}\right)=\left(\alpha v_{1}+\beta v_{2}\right)+\mathrm{W}$ By (1)

$$
\begin{aligned}
& =\left(\alpha v_{1}+\mathrm{W}\right)+\left(\beta v_{2}+W\right) \\
& =\alpha\left(v_{1}+\mathrm{W}\right)+\beta\left(v_{2}+W\right) \\
& =\alpha \mathrm{T}\left(v_{1}\right)+\beta \mathrm{T}\left(v_{2}\right)
\end{aligned}
$$

T is Linear
-•By def. of Quotient space

T is onto
Let $\mathrm{v}+\mathrm{W} \in \frac{V}{W} \exists \mathrm{v} \in \mathrm{V}$
Such that $T(v)=v+W$
$\Rightarrow \quad \mathrm{T}$ is onto
Now we show that $\mathrm{W}=$ Ker T
Let $\mathrm{v} \in \operatorname{Ker}(\mathrm{T}) \Leftrightarrow \mathrm{T}(\mathrm{v})=\mathrm{W}$

$$
\Leftrightarrow \mathrm{v}+\mathrm{W}=\mathrm{W}
$$

$$
\begin{array}{ll}
& \Leftrightarrow \mathrm{v} \in \mathrm{~W} \\
\Rightarrow \quad & \text { Ker } \mathrm{T}=\mathrm{W} \text { Proved }
\end{array}
$$

Why we not use one-one in statement as we use onto. Because $\mathrm{W}=\operatorname{ker} \mathrm{T}$ If $\mathrm{W}=\{0\}$ then we use one-one.

$$
\text { If } \mathrm{W}=\{0\}
$$

To show T is one-one

Example:

Let $\mathrm{V}=\left\{c_{1} e^{2 x}+c_{2} e^{3 x} ; c_{1}, c_{2} \in \mathbb{R}\right\}$ be the vector space of solution of differential equation $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6=0$ Prove that $\mathrm{V} \cong \mathbb{R}^{2}$

Solution:

$$
\begin{aligned}
& \mathrm{T}: \mathrm{V} \rightarrow \mathbb{R}^{2} \text { defined as } \\
& \mathrm{T}(\mathrm{v})=\left(c_{1}, c_{2}\right) \text { where } \mathrm{v}=c_{1} e^{2 x}+c_{2} e^{3 x}
\end{aligned}
$$

First, we prove that V is vector space
Let $v_{1}, v_{2} \in \mathrm{~V} \quad, \alpha, \beta \in \mathbb{F}$

$$
v_{1}=c_{1} e^{2 x}+c_{2} e^{3 x}
$$

$$
v_{2}=c_{1}^{\prime} e^{2 x}+c_{2}^{\prime} e^{3 x} \quad \text { where } c_{1}, c_{1}^{\prime}, c_{2}, c_{2}^{\prime} \in \mathbb{R}
$$

$$
\begin{align*}
\alpha\left(v_{1}+v_{2}\right) & =\alpha\left(c_{1} e^{2 x}+c_{2} e^{3 x}+c_{1}^{\prime} e^{2 x}+c_{2}^{\prime} e^{3 x}\right) \tag{i}\\
& \left.=\alpha c_{1} e^{2 x}+\alpha c_{2} e^{3 x}+\alpha c_{1}^{\prime} e^{2 x}+\alpha c_{2}^{\prime} e^{3 x}\right) \\
& =\alpha\left(c_{1} e^{2 x}+c_{2} e^{3 x}\right)+\alpha\left(c_{1}^{\prime} e^{2 x}+c_{2}^{\prime} e^{3 x}\right) \\
& =\alpha\left(v_{1}\right)+\alpha\left(v_{2}\right)
\end{align*}
$$

(ii) Let $\alpha, \beta \in \mathbb{F} \quad, v_{1}=c_{1} e^{2 x}+c_{2} e^{3 x} \in \mathrm{~V}$

$$
(\alpha+\beta) v_{1}=(\alpha+\beta)\left(c_{1} e^{2 x}+c_{2} e^{3 x}\right)
$$

$$
=\alpha c_{1} e^{2 x}+\alpha c_{2} e^{3 x}+\beta c_{1} e^{2 x}+\beta c_{2} e^{3 x}
$$

$$
=\alpha\left(c_{1} e^{2 x}+c_{2} e^{3 x}\right)+\beta\left(c_{1} e^{2 x}+c_{2} e^{3 x}\right)
$$

$$
=\alpha\left(v_{1}\right)+\beta\left(v_{1}\right)
$$

(iii) $\alpha\left(\beta v_{1}\right)=\alpha\left[\beta\left(c_{1} e^{2 x}+c_{2} e^{3 x}\right)\right]$

$$
=\alpha\left[\beta c_{1} e^{2 x}+\beta c_{2} e^{3 x}\right]
$$

$$
=\alpha \beta\left(c_{1} e^{2 x}+c_{2} e^{3 x}\right)
$$

$$
=\alpha \beta\left(v_{1}\right)
$$

$$
\text { (iv) } 1 \cdot v_{1}=1 \cdot\left(c_{1} e^{2 x}+c_{2} e^{3 x}\right)
$$

Hence V is vector space.

* Now T is well-define

$$
\begin{aligned}
& \text { Let } v_{1}=v_{2} \\
& c_{1} e^{2 x}+c_{2} e^{3 x}=c_{1}^{\prime} e^{2 x}+c_{2}^{\prime} e^{3 x} \\
& \left(c_{1}-c_{1}^{\prime}\right) e^{2 x}+\left(c_{2}-c_{2}^{\prime}\right) e^{3 x} \in \operatorname{Ker~T} \\
& \Rightarrow \mathrm{~T}\left[\left(c_{1}-c_{1}^{\prime}\right) e^{2 x}+\left(c_{2}-c_{2}^{\prime}\right) e^{3 x}\right]=0 \\
& \Rightarrow \quad\left(c_{1}-c_{1}^{\prime}, c_{2}-c_{2}^{\prime}\right)=(0,0) \\
& \Rightarrow \quad c_{1}-c_{1}^{\prime}=0 \text { and } c_{2}-c_{2}^{\prime}=0 \\
& \Rightarrow \quad c_{1}=c_{1}^{\prime} \quad \text { and } c_{2}=c_{2}^{\prime} \\
& \Rightarrow \quad \mathrm{T}\left(v_{1}\right)=\mathrm{T}\left(v_{2}\right)
\end{aligned}
$$

Now T is one-one

$$
\begin{array}{ll}
\text { Let } & \mathrm{T}\left(v_{1}\right)=\mathrm{T}\left(v_{2}\right) \\
\Rightarrow & c_{1}=c_{1}^{\prime} \quad \text { and } c_{2}=c_{2}^{\prime} \\
\Rightarrow & c_{1}-c_{1}^{\prime}=0 \quad \text { and } c_{2}-c_{2}^{\prime}=0 \\
\Rightarrow & \left(c_{1}-c_{1}^{\prime}, c_{2}-c_{2}^{\prime}\right)=(0,0) \\
\Rightarrow & \mathrm{T}\left[\left(c_{1}-c_{1}^{\prime}\right) e^{2 x}+\left(c_{2}-c_{2}^{\prime}\right) e^{3 x}\right]=0
\end{array}
$$

$$
\begin{aligned}
& \left(c_{1}-c_{1}^{\prime}\right) e^{2 x}+\left(c_{2}-c_{2}^{\prime}\right) e^{3 x} \in \operatorname{Ker~T} \\
& c_{1} e^{2 x}+c_{2} e^{3 x}-c_{1}^{\prime} e^{2 x}-c_{2}^{\prime} e^{3 x}=0 \\
& c_{1} e^{2 x}+c_{2} e^{3 x}=c_{1}^{\prime} e^{2 x}+c_{2}^{\prime} e^{3 x} \\
& \quad v_{1}=v_{2}
\end{aligned}
$$

Now T is Linear
Let $\alpha, \beta \in \mathbb{F}$ and $v_{1}, v_{2} \in \mathrm{~V}$
$\mathrm{T}\left(\alpha v_{1}+\beta v_{2}\right)=\mathrm{T}\left[\alpha\left(c_{1} e^{2 x}+c_{2} e^{3 x}\right)+\beta\left(c_{1}^{\prime} e^{2 x}+c_{2}^{\prime} e^{3 x}\right)\right]$

$$
=\mathrm{T}\left[\alpha c_{1} e^{2 x}+\alpha c_{2} e^{3 x}+\beta c_{1}^{\prime} e^{2 x}+\beta c_{2}^{\prime} e^{3 x}\right]
$$

$$
=\left(\alpha c_{1}, \alpha c_{2}\right)+\left(\beta c_{1}^{\prime}, \beta c_{2}^{\prime}\right)
$$

$$
=\alpha\left(c_{1}, c_{2}\right)+\beta\left(c_{1}^{\prime}+c_{2}^{\prime}\right)
$$

$$
=\alpha \mathrm{T}\left(v_{1}\right)+\beta \mathrm{T}\left(v_{2}\right)
$$

T is Linear
Now T is onto
Let $\left(c_{1}, c_{2}\right) \in \mathbb{R}^{2}$ s.t $c_{1} e^{2 x}+c_{2} e^{3 x} \in \mathrm{~V}$
s.t $\quad \mathrm{T}\left(c_{1} e^{2 x}+c_{2} e^{3 x}\right)=\left(c_{1}, c_{2}\right)$
$\Rightarrow \mathrm{T}$ is onto
Hence $V \cong \mathbb{R}^{2}$

Question:

Let $\mathrm{V}=\left\{c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x} ; c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\}$ be the vector space of solution of differential equation $\frac{d^{3} y}{d x^{3}}-6 \frac{d^{2} y}{d x^{2}}-11 \frac{d y}{d x}+6 y=0$ Prove that $\mathrm{V} \cong \mathbb{R}^{3}$

Solution:

$$
\begin{aligned}
& \mathrm{T}: \mathrm{V} \rightarrow \mathbb{R}^{2} \text { defined as } \\
& \mathrm{T}(\mathrm{v})=\left(c_{1}, c_{2}, c_{3}\right) \text { where } \mathrm{v}=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}
\end{aligned}
$$

First, we prove that V is vector space

Let $v_{1}, v_{2} \in \mathrm{~V} \quad, \alpha, \beta \in \mathbb{F}$

$$
v_{1}=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}
$$

$$
v_{2}=c_{1}^{\prime} e^{x}+c_{2}^{\prime} e^{2 x}+c_{3}^{\prime} e^{3 x} \quad \text { where } c_{1}, c_{1}^{\prime}, c_{2}, c_{2}^{\prime}, c_{3}, c_{3}^{\prime} \in \mathbb{R}
$$

$$
\begin{align*}
\alpha\left(v_{1}+v_{2}\right) & =\alpha\left(c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}+c_{1}^{\prime} e^{x}+c_{2}^{\prime} e^{2 x}+c_{3}^{\prime} e^{3 x}\right) \tag{i}\\
& =\alpha c_{1} e^{x}+\alpha c_{2} e^{2 x}+\alpha c_{3} e^{3 x}+\alpha c_{1}^{\prime} e^{x}+\alpha c_{2}^{\prime} e^{2 x}+\alpha c_{3}^{\prime} e^{3 x} \\
& =\alpha\left(c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}\right)+\alpha\left(c_{1}^{\prime} e^{x}+c_{2}^{\prime} e^{2 x}+c_{3}^{\prime} e^{3 x}\right) \\
& =\alpha\left(v_{1}\right)+\alpha\left(v_{2}\right)
\end{align*}
$$

(ii) Let $\alpha, \beta \in \mathbb{F} \quad, v_{1}=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x} \in \mathrm{~V}$

$$
(\alpha+\beta) v_{1}=(\alpha+\beta)\left(c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}\right)
$$

$$
=\alpha c_{1} e^{x}+\alpha c_{2} e^{2 x}+\alpha c_{3} e^{3 x}+\beta c_{1} e^{x}+\beta c_{2} e^{2 x}+\beta c_{3} e^{3 x}
$$

(iv)

$$
\begin{aligned}
1 . v_{1}[& =\alpha \beta\left(v_{1}\right) \\
& =1 \cdot\left(c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}\right) \\
& =\left(c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}\right) \\
& =v_{1}
\end{aligned}
$$

Hence V is vector space.

