Exercise 6.3 (Solutions) Mathematics (Science Group): $\mathbf{1 0}^{\text {th }}$
 Written by Amir Shahzad, Version: 1.0

1. What do you understand by Dispersion?

Dispersion means the spread or scatter ness of observations in a data set. By dispersion means the extent to which observations in a sample or n a population are spread out. The main measure of dispersion are range, variance and standard deviation's.
2. How do you define measure of dispersion?

The measure that are used to determine the degree or extent of variation in a data set are called measure of dispersion
3. Define Range, Standard deviation and Variance.

Solution:
i. Range:

Range measure the extent of variation between two extreme observations of a data set.
It is given by the formula:
$X_{\text {max }}-X_{\text {min }}=X_{m}-X_{o}$
Where $X_{m a x}=X_{m}=$ the maximum, highest or largest observation.

$$
X_{\min }=X_{o}=\text { the minimum lowest or smallest observation. }
$$

The formula to find range for grouped continuous data us given below.
Range $=($ Upper class boundary of last group $)-($ Lower class boundary of first group $)$.
i. Variance:

Variance is defined as the mean of the squared deviation of $x_{i}(i=1,2,3, \ldots, n)$
observation from their arithmetic mean. In symbols,

$$
\operatorname{Variance} \text { of } \boldsymbol{X}=\operatorname{Var}(\boldsymbol{X})=\boldsymbol{S}^{2}=\frac{\sum(X-\bar{X})^{2}}{\boldsymbol{n}}
$$

ii. Standard Deviation

Standard deviation is defined as the positive square root of mean of the squared deviations of
$X_{i}(i=1,2,3, \ldots, n)$ observations from their arithmetic mean. In symbols we write

$$
\text { standard Devaition of } X=\boldsymbol{S} . \boldsymbol{D}(X)=\boldsymbol{S}=\sqrt{\frac{\sum(X-\bar{X})^{2}}{n}}
$$

Computations of Variance and Standard Devotions
We uses the following to compute Variance and standard Deviations for Ungrouped and Grouped Data.
Ungrouped Data:
The formula of Variance is given by

$$
\operatorname{Var}(X)=S^{2}=\frac{\sum X^{2}}{n}-\left(\frac{\sum X}{n}\right)^{2}
$$

And standard Deviation

$$
\boldsymbol{S} . \boldsymbol{D}(\boldsymbol{X})=\boldsymbol{S}=\sqrt{\left[\frac{\sum X^{2}}{\boldsymbol{n}}-\left(\frac{\sum X}{\boldsymbol{n}}\right)^{2}\right]}
$$

4. The salaries of five teachers in Rupees are as follows.
$11500,12400,15000,14500,14800$.
find Range and Standard devitions
Solution:
$X=11500,12400,15000,14500,14800$.
Here $X_{\min }=11500, \quad X_{\max }=15000$
Range $=X_{\text {max }}-X_{\text {min }}$
$=15000-11500$
$=3500$
$\bar{X}=\frac{\sum x}{n}$
$=\frac{11500+12400+15000+14500+14800}{5}$
$=\frac{68200}{5}=13640$

X	$X-\bar{X}$	$(X-\bar{X})^{2}$
11500	-2140	4579600
12400	-1240	1537600
15000	1360	1849600
14500	860	739600
14800	1160	1345600

$\sum(X-\bar{X})^{2}=10052000, \quad n=5$
$\boldsymbol{S} . \boldsymbol{D}(\boldsymbol{X})=\boldsymbol{S}=\sqrt{\left[\frac{\sum X^{2}}{n}-\left(\frac{\sum X}{n}\right)^{2}\right]}$

$$
\begin{aligned}
& =\sqrt{\frac{10052000}{5}} \\
& =\sqrt{2010400} \\
& =1417.88
\end{aligned}
$$

5. (a) Find the standard deviation " S " of each set of numbers:
i. $12,6,7,3,15,10,18,5$
ii. $\quad 9,3,8,8,9,8,9,18$.
(b) Calculate variance for the data $10,8,9,7,5,12,8,6,8,2$

Solution:
i.

X	$X-\bar{X}$	$(X-\bar{X})^{2}$
12	2.5	6.25

(b) Calculate variance for the data $10,8,9,7,5,12,8,6,8,2$

Solution:

X	$X-\bar{X}$	$(X-\bar{X})^{2}$
10	2.5	6.25
8	0.5	25
9	1.5	2.25
7	-0.5	.25
5	-2.5	6.25
12	4.5	20.25
8	0.5	.25

6		-1.5	2.25
8		0.5	25
2		-5.5	30.25
	$\begin{aligned} & \begin{aligned} \sum X=75 & \sum(X-\bar{X})^{2}=68.5, n=10 \\ \bar{X} & =\frac{\sum X}{n}=\frac{75}{10}=7.5 \end{aligned} \\ & \text { Variance of } \boldsymbol{X}=\operatorname{Var}(\boldsymbol{X})=\boldsymbol{S}^{2}=\frac{\sum(X-\bar{X})^{2}}{n} \\ & \\ & =\frac{68.5}{10}=6.85 \end{aligned}$		

6. The length of 32 items are given below. Find the mean length and standard deviation of the distribution.

Length	$20-22$	$23-25$	$26-28$	$29-31$	$32-34$
frequency	3	6	12	9	2

Solution:

$C . I$	f	Mid points (x)	$f x$	$X-\bar{X}$	$(X-\bar{X})^{2}$	$f(X-\bar{X})^{2}$
20 -22	3	21	63	-6	36	108
23 -25	6	24	144	-3	9	54
26 -28	12	27	324	0	0	0
29 -31	9	30	270	3	9	81
32 -34	2	33	66	6	36	72
total	32		$\sum f x=867$		90	315

$$
\begin{aligned}
& \bar{X}=\frac{\sum f x}{n}=\frac{867}{32}=27.093=27 \text { approx } \quad \bar{X}=\frac{\sum X}{n}=\frac{75}{10}=7.5 \\
& \boldsymbol{S . ~} \boldsymbol{D}(\boldsymbol{X})=\boldsymbol{S}=\sqrt{\left[\frac{\sum X^{2}}{\boldsymbol{n}}-\left(\frac{\sum X}{\boldsymbol{n}}\right)^{2}\right]}=\sqrt{\frac{315}{\mathbf{3 2}}}=\sqrt{9.84375}=\mathbf{3 . 3 1 3 7}
\end{aligned}
$$

7. For the following distribution of marks calculator Range

	Frequency/No.
$33-40$	28
$41-50$	31
$51-60$	12
$61-70$	9
$71-75$	5

Solution:

C.I	Class Boundaries	f
$33-40$	$32.5-40.5$	28
$41-50$	$40.5-50.5$	32
$51-60$	$50.5-60.5$	12

$61-70$	$60.5-70.5$	9
$71-75$	$70.5-75.5$	5

Here

$$
\begin{gathered}
X_{\max }=75.5 \\
X_{\min }=32.5 \\
\text { Range }=X_{\max }-X_{\min } \\
=75.5-32.5=43
\end{gathered}
$$

MathCity.org Merging man and math

Amir Shehzad