* Now T is well-define

$$
\begin{aligned}
& \text { Let } \quad v_{1}=v_{2} \\
& c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}=c_{1}^{\prime} e^{x}+c_{2}^{\prime} e^{2 x}+c_{3}^{\prime} e^{3 x} \\
& \left(c_{1}-c_{1}^{\prime}\right) e^{x}+\left(c_{2}-c_{2}^{\prime}\right) e^{2 x}+\left(c_{3}-c_{3}^{\prime}\right) e^{3 x} \in \operatorname{Ker~T} \\
& \Rightarrow \mathrm{~T}\left[\left(c_{1}-c_{1}^{\prime}\right) e^{x}+\left(c_{2}-c_{2}^{\prime}\right) e^{2 x}+\left(c_{3}-c_{3}^{\prime}\right) e^{3 x}\right]=0 \\
& \Rightarrow \quad\left(c_{1}-c_{1}^{\prime}, c_{2}-c_{2}^{\prime}\right),\left(c_{3}-c_{3}^{\prime}\right)=(0,0) \\
& \Rightarrow \quad c_{1}-c_{1}^{\prime}=0, c_{2}-c_{2}^{\prime}=0, c_{3}-c_{3}^{\prime}=0 \\
& \Rightarrow \quad c_{1}=c_{1}^{\prime}, c_{2}=c_{2}^{\prime}, c_{3}=c_{3}^{\prime} \\
& \Rightarrow \quad \mathrm{T}\left(v_{1}\right)=\mathrm{T}\left(v_{2}\right)
\end{aligned}
$$

* Now T is one-one

$$
\begin{aligned}
& \text { Let } \mathrm{T}\left(v_{1}\right)=\mathrm{T}\left(v_{2}\right) \\
& \Rightarrow \quad c_{1}=c_{1}^{\prime}, c_{2}=c_{2}^{\prime}, c_{3}=c_{3}^{\prime} \\
& \Rightarrow \quad c_{1}-c_{1}^{\prime}=0, c_{2}-c_{2}^{\prime}=0, c_{3}-c_{3}^{\prime}=0 \\
& \Rightarrow \quad\left(c_{1}-c_{1}^{\prime}, c_{2}-c_{2}^{\prime}\right),\left(c_{3}-c_{3}^{\prime}\right)=(0,0) \\
& \Rightarrow \mathrm{T}\left[\left(c_{1}-c_{1}^{\prime}\right) e^{x}+\left(c_{2}-c_{2}^{\prime}\right) e^{2 x}+\left(c_{3}-c_{3}^{\prime}\right) e^{3 x}\right]=0 \\
& \left(c_{1}-c_{1}^{\prime}\right) e^{x}+\left(c_{2}-c_{2}^{\prime}\right) e^{2 x}+\left(c_{3}-c_{3}^{\prime}\right) e^{3 x} \in \mathrm{Ker} \\
& c_{1} e^{x}-c_{1}^{\prime} e^{x}+c_{2} e^{2 x}-c_{2}^{\prime} e^{2 x}+c_{3} e^{3 x}-c_{3}^{\prime} e^{3 x}=0 \\
& c_{1} e^{x}+c_{2} e^{2 x}+c_{3}^{3 x} e^{3} e_{1}^{x} e^{\prime} c_{2}^{2 x} e^{2 x} c_{3}^{\prime} e^{3 x}
\end{aligned}
$$

* Now T is Linear

Let $\alpha, \beta \in \mathbb{F}$ and $v_{1}, v_{2} \in \mathrm{~V}$
$\mathrm{~T}\left(\alpha v_{1}+\beta v_{2}\right)=\mathrm{T}\left[\alpha\left(c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}\right)+\beta\left(c_{1}^{\prime} e^{x}+c_{2}^{\prime} e^{2 x}+c_{3}^{\prime} e^{3 x}\right)\right]$

$$
\begin{aligned}
\sqrt{ } & =\mathrm{O}\left[\alpha c_{1}^{\prime} e^{x}+\alpha c_{2} e^{2 x}+\alpha c_{3} e^{3 x}+\beta c_{1}^{\prime} e^{x}+\beta c_{2}^{\prime} e^{2 x}+\beta c_{3}^{\prime} e^{3 x}\right] \\
& \left.\left.=\mathrm{T}\left[\left(\alpha c_{1}+\beta c_{1}^{\prime}\right) e^{x}\right]\left(\alpha c_{2}+\beta c_{2}^{\prime}\right) e^{2 x}\right]+\left(\alpha c_{3}+\beta c_{3}^{\prime}\right) e^{3 x}\right] \\
& =\left(\alpha c_{1}+\beta c_{1}^{\prime}\right),\left(\alpha c_{2}+\beta c_{2}^{\prime}\right),\left(\alpha c_{3}+\beta c_{3}^{\prime}\right) \\
& =\left(\alpha c_{1}, \alpha c_{2}, \alpha c_{3}\right)+\left(\beta c_{1}^{\prime}, \beta c_{2}^{\prime}, \beta c_{3}^{\prime}\right) \\
& =\alpha\left(c_{1}, c_{2}, c_{3}\right)+\beta\left(c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}\right) \\
& =\alpha \mathrm{T}\left(v_{1}\right)+\beta \mathrm{T}\left(v_{2}\right)
\end{aligned}
$$

T is Linear
Now T is onto
Let $\left(c_{1}, c_{2}, c_{3}\right) \in \mathbb{R}^{2}$ s.t $c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x} \in \mathrm{~V}$
s.t $\quad \mathrm{T}\left(c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}\right)=\left(c_{1}, c_{2}, c_{3}\right)$
$\Rightarrow \mathrm{T}$ is onto
Hence $V \cong \mathbb{R}^{3}$

Assignment:

If X and Y be two subspaces of vector space V over the field \mathbb{F}. Then prove that $\quad \frac{X+Y}{X} \cong \frac{Y}{X \cap Y}$

Solution:

> Define a mapping

$$
\mathrm{T}: \mathrm{Y} \rightarrow \frac{X+Y}{X}
$$

s.t $T(y)=y+X \quad, y \in Y$
(i) T is well-define

(ii). T is Linear

Let $y_{1}, y_{2} \in Y$ and $\alpha, \beta \in \mathbb{F}$-s.t

$$
\mathrm{T}\left(\alpha y_{1}+\beta y_{2}\right)=\left(\alpha y_{1}+\beta y_{2}\right)+\mathrm{X}
$$

$\because B y(1)$

$$
=\alpha \mathrm{T}\left(y_{1}\right)+\beta \mathrm{T}\left(y_{2}\right)
$$

$\Rightarrow \mathrm{T}$ is linear
(iii) T is onto

$$
\begin{aligned}
& \text { Let } \mathrm{y}+\mathrm{X} \in \frac{X+Y}{X} \text { s.t } \mathrm{y} \in \mathrm{Y} \\
& \text { s.t } \mathrm{T}(\mathrm{y})=\mathrm{y}+\mathrm{X} \\
& \Rightarrow \mathrm{~T} \text { is onto } \\
& \text { By Fundamental Theorem } \\
& \frac{X+Y}{X}=\frac{Y}{\operatorname{Ker} T} \\
& \text { We claim Ker } \mathrm{T}=\mathrm{X} \cap \mathrm{Y}
\end{aligned}
$$

Let $\mathrm{a} \in$ Ker T

$$
\begin{aligned}
& \Rightarrow T(a)=X \\
& a+X=X \\
& a \in X, \text { also } a \in \operatorname{Ker} T \subseteq Y \\
& a \in X, a \in Y \\
& a \in X \cap Y
\end{aligned}
$$

$$
\begin{equation*}
\operatorname{Ker} T \subseteq X \cap Y \tag{1}
\end{equation*}
$$

Conversely,

Lecture \# 6

Linear Combination:

Let V be a vector space over the field \mathbb{F}.
Let $v_{1}, v_{2}, \ldots . . v_{n} \in \mathrm{~V}$
And

$$
\alpha_{1}, \alpha_{2}, \ldots . . \alpha_{n} \in \mathbb{F}
$$

Then the element

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots . .+\alpha_{n} v_{n}
$$

is called a linear combination of $v_{1}, v_{2}, \ldots v_{n}$ in V
It can be written as

$$
\mathrm{x}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots .+\alpha_{n} v_{n}
$$

$\mathrm{x}=\sum_{i=1}^{n} \alpha_{i} v_{i}$
Example:
Write a vector $\overline{\mathrm{v}}=(1,-2,5)$ in the Linear combination (L.C) of $e_{1}=(1,1,1)$, $e_{2}=(1,2,3)$ and $e_{3}=(3,0,-2)$
Solution:
$\mathrm{v}=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}$
$(1,-2,5)=\alpha_{1}(1,1,1)+\alpha_{2}(1,2,3)+\alpha_{3}(3,0,-2)$
$(1,-2,5)=\left(\alpha_{1}+\alpha_{2}+3 \alpha_{3}, \alpha_{1}+2 \alpha_{2}+0 \alpha_{3}, \alpha_{1}+3 \alpha_{2}-2 \alpha_{3}\right)$
$\alpha_{1}+\alpha_{2}+3 \alpha_{3}=1, \alpha_{1}+2 \alpha_{2}+0 \alpha_{3}=-2, \alpha_{1}+3 \alpha_{2}-2 \alpha_{3}=5$
In matrix form

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc}
1 & 1 & 3 \\
1 & 2 & 0 \\
1 & 3 & -2
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
5
\end{array}\right]} \\
\mathrm{A} \quad \mathrm{X}
\end{array} \mathrm{~B} \quad \begin{array}{ccc:c}
1 & 1 & 3 & 1 \\
1 & 2 & 0 & -2 \\
1 & 3 & -2 & 5
\end{array}\right] .
$$

$$
\begin{aligned}
& A_{B}=\left[\begin{array}{ccc:c}
1 & 1 & 3 & 1 \\
0 & 1 & -3 & -3 \\
0 & 2 & -5 & 4
\end{array}\right] \sim R_{2}-R_{1} \quad, \quad \sim R_{3}-R_{1} \\
& A_{B}=\left[\begin{array}{ccc:c}
1 & 0 & 6 & 4 \\
0 & 1 & -3 & -3 \\
0 & 2 & 1 & 10
\end{array}\right] \sim R_{1}-R_{1} \quad, \quad \sim R_{3}-2 R_{2} \\
& A_{B}=\left[\begin{array}{ccc:c}
1 & 0 & 0 & -56 \\
0 & 1 & 0 & 27 \\
0 & 0 & 1 & 10
\end{array}\right] \sim R_{1}-6 R_{3} \quad, \quad \sim R_{2}+3 R_{3} \\
& \Rightarrow \quad \alpha_{1}=-56, \alpha_{2}=27, \alpha_{3}=10
\end{aligned}
$$

Exercise:

Write $v=(1,-2, K)$ in the L.C off $e_{1} \neq(0,1,-2), e_{2}=(-2,-1,-5)$ also find the value of ' K '.

Solution:

$$
\begin{aligned}
& \mathrm{v}^{2}=\alpha_{1} e_{1}+\alpha_{2} e_{2} \\
& =\alpha_{1}(0,1,-2)+\alpha_{2}(-2,-1,-5) \\
& (1,-2, \mathrm{~K})=\left(0 \alpha_{1}+(-2) \alpha_{2}, \alpha_{1}-\alpha_{2},-2 \alpha_{1}-5 \alpha_{2}\right) \\
& \left.0 \alpha_{1}+(-2) \alpha_{2}=1\right], \alpha_{1} \cap \alpha_{2}=22,-2 \alpha_{1}-5 \alpha_{2}=(\mathrm{K} \\
& \Rightarrow \alpha_{2}=-\frac{1}{2}
\end{aligned}
$$

And $\quad \alpha_{1}-\alpha_{2}=-2$

$$
\begin{array}{ll}
& \alpha_{1}-\left(-\frac{1}{2}\right)=-2 \\
\Rightarrow & \alpha_{1}=-2-\frac{1}{2} \\
\Rightarrow & \alpha_{1}=-\frac{5}{2}
\end{array}
$$

Now $\quad-2 \alpha_{1}-5 \alpha_{2}=\mathrm{K}$

$$
\begin{array}{ll}
& -2\left(-\frac{5}{2}\right)-5\left(-\frac{1}{2}\right)=\mathrm{K} \\
\Rightarrow & \mathrm{~K}=5+\frac{5}{2}=\frac{10+5}{2} \\
\Rightarrow & \mathrm{~K}=\frac{15}{2}
\end{array}
$$

Linearly Dependent:

Let V be a vector space over the field \mathbb{F}. Let $v_{1}, v_{2}, \ldots . . v_{n} \in \mathrm{~V}$ and $\alpha_{1}, \alpha_{2}, \ldots . \alpha_{n} \in \mathbb{F}$ then $v_{1}, v_{2}, \ldots . v_{n}$ are said to be linearly dependent if

$$
\sum_{i=1}^{n} \alpha_{i} v_{i}=0 \quad \text { for some } \alpha_{i} \neq 0
$$

Otherwise they are called Linearly independent.

Linear Span:

Let $\phi \neq \mathrm{S}$ is a subset of vector space V over the field \mathbb{F} then S is called Linear span if every element of S is a linear combination of finite number of elements of V and it is denoted by
$\mathrm{L}(\mathrm{S})=\left\langle\mathrm{S} \gg\left\{\overline{\mathrm{x}}: \mathrm{X}=\sum_{i=1}^{n} \alpha_{i} \bar{v}_{i}, v_{i} \in \mathrm{~V}\right\}\right.$
And this set is also known as generating set.

Exercise:

Prove that $\mathrm{L}(\mathrm{S})$ is a subspace of V .
Solution:

Now $\alpha \mathrm{x}+\beta \mathrm{y}=\alpha \sum_{i=1}^{n} \alpha_{i} v_{i}+\beta \sum_{i=1}^{n} \beta_{i} v_{i}$

$$
\begin{array}{ll}
=\sum_{i=1}^{n}\left(\alpha \alpha_{i}\right) v_{i}+\sum_{i=1}^{n}\left(\beta \beta_{i}\right) v_{i} & \because \mathrm{~T}(\mathrm{x})+\mathrm{T}(\mathrm{y})=\mathrm{T}(\mathrm{x}+\mathrm{y}) \\
=\sum_{i=1}^{n}\left(\alpha \alpha_{i}+\beta \beta_{i}\right) v_{i} & \\
=\sum_{i=1}^{n} \gamma_{i} v_{i} & \because \gamma_{i}=\alpha \alpha_{i}+\beta \beta_{i}, 1 \leq \mathrm{i} \leq \mathrm{n}
\end{array}
$$

$\Rightarrow \quad \alpha \mathrm{x}+\beta \mathrm{y} \in \mathrm{L}(\mathrm{S})$
Hence $L(S)$ is subspace of V.

Theorem:

$\mathrm{L}(\mathrm{S})$ is a smallest subspace of V .
Proof:
First, we prove $\mathrm{L}(\mathrm{S}) \neq \phi$
Let $s_{1} \in \mathrm{~S} \subseteq \mathrm{~V}$

$$
\begin{array}{rlr}
& s_{1}=1 . s_{1} & 1 \in \mathbb{F} \\
& s_{1} \in \mathrm{~L}(\mathrm{~S}) & \\
\Rightarrow \quad & \mathrm{S} \subseteq \mathrm{~L}(\mathrm{~S}) & \\
\Rightarrow \quad & \mathrm{L}(\mathrm{~S}) \neq \phi &
\end{array}
$$

Now we prove $\mathrm{L}(\mathrm{S}) \leq \mathrm{V}$
Let $\mathrm{x}, \mathrm{y} \in \mathrm{L}(\mathrm{S}), \quad \alpha, \beta \in \mathbb{F}$
Then $\mathrm{x}=\sum_{i=1}^{n} \alpha_{i} v_{i}, \mathrm{y}=\sum_{i=1}^{n} \beta_{i} v_{i}$
$\alpha \mathrm{x}+\beta \mathrm{y}=\alpha \sum_{i=1}^{n} \alpha_{i} v_{i}+\beta \sum_{i=1}^{n} \beta_{i} v_{i}$

Now we prove $L(S)$ is smallest subspace of V
Let $\mathrm{x} \in \mathrm{L}(\mathrm{S})$
Then $\mathrm{x}=\sum_{i=1}^{n} \alpha_{i} v_{i}$
Let $v_{i} \in \mathrm{~S}, \quad \alpha \in \mathbb{F}$
$v_{i} \in \mathrm{~S} \subseteq \mathrm{~W} \quad \forall \mathrm{i}$ and W is subspace.
$\Rightarrow \quad \sum_{i=1}^{n} \alpha_{i} v_{i} \quad \in \mathrm{~W}$
$\Rightarrow \quad \mathrm{x} \in \mathrm{W}$
$\Rightarrow \quad \mathrm{L}(\mathrm{S}) \subseteq \mathrm{W}$
$\Rightarrow \mathrm{L}(\mathrm{S})$ is smallest subspace of V .

Remark:

Since $\mathrm{L}(\mathrm{S})$ is a subspace and $\mathrm{L}(\mathrm{T})$ is subspace then

$$
\mathrm{L}(\mathrm{~S}) \leq \mathrm{L}(\mathrm{~T})
$$

Lemma:

Let $\phi \neq \mathrm{S} \subseteq \mathrm{V}(\mathbb{F})$ then the following axioms are true.
(i) If $\mathrm{S} \subset \mathrm{T}$

$$
\Rightarrow \mathrm{L}(\mathrm{~S}) \subset \mathrm{L}(\mathrm{~T})
$$

(ii) $\mathrm{L}(\mathrm{S} \cup \mathrm{T})=\mathrm{L}(\mathrm{S})+\mathrm{L}(\mathrm{T})$
(iii) $\mathrm{L}(\mathrm{L}(\mathrm{S}))=\mathrm{L}(\mathrm{S})$

Proof: (i)
Let $\mathrm{S}=\left\{v_{1}, v_{2}, \ldots . v_{n}\right\}$ and $\mathrm{T}=\left\{v_{1}, v_{2}, \ldots . v_{n}, v_{n+1}, \ldots . . v_{m}\right\} ; \mathrm{m}>\mathrm{n}$
Now let $\mathrm{x} \in \mathrm{L}(\mathrm{S})$

$==\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots . .+\alpha_{n} v_{n}+0 v_{n+1}+0 v_{n+2}+\ldots \ldots+0 v_{m}$

$$
=\sum_{i=1}^{n} \alpha_{i} v_{i}=\mathrm{L}(\mathrm{~T}) \bigcirc \forall \alpha_{i}=0 \text { if } \mathrm{i}>\mathrm{n}
$$

$$
\Rightarrow \quad \mathrm{x} \in \mathrm{~L}(\mathrm{~T})
$$

Proof: (ii)

If $\quad \mathrm{S} \subset \mathrm{T} \Rightarrow \mathrm{L}(\mathrm{S}) \leq \mathrm{L}(\mathrm{T})$
$\because \mathrm{S} \subseteq \mathrm{S} \cup \mathrm{T}$ where S and T contain distinct element
$\Rightarrow \mathrm{L}(\mathrm{S}) \subseteq \mathrm{L}(\mathrm{S} \cup \mathrm{T}) \quad \because$ by proof (i)
Also $\quad T \subseteq S \cup T$
$\Rightarrow \mathrm{L}(\mathrm{T}) \subseteq \mathrm{L}(\mathrm{S} \cup \mathrm{T})$
$\Rightarrow \mathrm{L}(\mathrm{S})+\mathrm{L}(\mathrm{T}) \subseteq \mathrm{L}(\mathrm{S} \cup \mathrm{T})$
$\because \mathrm{S} \subseteq \mathrm{L}(\mathrm{S}) \subseteq \mathrm{L}(\mathrm{S})+\mathrm{L}(\mathrm{T})$
And

$$
\begin{aligned}
& \mathrm{T} \subseteq \mathrm{~L}(\mathrm{~T}) \subseteq \mathrm{L}(\mathrm{~S})+\mathrm{L}(\mathrm{~T}) \\
& \Rightarrow \mathrm{S} \cup \mathrm{~T} \subseteq \mathrm{~L}(\mathrm{~S})+\mathrm{L}(\mathrm{~T})
\end{aligned}
$$

Also

$$
\begin{aligned}
& \mathrm{S} \cup \mathrm{~T} \subseteq \mathrm{~L}(\mathrm{~S} \cup \mathrm{~T}) \\
& \mathrm{L}(\mathrm{~S} \cup \mathrm{~T}) \subseteq \mathrm{L}(\mathrm{~S})+\mathrm{L}(\mathrm{~T}) \ldots .(2
\end{aligned}
$$

From (1) and (2)

$$
\mathrm{L}(\mathrm{~S} \cup \mathrm{~T})=\mathrm{L}(\mathrm{~S})+\mathrm{L}(\mathrm{~T})
$$

Proof: (iii)

$$
\begin{array}{ll}
& \mathrm{S} \subseteq \mathrm{~L}(\mathrm{~S}) \\
\Rightarrow \quad & \mathrm{L}(\mathrm{~S}) \subseteq \mathrm{L}(\mathrm{~L}(\mathrm{~S})) \tag{1}
\end{array}
$$

Let $\mathrm{x} \in \mathrm{L}(\mathrm{L}(\mathrm{S}))$

$$
\text { s.t } \quad \begin{aligned}
\mathrm{x} & =t_{i} \sum_{i=1}^{n} \alpha_{i} v_{i} \\
& =\sum_{i=1}^{n} \alpha_{i} t_{i} v_{i}
\end{aligned} \quad \forall t_{i}=0 \text { if } \mathrm{i}>\mathrm{n}
$$

From (1) and (2)

$$
\mathrm{L}(\overline{\mathrm{~L}}(\mathrm{~S}))=\mathrm{L}(\mathrm{~S})
$$

Merging man \& maths

Lecture \# 7

Theorem:

Let V be a vector space over the field \mathbb{F}. Let $v_{1}, v_{2} \in \mathrm{~V}$ are said to be linearly independent iff $v_{1}+v_{2}$ and $v_{1}-v_{2}$ are linearly independent.

Proof:
Let v_{1}, v_{2} are linearly independent.
Now let $\alpha, \beta \in \mathbb{F}$ Then

$$
\begin{array}{r}
\alpha\left(v_{1}+v_{2}\right)+\beta\left(v_{1}-v_{2}\right)=0 \\
\Rightarrow \alpha v_{1}+\alpha v_{2}+\beta v_{1}-\beta v_{2}=0 \\
A \Rightarrow(\alpha+\beta) v_{1}+(\alpha-\beta) v_{2}=0
\end{array}
$$

Since v_{1} and v_{2} are linearly independent then

$\alpha+\beta=0$
$\alpha-\beta=0$ ——

Put $\alpha=\beta$ in (1) $\quad \Rightarrow \quad{ }^{\circ} \beta+\beta=0$

$\Rightarrow \quad v_{1}+v_{2}$ and $v_{1}-v_{2}$ are linearly independent
Conversely,
Let $v_{1}+v_{2}$ and $v_{1}-v_{2}$ are L.I. Now let $\beta v_{1}+\gamma v_{2}=0 \quad$ where $\beta, \gamma \in \mathbb{F}$
Let $\beta=\beta_{1}+\beta_{2} \quad, \gamma=\beta_{1}-\beta_{2}$

$$
\begin{aligned}
& \Rightarrow \quad\left(\beta_{1}+\beta_{2}\right) v_{1}+\left(\beta_{1}-\beta_{2}\right) v_{2}=0 \\
& \Rightarrow \quad \beta_{1} v_{1}+\beta_{2} v_{1}+\beta_{1} v_{1}-\beta_{2} v_{2}=0 \\
& \Rightarrow\left(v_{1}+v_{2}\right) \beta_{1}+\left(v_{1}-v_{2}\right) \beta_{2}=0
\end{aligned}
$$

Since $v_{1}+v_{2}$ and $v_{1}-v_{2}$ are linearly independent then $\beta_{1}=\beta_{2}=0$
$\Rightarrow \beta=0 \quad$ and $\quad \gamma=0$
$\Rightarrow v_{1}$ and v_{2} are L.I

Theorem:

The vectors $v_{1}, v_{2}, v_{3} \in \mathrm{~V}$ are said to be linearly independent $\operatorname{iff} v_{1}+v_{2}$ and $v_{2}+v_{3}$ and $v_{3}+v_{1}$ are linearly independent.

Proof:
Let v_{1}, v_{2}, v_{3} are L.I
Let $\alpha, \beta, \gamma \in \mathbb{F}$ Now

$$
\begin{aligned}
& \alpha\left(v_{1}+v_{2}\right)+\beta\left(v_{2}+v_{3}\right)+\gamma\left(v_{3}+v_{1}\right)=0 \\
& \Rightarrow \alpha v_{1}+\alpha v_{2}+\beta v_{2}+\beta v_{3}+\gamma v_{3}+\gamma v_{1}=0 \\
& \Rightarrow \alpha v_{1}+\gamma v_{1}+\alpha v_{2}+\beta v_{2}+\beta v_{3}+\gamma v_{3}=0 \\
& \Rightarrow(\alpha+\gamma) v_{1}+(\alpha+\beta) v_{2}+(\beta+\gamma) v_{3}=0 \\
& \text { Since } v_{1}, v_{2}, v_{3} \text { are L.I then } \\
& \begin{array}{l}
\Rightarrow \alpha+\gamma=0 \text {..(1) }-\alpha+\beta=0 \ldots . \text {.(2) }-, \beta+\gamma=0 \quad \text { (3) } \\
\Rightarrow \alpha=-\gamma \text { put in (2) }
\end{array} \\
& \Rightarrow-\gamma+\beta=0 \Rightarrow \beta=\gamma \text { put in (3) } \\
& \Rightarrow \beta=0, \gamma=0 \\
& \Rightarrow \alpha=\beta=\gamma=0 \\
& \Rightarrow v_{1}+v_{2} \text { and } v_{2}+v_{3} \text { and } v_{3}+v_{1} \text { are L.I }
\end{aligned}
$$

Conversely, let $v_{1}+v_{2}$ and $v_{2}+v_{3}$ and $v_{3}+v_{1}$ are L.I

$$
\begin{aligned}
& \text { Now } \alpha=\beta_{1}+\gamma_{1}, \beta=\alpha_{1}+\gamma_{1}, \gamma=\alpha_{1}+\beta_{1} \\
& \Rightarrow\left(\beta_{1}+\gamma_{1}\right) v_{1}+\left(\alpha_{1}+\gamma_{1}\right) v_{2}+\left(\alpha_{1}+\beta_{1}\right) v_{3}=0 \\
& \Rightarrow \beta_{1} v_{1}+\gamma_{1} v_{1}+\alpha_{1} v_{2}+\gamma_{1} v_{2}+\alpha_{1} v_{3}+\beta_{1} v_{3}=0 \\
& \Rightarrow \beta_{1}\left(v_{1}+v_{3}\right)+\left(v_{1}+v_{2}\right) \gamma_{1}+\left(v_{2}+v_{3}\right) \alpha_{1}=0
\end{aligned}
$$

Since $v_{1}+v_{2}$ and $v_{2}+v_{3}$ and $v_{3}+v_{1}$ are linearly independent
$\Rightarrow \alpha_{1}=0, \beta_{1}=0, \gamma_{1}=0 \quad \Rightarrow \alpha=0, \beta=0, \gamma=0$
$\Rightarrow \quad v_{1}, v_{2}$ and v_{3} are L.I.

Example:

Let $\mathrm{A}=\left(\begin{array}{ccc}1 & 2 & -3 \\ 6 & -5 & 4\end{array}\right), \mathrm{B}=\left(\begin{array}{ccc}6 & -5 & 4 \\ 1 & 2 & -3\end{array}\right)$
Prove that A and B are L.I
Solution:

$$
\begin{aligned}
& \text { Let } \alpha, \beta \in \mathbb{F} \text { then } \\
& \alpha \mathrm{A}+\beta \mathrm{B}=0 \\
& \alpha\left(\begin{array}{ccc}
1 & 2 & -3 \\
6 & -5 & 4
\end{array}\right)+\beta\left(\begin{array}{ccc}
6 & -5 & 4 \\
1 & 2 & -3
\end{array}\right)=0
\end{aligned}
$$

$$
\begin{align*}
& \begin{array}{r}
\alpha+6 \beta=0 \\
2 \alpha-5 \beta=0
\end{array} \tag{1}
\end{align*}
$$

(1) $\Rightarrow \alpha=-6 \beta$ put in (2)

$$
\begin{array}{lll}
2(-6 \beta)-5 \beta=0 & \Rightarrow & -12 \beta-5 \beta=0 \\
\Rightarrow-17 \beta=0 & \Rightarrow & \beta=0 \\
\Rightarrow \alpha=0 & &
\end{array}
$$

Hence A and B are L.I

Example:

Let V be a vector space of polynomial over the field $\mathbb{F}\left(R^{3}\{\mathrm{x}\}\right)$ and let $\mathrm{u}, \mathrm{v} \in \mathrm{V}$ let

$$
\begin{aligned}
& u=2-5 t+6 t^{2}-t^{3} \\
& v=3+2 t-4 t^{2}+5 t^{3} \text { check either } u, v \text { are L.I or not }
\end{aligned}
$$

Solution:
Let $\alpha, \beta \in \mathbb{F}$ then u and v are L.I if $\alpha u+\beta v=0$

$$
\begin{aligned}
& \alpha\left(2-5 t+6 t^{2}-t^{3}\right)+\beta\left(3+2 t-4 t^{2}+5 t^{3}\right)=0 \\
& 2 \alpha-5 \alpha t+6 \alpha t^{2}-\alpha t^{3}+3 \beta+2 \beta t-4 \beta t^{2}-5 \beta t^{3}=0
\end{aligned}
$$

$$
(2 \alpha+3 \beta)+(-5 \alpha+2 \beta) t+(6 \alpha-4 \beta) t^{2}+(-\alpha+5 \beta) t^{3}=0
$$

t is L.I then
$2 \alpha+3 \beta=0$
..(1),$-5 \alpha+2 \beta=0$
...(2), $6 \alpha-4 \mathrm{~B}=0$
...(3),$-\alpha+5 \beta=0$
(4) $\Rightarrow \alpha=5 \beta$ put in (1)

$$
\begin{aligned}
& 2(5 \beta)+3 \beta=0 \quad \Rightarrow \\
& \Rightarrow \quad 10 \beta+3 \beta=0 \\
& \Rightarrow \quad \alpha \beta=0 \\
& \Rightarrow \quad \text { u and } v \text { are L.I }
\end{aligned}
$$

Lemma:

The non-zero vectors are L.D iff one of them say v_{i} is the L. C of its preceding one's. (L.CLFLا, $\frac{b^{6}}{\xi} \simeq v_{i}$)

Proof:
Let v_{i} be the L.C of its preceding vectors i.e.

As $\alpha_{i}=-1 \neq 0$
\Rightarrow vectors are L.D
Conversely,
Let the vectors are L.D then \exists
$\alpha_{1}, \alpha_{2}, \ldots \ldots \ldots \ldots . \alpha_{m} \in \mathbb{F}$ of which at least one $\alpha_{i} \neq 0$ s.t

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots \ldots+\alpha_{i} v_{i}+\alpha_{i+1} v_{i+1}+\ldots \ldots+\alpha_{m} v_{m}=0 \quad \because \mathrm{i}<\mathrm{m}
$$

Take $\alpha_{i+1}=\alpha_{i+2}=$ \qquad $.=\alpha_{m}=0$

$$
\begin{aligned}
& \Rightarrow \quad \alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots .+\alpha_{i} v_{i}=0 \\
& \Rightarrow \quad-\alpha_{i} v_{i}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots .+\alpha_{i-1} v_{i-1} \\
& \Rightarrow \quad v_{i}=\left(-\frac{\alpha_{1}}{\alpha_{i}}\right) v_{1}+\left(-\frac{\alpha_{2}}{\alpha_{i}}\right) v_{2}+\ldots \ldots \ldots \ldots+\left(-\frac{\alpha_{i-1}}{\alpha_{i}}\right) v_{i-1}
\end{aligned}
$$

$\Rightarrow v_{i}$ is the L.C of its preceding one's.

Theorem:

The vectors are L.I if each element in their Linear span has unique representation.

Proof:

$$
\text { Let } \mathrm{S}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots \ldots \ldots \ldots \mathrm{v}_{n}\right\} \subseteq \mathrm{V}(\mathbb{F})
$$

Let $\mathrm{L}(\mathrm{S})=\left\{\sum_{i=1}^{n} \alpha_{i} v_{i}: \alpha_{i} \in \mathbb{F}\right\}$
Let $\mathrm{v} \in \mathrm{S}$
$\Rightarrow \mathrm{v}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots . .+\alpha_{n} v_{n}, \quad \forall \alpha_{i} \in \mathbb{F}, \quad 1 \leq \mathrm{i} \leq \mathrm{n}$
Let $\mathrm{v}=\beta_{1} v_{1}+\beta_{2} v_{2}+\beta_{3} v_{3 \ldots} \ldots+\beta_{n} v_{n}, \quad \forall \beta_{i} \in \mathbb{F}, \quad 1 \leq \mathrm{i} \leq \mathrm{n}$ be another representation of v
$\Rightarrow \quad \alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots .+\alpha_{n} v_{n}=\beta_{1} v_{1}+\beta_{2} v_{2}+\beta_{3} v_{3} \ldots .+\beta_{n} v_{n}$
$\Rightarrow \quad\left(\alpha_{1}-\beta_{1}\right) v_{1}+\left(\alpha_{2}-\beta_{2}\right) v_{2}+\ldots \ldots \ldots \ldots+\left(\alpha_{n}-\bar{\beta}_{n}\right) v_{n}=0$
Since $v_{1}, v_{2}, \ldots \ldots \ldots \ldots \ldots v_{n}$ are Linearly independent then

$\Rightarrow \mathrm{v}$ has unique representation

Theorem:

Let V be a vector space over the field \mathbb{F}. Let $\mathrm{S} \subseteq \mathrm{V}$

$$
\mathrm{S}=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots \ldots v_{n}\right\} \text { then }
$$

(i) S is L.I if any of its subset is L.I
(ii) S is L.D if any of its superset is L.D

Proof (i). :
Let S is L.I
Let

$$
\mathrm{T}=\left\{v_{1}, v_{2}, .\right.
$$

$$
\left.v_{n}\right\} \subseteq \mathrm{V}
$$

where $\mathrm{i}<\mathrm{n}$
Let $\alpha_{i} \in \mathbb{F}$
Let $\quad \alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots . .+\alpha_{i} v_{i}=0$

$$
\Rightarrow \quad \alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots . .+\alpha_{i} v_{i}+\alpha_{i+1} v_{i+1}+\ldots \ldots \ldots .+\alpha_{n} v_{n}=0
$$

$42 \mid \mathrm{Page}$
Collected By: Muhammad Saleem

Since $v_{1}, v_{2}, \ldots \ldots \ldots \ldots \ldots v_{n}$ are L.I
Take $\alpha_{i+1}+\alpha_{i+2}+\alpha_{i+3}+\ldots \ldots \ldots . . \alpha_{n}=0$

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots .+\alpha_{i} v_{i}+0 \mathrm{v}_{i+1}+0 \mathrm{v}_{i+2}+0 \mathrm{v}_{i+3}+\ldots \ldots \ldots . .0 \mathrm{v}_{n}=0
$$

Since $v_{1}, v_{2}, \ldots \ldots \ldots \ldots v_{n}$ are L.I

$$
\begin{aligned}
& \Rightarrow \quad \alpha_{1}=\alpha_{2}=\ldots \ldots \ldots=\alpha_{i}=0 \\
& \Rightarrow \quad \mathrm{~T} \text { is L.I }
\end{aligned}
$$

Proof (ii) :

Let S is L.D

Lecture \# 8

Basis:

Let V be a vector space over the field \mathbb{F}. Let S be non-empty subset of V then S is called basis for V if
(i) S is linearly independent
(ii) $\mathrm{V}=\mathrm{L}(\mathrm{S})$

Example:

Let $S=\{(1,0),(0,1)\} \subseteq \mathbb{R}^{2}(\mathbb{R})$ then prove that S is basis of \mathbb{R}^{2}
Solution:

Let $S=\{(1,0,0)(0,1,0),(0,0,1)\} \subseteq \mathbb{R}^{3}(\mathbb{R})$ then prove that S is basis of \mathbb{R}^{3}

$$
\begin{aligned}
& \text { Let } u_{1}=(1,0,0) \quad, \quad u_{2}=(0,1,0) \quad, u_{3}=(0,0,1) \\
& \text { and } \alpha=1 \quad \beta=2, \quad \gamma=3 \quad \text { then } \\
& \begin{array}{r}
\alpha u_{1}+\beta u_{2}+\gamma u_{3}=1(1,0,0)+2(0,1,0)+3(0,0,1) \\
= \\
(1,0,0)+(0,2,0)+(0,0,3) \\
= \\
(1,2,3) \in \mathbb{R}^{3}
\end{array}
\end{aligned}
$$

Hence Sis Basis of \mathbb{R}^{3}

Dimension:

Number of elements in the basis of vector space $V(\mathbb{F})$ is called Dimension.

Theorem:

Every Finite dimensional vector space (F.D.V.S) contain Basis
Proof: Let V be a F.D.V.S over the field \mathbb{F}.Let
$\mathrm{T}=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots \ldots v_{n}\right\}$ be a finite subset of V which is spanning set (generating set) for V .

Case-I
If T is L.I then there is nothing to prove i.e. Every element of T spans the vector space $\mathrm{V}(\mathrm{L}(\mathrm{T})=\mathrm{V}) \Rightarrow \mathrm{T}$ is basis for V

Case-II

If T is L.D then any vector (say) V_{r} is Linear combination of its preceding ones. Then eliminating that vector from T the remaining vectors are $\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots v_{r-1}\right\}$ still spans V

Now If $\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots v_{r-1}\right\}$ is L.I then there is nothing to prove. (Then $\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots v_{r-1}\right\}$ will be basis of V$)$
If $\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots v_{r-1}\right\}$ is L.D then any other vector (say) V_{r-1} is L.C of its preceding one's. By eliminating this vector, the remaining vectors
$\left\{v_{1}, v_{2}, \ldots \ldots \ldots . . . v_{r_{-}}\right\}$still spans V
Continuing this process until we get as set of vectors $\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots . v_{n}\right\}$
Where $\mathrm{n} \leq \mathrm{r}$ which is L.I. This being a spanning set it will be basis for V
\Rightarrow Every F.D.V.S contain Basis.

Theorem:

Let V be a F.D.V.S of dimension ' n ' then any set of $n+1$ or more vectors is Linearly dependent.

Proof:
Since V be F.D.V.S so it contains basis. Let $\mathrm{B}=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots \ldots v_{n}\right\}$ be the basis for V.

Let $\mathrm{S}=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots \ldots v_{r}\right\}$ where $\mathrm{r}>\mathrm{n}$
We need to prove that S is L.D
i.e. $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots .+\alpha_{r} v_{r}=0$

$$
\Rightarrow \quad \alpha_{i} \neq 0 \text { for some } \alpha_{i} \text { where } 1 \leq \mathrm{I} \leq \mathrm{r}
$$

Where $\alpha_{i} \in \mathbb{F}$ Since B is Basis for V

$$
\Rightarrow \mathrm{L}(\mathrm{~B})=\mathrm{V} \quad \because \text { by def. }
$$

i.e. for all $\mathrm{v}_{i} \in \mathrm{~V}=\mathrm{L}(\mathrm{B}) ; 1 \leq \mathrm{i} \leq \mathrm{r}$ can be expressed uniquely as a L.C of basis vectors

$$
\begin{array}{ll}
\Rightarrow & \mathrm{v}_{1}=\mathrm{a}_{11} u_{1}+\mathrm{a}_{12} u_{2}+\ldots .+\mathrm{a}_{1 n} u_{n} \\
\Rightarrow & \mathrm{v}_{2}=\mathrm{a}_{21} u_{1}+\mathrm{a}_{22} u_{2}+\ldots .+\mathrm{a}_{2 n} u_{n}
\end{array}
$$

Using (2) in (1) we have
$\alpha_{1}\left(\mathrm{a}_{11} u_{1}+\mathrm{a}_{12} u_{2}+\ldots .+\mathrm{a}_{1 n} u_{n}\right)+\alpha_{2}\left(\mathrm{a}_{21} u_{1}+\mathrm{a}_{22} u_{2}+\ldots \ldots+\mathrm{a}_{2 n} u_{n}\right)+\ldots \ldots \ldots$ $\ldots . .+\alpha_{r}\left(\mathrm{a}_{r 1} u_{1}+\mathrm{a}_{r 2} u_{2}+\ldots \ldots+\mathrm{a}_{r n} u_{n}\right)=0$
$\left(\alpha_{1} \mathrm{a}_{11}+\alpha_{2} \mathrm{a}_{21}+\ldots+\alpha_{r} \mathrm{a}_{r 1}\right) u_{1}+\left(\alpha_{1} \mathrm{a}_{12}+\alpha_{2} \mathrm{a}_{22}+\ldots+\alpha_{r} \mathrm{a}_{r 2}\right) u_{2}+\ldots \ldots \ldots \ldots$ $\ldots+\left(\alpha_{1} \mathrm{a}_{1 n}+\alpha_{2} \mathrm{a}_{2 n}+\left(\cdots+\alpha_{p} \mathrm{a}_{\mathrm{n}}\right) u_{n}=0\right.$
Since $u_{1}, u_{2}, \ldots \ldots \ldots \ldots u_{n}$ are L.I

$$
\begin{gathered}
\Rightarrow \quad \alpha_{1} \mathrm{a}_{11}+\alpha_{2} \mathrm{a}_{21}+\ldots .+\alpha_{r} \mathrm{a}_{r 1}=0 \\
\alpha_{1} \mathrm{a}_{12}+\alpha_{2} \mathrm{a}_{22}+\ldots+\alpha_{r} \mathrm{a}_{r 2}=0 \\
\cdot \\
\cdot \\
\\
\\
\alpha_{1} \mathrm{a}_{1 n}+\alpha_{2} \mathrm{a}_{2 n}+\ldots+\alpha_{r} \mathrm{a}_{r n}=0
\end{gathered}
$$

Which is homogeneous system of ' n ' equation in r unknowns. Which gives us a non-trivial solution which indicates that one of the scalar is non-zero

$$
\Rightarrow S \text { is L.D }
$$

Maximal L.I Set: Let $\phi \neq \mathrm{S} \subseteq \mathrm{V}$. Let $\mathrm{T} \supset \mathrm{S}$ if T is L.D then S is called Maximal L.I set.

Minimal Set of generators: Let G be set of generators of a vector space $V(\mathbb{F})$ Then $\mathrm{H} \subset \mathrm{G}$ is not a generating set for V then G is called Minimal generating set.

Lecture \# 9

Theorem:

If V is F.D.V.S and $\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots \ldots v_{r}\right\}$ is L.I subset of V . Then it can be extended to form a basis of V .

Proof:
If $\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots . . v_{r}\right\}$ spans V then it itself forms a basis of V and there is nothing to prove.

Let $\mathrm{S}=\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots \ldots v_{r}, v_{r+1}, \ldots \ldots \ldots \ldots v_{n}\right\}$ be the maximal L.I subset of V containing $\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots v_{r}\right\}$ we show S is a basis of V for which it is enough to prove that S spans V .

Then $\exists \alpha_{1}, \alpha_{2}, \ldots \ldots \ldots \ldots \alpha_{n}, \alpha \in \mathbb{F} \mathrm{~s}, \mathrm{t}$

$$
\begin{aligned}
& \alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots+\alpha_{n} v_{n}+\alpha v=0 \quad \text { where } \alpha \neq 0 \\
& -\alpha v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots .+\alpha_{n} v_{n} \\
& \sqrt{\mathrm{v}^{1}=\left(\frac{-\alpha_{1}}{\alpha}\right) v_{1}+\left(\frac{\alpha_{2}}{\alpha}\right) v_{2}+\ldots . . .+\left(\frac{\alpha_{n}}{\alpha}\right) v_{n}}
\end{aligned}
$$

v is a linear combination of $v_{1}, v_{2}, \ldots \ldots \ldots \ldots \ldots \ldots, v_{n}$ which is required result.

Theorem:

Let V be a vector space over the field \mathbb{F}. Let $\mathrm{B} \subseteq \mathrm{V}$ the following statement are equivalent.
(i) B is basis for V
(ii) B is a minimal set of generators for V
(iii) B is maximal L.I set of vectors.

Proof: (i) \Rightarrow (ii)
Suppose B is Basis for $\mathrm{V} \Rightarrow \mathrm{B}$ is L.I
Let $\mathrm{H} \subset \mathrm{B}$ let $v_{i} \in \mathrm{~B}$ but $v_{i} \notin \mathrm{H}$
We claim that H is not a set of generators on the contrary, suppose H is generating set of V for $\alpha_{1}, \alpha_{2}, \ldots \ldots \ldots \ldots \alpha_{i} \in \mathbb{F}$ and $v_{1}, v_{2}, \ldots \ldots \ldots \ldots . v_{i} \in \mathrm{H}$ s.t $\quad v_{i}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots .+\alpha_{j} v_{j} \quad$ where $v_{i} \in \mathrm{~B}$ and $\mathrm{B} \subseteq \mathrm{V}$

But $\quad v_{i}=1 . v_{i} \quad 1 \in \mathbb{F}$
\Rightarrow A contradiction i.e. v_{i} does not have the unique representation
$\Rightarrow \mathrm{H}$ is not a set of generators
$\Rightarrow \mathrm{B}$ is a minimal set of generators for V
(ii) \Rightarrow (iii)

Suppose that B is a minimal set of generators for V
We need to prove that B is maximal L.I set of vectors
$\Rightarrow \quad$ If B is not L.I
Then at least one of the vector is a L. C of its preceding yectors.
If we delete this vector then the remaining set of vectors (subset of B) still span V and producing a contradiction against the minimality of B

Now we prove that B is maximal $\operatorname{set}(H \supset B) H$ is superset of B
Let $\mathrm{h} \in \mathrm{H}$ buth $\notin \mathrm{B}$
$\Rightarrow \mathrm{h}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots . .+\alpha_{n} v_{n}$
Because B is minimal set of generators

$$
\Rightarrow \mathrm{h} \in \mathrm{H} \quad \Rightarrow \mathrm{H} \text { is L.D }
$$

$\Rightarrow B$ is maximal
(iii). \Rightarrow (i)

Suppose that B is maximal L.I set of vectors we need to prove that B is basis for V . Let $\mathrm{v} \in \mathrm{V}$ and $\mathrm{v} \neq \alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots . .+\alpha_{k} v_{k}$

Where $\alpha_{i} \in \mathbb{F}$ and $\quad 1 \leq \mathrm{i} \leq \mathrm{k} \& \mathrm{v}_{i} \in \mathrm{~B} \quad ; 1 \leq \mathrm{i} \leq \mathrm{k}$
$\Rightarrow \mathrm{B} \cup\{\mathrm{v}\}$ is L.I
As none of the vectors of $\mathrm{B} \cup\{\mathrm{v}\}$ is a L.C of its preceding one's which implies contradiction with the fact B is maximal L.I set of vectors
$\because \mathrm{v}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots . .+\alpha_{k} v_{k}$
$\Rightarrow \mathrm{v} \in \mathrm{L}(\mathrm{B})$
$\Rightarrow \mathrm{V}=\mathrm{L}(\mathrm{B})$

Lecture \# 10

Theorem:

Let V be a F.D.V.S over the field \mathbb{F}. Let $\mathrm{W} \leq \mathrm{V}$ then
(i) $\quad \mathrm{W}$ is F.D and $\operatorname{dim}(\mathrm{W}) \leq \operatorname{dim}(\mathrm{V})$

Moreover, if $\operatorname{dim}(\mathrm{W})=\operatorname{dim}(\mathrm{V})$ then $\mathrm{W}=\mathrm{V}$
(ii) $\operatorname{dim}(\mathrm{V} / \mathrm{W})=\operatorname{dim}(\mathrm{V})-\operatorname{dim}(\mathrm{W})$

Proof: (i)
Let V be of dimension ' n ' or let $\operatorname{dim}(\mathrm{V})=\mathrm{n}$
Let $\mathrm{W} \leq \mathrm{V}(\mathbb{F})$
Let $\left\{w_{1}, w_{2}, \ldots \ldots \ldots \ldots .|.| w_{k}\right\}$ be the largest set of D.I vectors of W. Now we show that $\left\{w_{1}, w_{2}, \ldots \ldots \ldots . . . w_{k}\right\}$ is a basis for W.
Let $\mathrm{w} \in \mathrm{W}$ such that $\mathrm{w} \neq w_{i} \quad \forall \mathrm{i} \quad ; \quad 1 \leq \mathrm{i} \leq \mathrm{k}$
Then the $\operatorname{set}\left\{w_{1}, w_{2}, \ldots \ldots \ldots \ldots \ldots w_{k}\right\}$ is L.D
i.e. $\quad \mathrm{w}=\sum_{i=1}^{k} a_{i} w_{i}$

Now when $\mathrm{w}=w_{i}$ for $1 \leq \mathrm{i} \leq \mathrm{k}$
Then $\mathrm{w}=0 . w_{1}+0 . w_{2}+\ldots . .+1 . w_{i}+0 . w_{i+1}+\ldots . .+0 . w_{k}$

$$
\Rightarrow \mathrm{w} \in \mathrm{~L}\left(\left\{w_{1}, w_{2}, \ldots \ldots \ldots \ldots \ldots w_{k}\right\}\right)
$$

So in each case $\mathrm{w} \in \mathrm{L}\left(\left\{w_{1}, w_{2}, \ldots \ldots \ldots \ldots . . w_{k}\right\}\right)$

$$
\begin{aligned}
& \Rightarrow \quad\left\{w_{1}, w_{2}, \ldots \ldots \ldots \ldots . w_{k}\right\} \text { spans } \mathrm{W} \\
& \Rightarrow \mathrm{~W}=\mathrm{L}\left(\left\{w_{1}, w_{2}, \ldots \ldots \ldots \ldots . w_{k}\right\}\right) \\
& \Rightarrow \quad\left\{w_{1}, w_{2}, \ldots \ldots \ldots \ldots w_{k}\right\} \text { is a basis for } \mathrm{W} \\
& \Rightarrow \mathrm{~W} \text { is F.D }
\end{aligned}
$$

Since $\operatorname{dim}(\mathrm{V})=\mathrm{n} \quad$ (maximal)
And $\operatorname{dim}(\mathrm{W})=\mathrm{k}<\operatorname{dim}(\mathrm{V})=\mathrm{n}$

$$
\Rightarrow \quad \operatorname{dim}(\mathrm{W}) \leq \operatorname{dim}(\mathrm{V})
$$

Now if $\operatorname{dim}(W)=\operatorname{dim}(V)$
\Rightarrow Every basis of W is a basis of V
$\Rightarrow \mathrm{W}=\mathrm{V}$

Proof (ii)

Let $\left\{w_{1}, w_{2}, \ldots \ldots \ldots \ldots . w_{k}\right\}$ be the basis for W .
Let $\left\{w_{1}, w_{2}, \ldots \ldots \ldots \ldots \ldots w_{k}, v_{1}, v_{2}, \ldots \ldots \ldots \ldots \ldots \ldots, v_{m}\right\}$ be the basis for V then

$$
\left\{v_{1}+W, v_{2}+W, \ldots \ldots \ldots, v_{m}+\mathrm{W}\right\} \text { be the basis for } \mathrm{V} / \mathrm{W}
$$

First we show that the set
Let $\left.\alpha_{1}\left(v_{1}+W, v_{2}+W\right)+\alpha_{2}\left(v_{2}+\ldots\right)+\ldots ., v_{m}+W\right\}$ is L.I $\left.+\ldots+\alpha_{m}\left(v_{m}+W\right)=0+W\right)$

$$
\begin{aligned}
& \Rightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots .+\alpha_{m} v_{m}+\mathrm{W}=\mathrm{W} \\
& \Rightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots . .+\alpha_{m} v_{m} \in \mathrm{~W} \\
& \Rightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots .+\alpha_{m} v_{m}=\mathrm{W} \quad \text { for some } \mathrm{w} \in \mathrm{~W} \\
& \Rightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots .+\alpha_{m} v_{m}=\mathrm{a}_{1} w_{1}+\mathrm{a}_{2} w_{2}+\mathrm{a}_{3} w_{3} \ldots . .+\mathrm{a}_{k} w_{k} \\
& \text { because }\left\{w_{1}, w_{2}, \ldots \ldots \ldots \ldots . w_{k}\right\} \text { are the basis for } \mathrm{W} .
\end{aligned}
$$

$$
\Rightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3} \ldots . .+\alpha_{m} v_{m}+\left(-\mathrm{a}_{1} w_{1}\right)+\left(-\mathrm{a}_{2} w_{2}\right)+\ldots . .+\left(-\mathrm{a}_{k} w_{k}\right)=0
$$

Since
$\left\{w_{1}, w_{2}, \ldots \ldots \ldots \ldots \ldots w_{k}, v_{1}, v_{2}, \ldots \ldots \ldots \ldots \ldots \ldots, v_{m}\right\}$ are basis for V

$$
\begin{aligned}
& \Rightarrow \quad \alpha_{1}=\alpha_{2}=\ldots \ldots \ldots=\alpha_{m}=\left(-\mathrm{a}_{1}\right)=\left(-\mathrm{a}_{2}\right) \ldots \ldots=\left(-\mathrm{a}_{k}\right)=0 \\
& \Rightarrow \quad \alpha_{1}=\alpha_{2}=\ldots \ldots \ldots=\alpha_{m}=\left(\mathrm{a}_{1}\right)=\left(\mathrm{a}_{2}\right) \ldots \ldots=\left(\mathrm{a}_{k}\right) \\
& \Rightarrow \quad \alpha_{1}=\alpha_{2}=\ldots \ldots \ldots=\alpha_{m}=0 \\
& \Rightarrow \quad\left\{v_{1}+W, v_{2}+W, \ldots \ldots \ldots ., v_{m}+\mathrm{W}\right\} \text { is L.I }
\end{aligned}
$$

Let $v+W \in V / W$ by def of quotient
$\because v \in V$ therefore

$$
\begin{aligned}
& \mathrm{v}=\alpha_{1} w_{1}+\alpha_{2} w_{2}+\alpha_{3} w_{3} \ldots . .+\alpha_{k} w_{k}+\mathrm{a}_{1} v_{1}+\mathrm{a}_{2} v_{2}+\mathrm{a}_{3} v_{3} \ldots .+\mathrm{a}_{m} v_{m} \\
\Rightarrow & \mathrm{v}+\mathrm{W}=\alpha_{1} w_{1}+\alpha_{2} w_{2}+\alpha_{3} w_{3} \ldots . .+\alpha_{k} w_{k}+\mathrm{a}_{1} v_{1}+\mathrm{a}_{2} v_{2}+\mathrm{a}_{3} v_{3} \ldots . .+\mathrm{a}_{m} v_{m}+\mathrm{W}
\end{aligned}
$$

$$
\Rightarrow \mathrm{v}+\mathrm{W}=\mathrm{a}_{1} v_{1}+\mathrm{a}_{2} v_{2}+\mathrm{a}_{3} v_{3} \ldots . .+\mathrm{a}_{m} v_{m}+\mathrm{W}
$$

Because $\alpha_{1} w_{1}+\alpha_{2} w_{2}+\alpha_{3} w_{3} \ldots . .+\alpha_{k} w_{k} \in \mathrm{~W}$

$$
\Rightarrow \mathrm{W}+\mathrm{W}=\mathrm{W}
$$

$$
\Rightarrow\left\{v_{1}+W, v_{2}+W, \ldots \ldots \ldots . ., v_{m}+\mathrm{W}\right\} \text { spans } \mathrm{V} / \mathrm{W}
$$

$$
\Rightarrow \mathrm{v}+\mathrm{W} \in \mathrm{~L}\left(\left\{v_{1}+W, v_{2}+W, \ldots \ldots \ldots . ., v_{m}+\mathrm{W}\right\}\right)
$$

$$
\Rightarrow \mathrm{v}+\mathrm{W}=\mathrm{L}\left(\left\{v_{1}+W, v_{2}+W, \ldots \ldots \ldots . ., v_{m}+\mathrm{W}\right\}\right)
$$

$$
\Rightarrow\left\{v_{1}+W, v_{2}+W, \ldots \ldots \ldots, v_{m}+\mathrm{W}\right\} \text { is basis for } \mathrm{V} / \mathrm{W}
$$

$$
\Rightarrow \operatorname{dim}(\mathrm{V} / \mathrm{W})=\mathrm{m}
$$

Theorem:

Let T be an isomorphism of V_{1} and V_{2}. Then basis of V_{1} maps onto the basis of V_{2}.

Proof:
Let $\mathrm{T}: V_{1} \rightarrow V_{2}$ be an isomorphism where V_{1} and V_{2} are vector space over \mathbb{F} Let $\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots \ldots \ldots\right\}$ be the basis for V_{1} then we need to show that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots \ldots \ldots \ldots \ldots \ldots\right\}$ are the basis for V_{2}
(i) Let $\alpha_{1} T\left(v_{1}\right)+\alpha_{1} T\left(v_{2}\right)+$ \qquad $=0$

$$
\begin{equation*}
\Rightarrow \quad \text { Since } \mathrm{T} \text { is linear } \tag{1}
\end{equation*}
$$

$$
\Rightarrow \mathrm{T}\left(\alpha_{1} v_{1}\right)+\mathrm{T}\left(\alpha_{2} v_{2}\right)+\ldots \ldots \ldots . .=0
$$

$$
\because \quad \mathrm{T} \text { is linear }
$$

$$
\Rightarrow \mathrm{T}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots \ldots \ldots\right)=0 \quad \because \mathrm{~T} \text { is linear }
$$

$$
\Rightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots \ldots \ldots . \in \operatorname{KerT}=\{0\}
$$

$$
\Rightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots \ldots \ldots . .=0
$$

Since v_{1}, v_{2} are the basis for V_{1}

$$
\Rightarrow \alpha_{1}=\alpha_{2}=\ldots \ldots \ldots=0
$$

From (1) $\left\{T\left(v_{1}\right), T\left(v_{2}\right)\right.$ \qquad are L.I
(ii) Let $\mathrm{w} \in V_{2}$ then \exists an element $\mathrm{v} \in V_{1}$ such that $\mathrm{T}(\mathrm{v})=\mathrm{w}$

$$
\Rightarrow \mathrm{T}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots \ldots \ldots . .\right)=\mathrm{w}
$$

$$
\begin{aligned}
& \Rightarrow \mathrm{T}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots \ldots \ldots\right)=\mathrm{w} \\
& \Rightarrow \mathrm{~T}\left(\alpha_{1} v_{1}\right)+\mathrm{T}\left(\alpha_{2} v_{2}\right)+\ldots \ldots \ldots . . \mathrm{w} \\
& \Rightarrow \alpha_{1} T\left(v_{1}\right)+\alpha_{1} T\left(v_{2}\right)+\ldots \ldots \ldots=\mathrm{w} \\
& \Rightarrow \mathrm{w} \in \mathrm{~L}\left(\left\{\mathrm{~T}\left(v_{1}\right)+T\left(v_{2}\right)+\ldots \ldots \ldots .\right\}\right) \\
& \Rightarrow V_{2}=\mathrm{L}\left(\left\{\mathrm{~T}\left(v_{1}\right)+T\left(v_{2}\right)+\ldots \ldots \ldots .\right\}\right) \\
& \Rightarrow\left\{\mathrm{T}\left(v_{1}\right)+T\left(v_{2}\right)+\ldots \ldots \ldots .\right\} \text { are the basis for } V_{2}
\end{aligned}
$$

Exercise:

If A and B are F.D.V.S then $A+B$ is also F.D Morever

$$
\operatorname{Dim}(\mathrm{A}+\mathrm{B})=\operatorname{dim}(\mathrm{A})+\operatorname{dim}(\mathrm{B})-\operatorname{dim}(\mathrm{A} \cap \mathrm{~B})
$$

Proof:

Define a mapping
$\mathrm{T}: \mathrm{B} \rightarrow \frac{A+B}{A}$
s.t $T(b)=b+A$
(i) T is well define $; b \in B$ mani"d maths

Let $b_{1}=b_{2}$

$$
\begin{aligned}
& \Rightarrow \quad b_{1}+\mathrm{A}=b_{2}+\mathrm{A} \\
& \Rightarrow \quad T\left(b_{1}\right)=\mathrm{T}\left(b_{2}\right)
\end{aligned}
$$

(ii). T is linear

Let $b_{1}, b_{2} \in \mathrm{~B}$ and $\alpha, \beta \in \mathbb{F}$ s.t

$$
\begin{aligned}
\mathrm{T}\left(\alpha b_{1}+\beta b_{2}\right) & =\alpha b_{1}+\beta b_{2}+\mathrm{A} \\
& =\left(\alpha b_{1}+\mathrm{A}\right)+\left(\beta b_{2}+\mathrm{A}\right) \\
& =\alpha\left(b_{1}+\mathrm{A}\right)+\beta\left(b_{2}+\mathrm{A}\right) \\
& =\alpha \mathrm{T}\left(b_{1}\right)+\beta \mathrm{T}\left(b_{2}\right)
\end{aligned}
$$

(iii) T is onto

Let $\mathrm{b}+\mathrm{A} \in \frac{A+B}{A}$ s.t $\mathrm{b} \in \mathrm{B}$
$\mathrm{T}(\mathrm{b})=\mathrm{b}+\mathrm{A} \quad \Rightarrow \mathrm{T}$ is onto

> By Fundamental Theorem

$$
\frac{A+B}{A}=\frac{B}{\operatorname{Ker} T}
$$

We claim $\operatorname{KerT}=\mathrm{A} \cap \mathrm{B}$

$$
\text { Let } \alpha \in \operatorname{KerT} \Rightarrow \mathrm{T}(\alpha)=\mathrm{A}
$$

$$
\begin{align*}
& \alpha+\mathrm{A}=\mathrm{A} \\
& \Rightarrow \alpha \in \mathrm{~A} \quad \text { Also } \alpha \in \operatorname{KerT} \subseteq \mathrm{B} \\
& \Rightarrow \alpha \in \mathrm{~A} \quad \text { and } \alpha \in \mathrm{B} \quad \Rightarrow \alpha \in \mathrm{~A} \cap \mathrm{~B} \\
& \Rightarrow \operatorname{Ker} \mathrm{~T} \subseteq \mathrm{~A} \cap \mathrm{~B} \quad \ldots \ldots \ldots . .(2) \tag{2}
\end{align*}
$$

Conversely

Let $\alpha \in \mathrm{A} \cap \mathrm{B}$

Hence $\frac{A+B}{A} \cong \frac{B}{\mathrm{~A} \cap \mathrm{~B}_{0}}$
Now $\quad \sqrt{\operatorname{dim}\left(\frac{A+B}{A}\right)}=\operatorname{dim}\left(\frac{B}{A} \cap\right) \quad(U \operatorname{dim}(Y / W=\operatorname{dimV}-\operatorname{dimW}$
$\Rightarrow \operatorname{dim}(\mathrm{A}+\mathrm{B})-\operatorname{dim} \mathrm{A}=\operatorname{dim} \mathrm{B}-\operatorname{dim}(\mathrm{A} \cap \mathrm{B})$
$\Rightarrow \operatorname{dim}(\mathrm{A}+\mathrm{B})=\operatorname{dim} \mathrm{A}+\operatorname{dim} \mathrm{B}-\operatorname{dim}(\mathrm{A} \cap \mathrm{B})$ proved

Lecture \# 11

* Theorem:

Two F.D.V.S are isomorphic to each other iff they are of same dimensions.

Proof:

Let V and W be the two-finite dimensional vector space over the field \mathbb{F}.
Let $\operatorname{dimV}=\mathrm{n}=\operatorname{dimW}$ (same dimensions) we need to prove that V is isomorphic to W .

Let $\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{n}\right\}$ and $\left\{w_{1}, w_{2}, \ldots \ldots \ldots \ldots \ldots . w_{n}\right\}$ be the basis for V and W respectively. Define a mapping

$$
\forall \mathrm{a}_{i} \in \mathbb{F}, 1 \leq \mathrm{i} \leq \mathrm{n}_{0}
$$

Now we show that ϕ is Homomorphism (Linear)
Let $\alpha, \beta \in \mathbb{F}$ and $v, v^{\prime} \in V^{-}$
Then

$$
\begin{aligned}
& \phi\left(\alpha \mathrm{v}+\beta v^{\prime}\right)=\phi\left[\alpha\left(\mathrm{a}_{1} v_{1}+\mathrm{a}_{2} v_{2}+\mathrm{a}_{3} v_{3} . .+\mathrm{a}_{n} v_{n}\right)+\beta\left(\mathrm{b}_{1} v_{1}+\mathrm{b}_{2} v_{2}+. .+\mathrm{b}_{n} v_{n}\right)\right] \\
& \quad \text { Where } \mathrm{a}_{i}, \mathrm{~b}_{i} \in \mathbb{F}, 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \begin{aligned}
& \phi\left(\alpha \mathrm{v}+\beta v^{\prime}\right)= \phi\left[\alpha \mathrm{a}_{1} v_{1}+\alpha \mathrm{a}_{2} v_{2}+\ldots .+\alpha \mathrm{a}_{n} v_{n}+\beta \mathrm{b}_{1} v_{1}+\beta \mathrm{b}_{2} v_{2}+. .+\beta \mathrm{b}_{n} v_{n}\right] \\
& \Rightarrow \phi\left(\alpha \mathrm{v}+\beta v^{\prime}\right)=\phi\left[\left(\alpha \mathrm{a}_{1}+\beta \mathrm{b}_{1}\right) v_{1}+\left(\alpha \mathrm{a}_{2}+\beta \mathrm{b}_{2}\right) v_{2}+\ldots \ldots . .+\left(\alpha \mathrm{a}_{n}+\beta \mathrm{b}_{n}\right) v_{n}\right] \\
&=\left(\alpha \mathrm{a}_{1}+\beta \mathrm{b}_{1}\right) w_{1}+\left(\alpha \mathrm{a}_{2}+\beta \mathrm{b}_{2}\right) w_{2}+\ldots \ldots . .+\left(\alpha \mathrm{a}_{n}+\beta \mathrm{b}_{n}\right) w_{n} \quad \text { by }(1) \\
&=\alpha\left(\mathrm{a}_{1} w_{1}+\mathrm{a}_{2} w_{2}+\mathrm{a}_{3} w_{3} \ldots . .+\mathrm{a}_{n} w_{n}\right)+\beta\left(\mathrm{b}_{1} w_{1}+\mathrm{b}_{2} w_{2}+\mathrm{b}_{3} w_{3} \ldots . .+\mathrm{b}_{n} w_{n}\right) \\
& \phi\left(\alpha \mathrm{v}+\beta v^{\prime}\right)=\alpha \phi(\mathrm{v})+\beta \phi\left(v^{\prime}\right) \\
& \Rightarrow \quad \phi \text { is linear }
\end{aligned}
\end{aligned}
$$

Now by def. we have

$$
\forall \mathrm{w} \in \mathrm{~W} \exists \mathrm{v} \in \mathrm{~V} \text { s.t }
$$

$$
\begin{gathered}
\phi(\mathrm{v})=\mathrm{w} \\
\Rightarrow \phi \text { is onto } \\
\text { Let } \phi(\mathrm{v})=\phi\left(v^{\prime}\right) \\
\phi\left(\mathrm{a}_{1} v_{1}+\mathrm{a}_{2} v_{2}+\mathrm{a}_{3} v_{3} \ldots . .+\mathrm{a}_{n} v_{n}\right)=\phi\left(\mathrm{b}_{1} v_{1}+\mathrm{b}_{2} v_{2}+. .+\mathrm{b}_{n} v_{n}\right) \\
\Rightarrow \mathrm{a}_{1} w_{1}+\mathrm{a}_{2} w_{2}+\mathrm{a}_{3} w_{3} \ldots . .+\mathrm{a}_{n} w_{n}=\mathrm{b}_{1} w_{1}+\mathrm{b}_{2} w_{2}+\mathrm{b}_{3} w_{3} \ldots .+\mathrm{b}_{n} w_{n} \\
\Rightarrow\left(\mathrm{a}_{1}-\mathrm{b}_{1}\right) w_{1}+\left(\mathrm{a}_{2}-\mathrm{b}_{2}\right) w_{2}+\ldots \ldots \ldots \ldots+\left(\mathrm{a}_{n}-\mathrm{b}_{n}\right) w_{n}=0
\end{gathered}
$$

Since $\left\{w_{1}, w_{2}, \ldots \ldots \ldots \ldots . w_{n}\right\}$ is basis for W
So are linearly independent

Conversely,

Let $\mathrm{V} \cong \mathrm{W}$
Let $\left\{v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{n}\right\}$ be the basis for V
We prove that $\left\{\phi\left(v_{1}\right), \phi\left(v_{2}\right), \ldots . \phi\left(v_{n}\right)\right\}$ are the basis of W
Let $\mathrm{B}=\left\{\phi\left(v_{1}\right), \phi\left(v_{2}\right), \ldots . . \phi\left(v_{n}\right)\right\}$
First we prove that B is L.I

$$
\begin{array}{rlr}
& \text { Let } \alpha_{i} \in \mathbb{F}, 1 \leq \mathrm{i} \leq \mathrm{n} \quad \text { s.t } & \\
& \sum_{i=1}^{n} \alpha_{i} \phi\left(v_{i}\right)=0 & \\
\Rightarrow & \sum_{i=1}^{n} \phi\left(\alpha_{i} v_{i}\right)=0 & \\
\Rightarrow & \phi \sum_{i=1}^{n}\left(\alpha_{i} v_{i}\right)=0 & \ddots \phi \text { is linear } \\
& \ddots \phi \text { is linear }
\end{array}
$$

$\because v_{i}$ where $1 \leq \mathrm{i} \leq \mathrm{n}$ are the basis for V are L.I
$\alpha_{i}=0 \quad ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$\Rightarrow \mathrm{B}$ is linearly independent

Secondly, we show that $L(B)=W$
Let $w \in W$ and $v \in V$
s.t $\mathrm{w}=\phi(\mathrm{v})$
$\Rightarrow \mathrm{w}=\phi\left(\mathrm{a}_{1} v_{1}+\mathrm{a}_{2} v_{2}+\mathrm{a}_{3} v_{3} \ldots .+\mathrm{a}_{n} v_{n}\right)$
$\Rightarrow \mathrm{w}=\phi\left(\mathrm{a}_{1} v_{1}\right)+\phi\left(\mathrm{a}_{2} v_{2}\right)+\ldots \ldots+\phi\left(\mathrm{a}_{n} v_{n}\right) \quad \because \phi$ is linear
$\Rightarrow \mathrm{w}=\mathrm{a}_{1} \phi\left(v_{1}\right)+\mathrm{a}_{2} \phi\left(v_{2}\right)+\ldots \ldots+\mathrm{a}_{n} \phi\left(v_{n}\right) \quad \because \phi$ is linear
$\Rightarrow \quad \mathrm{W}=\mathrm{L}(\mathrm{B})$
$\Rightarrow \quad \mathrm{B}$ is basis for W
$\Rightarrow \quad \operatorname{dimW}=\mathrm{n}=\operatorname{dim} \mathrm{V}$
$\Rightarrow \quad \operatorname{dimV}=\operatorname{dimW}$
 Mathcity.org Merging man \& maths

Lecture \# 12

Internal direct sum:

Let $\mathrm{V}(\mathbb{F})$ be a vector space. Let $u_{1}, u_{2}, \ldots \ldots \ldots \ldots, u_{n}$ be the subspace of V . Then V is called the internal direct sum of $u_{1}, u_{2}, \ldots \ldots \ldots \ldots, u_{n}$ if $\forall \mathrm{v} \in \mathrm{V}$ written in one and only one way as

$$
\mathrm{v}=u_{1}+u_{2}+\ldots \ldots \ldots \ldots+u_{n} \quad, \quad u_{i} \in U_{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}
$$

External direct sum:

Let $v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{n}$ be the vector space over the same field \mathbb{F}. Let V be the set of all ordered n-tuple i.e. $\left(v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{n}\right) ; v_{i} \in \mathrm{~V}$ then we can say that two elements are equal $\left(v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{n}\right)$ and $\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots \ldots \ldots, v_{n}^{\prime}\right)$ where $v_{i}, v_{i}^{\prime} \in V ; 1 \leq \mathrm{i} \leq \mathrm{n}$
We can define addition and scalar multiplication in V

Then V is called external direct sum of $\left(v_{1}, v_{2}, \ldots \ldots \ldots, v_{n}\right)$

$$
\mathrm{v}=v_{1} \oplus v_{2} \oplus \ldots \ldots \ldots \ldots \oplus v_{n}
$$

Direct Sum:

A vector space V is said to be direct sum of its subspace U and W if
(i) $\mathrm{V}=\mathrm{U}+\mathrm{W}$
(ii) $\mathrm{U} \cap \mathrm{W}=\{0\}$

Theorem:

If V is the internal direct sum of $u_{1}, u_{2}, \ldots \ldots \ldots \ldots, u_{n}$ the V is isomorphic to the external direct sum of $u_{1}, u_{2}, \ldots \ldots \ldots \ldots, u_{n}$

Proof:
Let $\mathrm{v} \in \mathrm{V}$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{v}=u_{1}+u_{2}+\ldots \ldots \ldots \ldots+u_{n} \tag{1}
\end{equation*}
$$

$$
u_{i} \in \mathrm{U} ; 1 \leq \mathrm{i} \leq \mathrm{n}
$$

Define a mapping

$$
\begin{equation*}
\mathrm{T}: \mathrm{V} \rightarrow u_{1} \oplus u_{2} \oplus \ldots \ldots \ldots \ldots \oplus u_{n} \quad \text { s.t } \quad \mathrm{T}(\mathrm{v})=\left(u_{1}, u_{2}, \ldots \ldots \ldots \ldots, u_{n}\right) \tag{2}
\end{equation*}
$$

i.e. $T\left(u_{1}+u_{2}+\ldots \ldots \ldots \ldots+u_{n}\right)=\left(u_{1}, u_{2}, \ldots \ldots \ldots \ldots, u_{n}\right)$
(1) Now mapping is well-defined because each element of V is written one and only one way (unique representation)
(2) Mapping is linear

Let $\alpha, \beta \in \mathbb{F} 1 \mathrm{v}, \mathrm{w} \in \mathrm{V}$
$\mathrm{T}(\alpha \mathrm{v}+\beta \mathrm{w})=\mathrm{T}\left(\alpha\left(u_{1}+u_{2}+\ldots \ldots \ldots \ldots+u_{n}\right)+\beta\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots \ldots \ldots, u_{n}^{\prime}\right)\right.$

$$
\begin{aligned}
& u_{i}, u_{i}^{\prime} \in U_{i} ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
& =\mathrm{T}\left(\alpha u_{1}+\alpha u_{2}+\ldots \ldots+\alpha u_{n}+\beta u_{1}^{\prime}+\beta u_{2}^{\prime}+\ldots \ldots \ldots+\beta u_{n}^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\alpha u_{1}, \alpha u_{2}, \ldots \ldots, \alpha u_{n}\right)+\left(\beta u_{1}^{\prime}, \beta u_{2}^{\prime}, \ldots \ldots \ldots, \beta u_{n}^{\prime}\right) \\
& =\alpha\left(u_{1}, u_{2}, \ldots \ldots \ldots . . u_{n}\right)+\beta\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots \ldots \ldots, u_{n}^{\prime}\right)
\end{aligned}
$$

$$
=\alpha \mathrm{T}(\overline{\mathrm{v}})+\beta \mathrm{T}(\mathrm{w})
$$

$$
\begin{aligned}
& =\alpha \mathrm{T}(\overline{\mathrm{y}})+\beta \mathrm{T}(\mathrm{w}) \\
\Rightarrow \quad & \mathrm{T} \text { is linear }{ }^{\circ} 0^{-1} 0
\end{aligned}
$$

(3). $\quad \forall u_{1}, u_{2}, \ldots \ldots \ldots \ldots, u_{n} \in u_{1} \oplus u_{2} \oplus$. \qquad

$$
\begin{aligned}
& \exists \mathrm{v}=v_{1}, v_{2}, \ldots \ldots \ldots \ldots, v_{n} \in \mathrm{~V} \quad \text { s.t } \\
& \mathrm{T}(\mathrm{v})=u_{1}, u_{2}, \ldots \ldots \ldots \ldots, u_{n}
\end{aligned}
$$

Which shows that each element of $u_{1} \oplus u_{2} \oplus \ldots \ldots \ldots \ldots \oplus u_{n}$ is the image of some element of $\mathrm{V} \quad \Rightarrow \quad \mathrm{T}$ is surjective (onto)

$$
\begin{align*}
& \text { Let } \mathrm{T}(\mathrm{v})=\mathrm{T}(\mathrm{w}) \tag{4}\\
& \mathrm{T}\left(u_{1}+u_{2}+\ldots \ldots \ldots \ldots+u_{n}\right)=\mathrm{T}\left(u_{1}^{\prime}+u_{2}^{\prime}+\ldots \ldots \ldots+u_{n}^{\prime}\right)
\end{align*}
$$

$$
\left(u_{1}, u_{2}, \ldots \ldots \ldots \ldots, u_{n}\right)=\left(u_{1}^{\prime}, u_{2}^{\prime}, \ldots \ldots \ldots, u_{n}^{\prime}\right)
$$

$$
u_{1}=u_{1}^{\prime}, u_{2}=u_{2}^{\prime}, \ldots \ldots \ldots . u_{n}=u_{n}^{\prime}
$$

$$
\Rightarrow \quad u_{i}=u_{i}^{\prime} \quad \forall \mathrm{i}, \quad 1 \leq \mathrm{i} \leq \mathrm{n}
$$

$$
\Rightarrow \quad \mathrm{v}=\mathrm{w}
$$

$\Rightarrow \quad \mathrm{T}$ is injective (one-one)
$\Rightarrow \mathrm{T}$ is isomorphism \quad Hence $\mathrm{V} \cong u_{1} \oplus u_{2} \oplus \ldots \ldots \ldots \ldots \oplus u_{n}$

Lecture \# 13

Non-Singular Linear Transformation:

A linear transformation is said to be non-singular if its inverse exists or A linear transformation is non-singular (invertible) if it is one-one or A linear transformation is non-singular if it is an isomorphism.

The set of all non-singular linear transformation is denoted by $\mathrm{L}(\mathrm{V}, \mathrm{V})$

Theorem:

Prove that the set $\mathrm{L}(\mathrm{V}, \mathrm{W})$ is a semi-group under the composition.
Proof:
First, wē prove that compositioñ of two linear transformation is also LIT $T_{1} o T_{2}\left(\alpha v_{1}+\underline{\beta} v_{2}\right)=T_{1}\left(T_{2}\left(\alpha v_{1}+\beta v_{2}\right)\right)$ \square

$$
=T_{1}\left(\alpha T_{2}\left(v_{1}\right)\right)+T_{1}\left(\beta T_{2}\left(v_{2}\right)\right) \quad \because T_{1} \text { is linear }
$$

$$
=\alpha T_{1}\left(T_{2}\left(v_{1}\right)\right)+\beta T_{1}\left(T_{2}\left(v_{2}\right)\right)\left(V \because T_{1}\right. \text { is linear }
$$

$$
=\alpha \cdot T_{1} 0 T_{2}\left(v_{1}\right)+\beta \cdot T_{1} 0 T_{2}\left(v_{2}\right)
$$

$\Rightarrow T_{1} \mathrm{o} T_{2}$ is Linear
$\Rightarrow \quad T_{1} \mathrm{o} T_{2} \in \mathrm{~L}(\mathrm{~V}, \mathrm{~W})$
$\Rightarrow \quad \mathrm{L}(\mathrm{V}, \mathrm{W})$ is closed under composition
(ii). Associativity is trivial
$\Rightarrow \quad \mathrm{L}(\mathrm{V}, \mathrm{W})$ is a semi-group under composition

Exercise:

The set $\mathrm{L}(\mathrm{V}, \mathrm{W})$ of all linear transformation from V to W is abelian group then prove it is a vector space.

Solution:
First we prove $\mathrm{L}(\mathrm{V}, \mathrm{W})$ is abelian group then vector space
(i) Closure law

$$
T_{1} \mathrm{o} T_{2}\left(\alpha v_{1}+\beta v_{2}\right)=T_{1}\left(T_{2}\left(\alpha v_{1}+\beta v_{2}\right)\right)
$$

$$
\begin{array}{rrr}
& =T_{1}\left(T_{2}\left(\alpha v_{1}\right)+T_{2}\left(\beta v_{2}\right)\right) & \because T_{2} \text { is } \\
& =T_{1}\left(\alpha T_{2}\left(v_{1}\right)+\beta T_{2}\left(v_{2}\right)\right) & \because T_{2} \text { is } \\
= & T_{1}\left(\alpha T_{2}\left(v_{1}\right)\right)+T_{1}\left(\beta T_{2}\left(v_{2}\right)\right) & \because T_{1} \text { is linear } \\
= & \alpha T_{1}\left(T_{2}\left(v_{1}\right)\right)+\beta T_{1}\left(T_{2}\left(v_{2}\right)\right) & \\
& =\alpha \cdot T_{1} \mathrm{o} T_{2}\left(v_{1}\right)+\beta . T_{1} \mathrm{o} T_{2}\left(v_{2}\right) & \\
\Rightarrow \quad & T_{1} \mathrm{o} T_{2} \text { is linear } \text { Linear } \\
\Rightarrow \quad & T_{1} \mathrm{o} T_{2} \in \mathrm{~L}(\mathrm{~V}, \mathrm{~W}) \\
\Rightarrow \quad & \mathrm{L}(\mathrm{~V}, \mathrm{~W}) \text { is closed under composition } &
\end{array}
$$

(ii) Associative law

Associativity is trivial
(iii) Identity law

$\because T_{2}$ is linear
$\because T_{2}$ is linear
$\mathrm{I}: \mathrm{V} \rightarrow \mathrm{W}$ is linear s.t
$\mathrm{I}(\mathrm{v})=\mathrm{v}^{-} \quad$ where $\mathrm{v} \in \mathrm{V}, \mathrm{v} \in \mathrm{W}$
Becomes $\mathrm{I}: \mathrm{V} \rightarrow \mathrm{V}$ is identity element of $\mathrm{L}(\mathrm{V}, \mathrm{W})$ \Rightarrow identity exist in $\mathrm{L}(\mathrm{V}, \mathrm{W})$
$\Rightarrow \mathrm{L}(\mathrm{V}, \mathrm{W})$ is monoid
(iv) Inverse law

The regular element of this monoid are the non-singular linear transformation i.e. every element has its inverse.
\Rightarrow inverse exist in $\mathrm{L}(\mathrm{V}, \mathrm{W})$
$\Rightarrow \mathrm{L}(\mathrm{V}, \mathrm{W})$ become group
Now we define addition and scalar multiplication

$$
\begin{align*}
& \left(T_{1}+T_{2}\right)(\mathrm{v})=T_{1}(\mathrm{v})+T_{2}(\mathrm{v}) \\
& (\alpha \mathrm{T})(\mathrm{v})=\alpha \cdot \mathrm{T}(\mathrm{v}) \tag{i}
\end{align*}
$$

(v) Commutative law

$$
\begin{aligned}
\left(T_{1}+T_{2}\right)(\mathrm{v}) & =T_{1}(\mathrm{v})+T_{2}(\mathrm{v}) \\
& =T_{2}(\mathrm{v})+T_{1}(\mathrm{v}) \\
& =\left(T_{2}+T_{1}\right)(\mathrm{v})
\end{aligned}
$$

\Rightarrow Commutative law holds in $\mathrm{L}(\mathrm{V}, \mathrm{W})$
$\Rightarrow \mathrm{L}(\mathrm{V}, \mathrm{W})$ become abelian group
Now we show $\mathrm{L}(\mathrm{V}, \mathrm{W})$ is vector space
$60 \mid P$ age
Collected By: Muhammad Saleem
Composed By : Muzammil Tanveer
(i) Let $\alpha \in \mathbb{F}, T_{1}, T_{2} \in \mathrm{~L}(\mathrm{~V}, \mathrm{~W})$

$$
\begin{array}{rlr}
\alpha\left(T_{1}+T_{2}\right)(\mathrm{v})=\left(\alpha T_{1}+\alpha T_{2}\right)(\mathrm{v}) & \ddots \text { by (ii) } \\
\alpha\left[\left(T_{1}+T_{2}\right)(\mathrm{v})\right]=\alpha \cdot T_{1}(\mathrm{v})+\alpha T_{2}(\mathrm{v}) & \ddots \text { by (i) } \\
\text { (ii) } \begin{aligned}
\alpha, \beta \in \mathbb{F} \text { and } \mathrm{T} \in \mathrm{~L}(\mathrm{~V}, \mathrm{~W}) & \\
(\alpha+\beta) \mathrm{T}(\mathrm{v})=(\alpha \mathrm{T}+\beta \mathrm{T})(\mathrm{v}) & \ddots \text { by (ii) } \\
& =\alpha \mathrm{T}(\mathrm{v})+\beta \mathrm{T}(\mathrm{v})
\end{aligned} & \because \text { by (i) }
\end{array}
$$

(iii) $\alpha, \beta \in \mathbb{F}$ and $T \in L(V, W)$

$$
\begin{aligned}
\alpha(\beta \mathrm{T})(\mathrm{v}) & =(\alpha \beta \mathrm{T})(\mathrm{v}) & \because \text { by (ii) } \\
& =\alpha \beta \cdot \mathrm{T}(\mathrm{v}) & \ddots \text { by (ii) }
\end{aligned}
$$

(iv) $1 \in \mathbb{F}$ and $\mathrm{T} \in \mathrm{L}(\mathrm{V}, \mathrm{W})$

$$
\text { 1. } \mathrm{T}(\mathrm{v})=(1 . \mathrm{T})(\mathrm{v})
$$

All axioms āre satisfied. Hence $L(V, W)$ is yector space.

* A set which is ring as well as vector space that set is called Algebra.

Mathcity.org Merging man \& maths

