Exercise 6.3 (Solutions) Mathematics (Science Group): 10th

Merging man and maths

MathCity.org

Written by Amir Shahzad, Version: 1.0

1. What do you understand by Dispersion?

Dispersion means the spread or scatter ness of observations in a data set. By dispersion means the extent to which observations in a sample or n a population are spread out. The main measure of dispersion are range, variance and standard deviation's.

- 2. How do you define measure of dispersion? The measure that are used to determine the degree or extent of variation in a data set are called measure of dispersion.
- 3. Define Range, Standard deviation and Variance.
- Solution:
- i. Range:

Range measure the extent of variation between two extreme observations of a data set. It is given by the formula:

$$X_{max} - X_{min} = X_m - X_o$$

Where $X_{max} = X_m = the maximum$, highest or largest observation.

 $X_{min} = X_o =$ the minimum lowest or smallest observation.

The formula to find range for grouped continuous data us given below.

Range = (Upper class boundary of last group) - (Lower class boundary of first group).

i. Variance:

> Variance is defined as the mean of the squared deviation of x_i (i = 1, 2, 3, ..., n) observation from their arithmetic mean. In symbols,

Variance of
$$X = Var(X) = S^2 = \frac{\sum (X - \overline{X})^2}{n}$$

ii. **Standard Deviation**

> Standard deviation is defined as the positive square root of mean of the squared deviations of

 X_i (i = 1, 2, 3, ..., n) observations from their arithmetic mean. In symbols we write

standard Devaition of
$$X = S.D(X) = S = \sqrt{\frac{\sum (X - \bar{X})^2}{n}}$$

Computations of Variance and Standard Devotions

We uses the following to compute Variance and standard Deviations for Ungrouped and Grouped Data.

Ungrouped Data:

The formula of Variance is given by

$$Var(X) = S^{2} = \frac{\sum X^{2}}{n} - \left(\frac{\sum X}{n}\right)^{2}$$

And standard Deviation

 $S.D(X) = S = \sqrt{\left[\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2\right]}$ 4. The salaries of five teachers in Rupees are as follows. 11500,12400,15000,14500,14800.

find Range and Standard devitions

Solution:

X = 11500, 12400, 15000, 14500, 14800.

Here $X_{min} = 11500, X_{max} = 15000$

$$Range = X_{max} - X_{min}$$

$$= 15000 - 11500$$

$$= 3500$$

$$\bar{x} = \frac{\bar{\Sigma}x}{n}$$

$$= \frac{11500 + 12400 + 15000 + 14500 + 14800}{5}$$

$$= \frac{68200}{5} = 13640$$

$$\boxed{X - \bar{X} - \bar{X} - (X - \bar{X})^{2}}$$

$$11500 - 2140 - 4579600$$

$$12400 - 1240 - 1537600$$

$$12400 - 1360 - 1849600$$

$$14500 - 860 - 739600$$

$$14800 - 1160 - 1345600$$

$$\sum (X - \bar{X})^2 = 10052000, \qquad n = 5$$

$$S.D(X) = S = \sqrt{\left[\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2\right]}$$

$$Amir_{=\sqrt{\frac{10052000}{5}}} hZad$$

$$= \sqrt{2010400}$$

$$= 1417.88$$

- **5.** (a) Find the standard deviation "*S*" of each set of numbers:
- i. 12,6,7,3,15,10,18,5
- ii. 9,3,8,8,9,8,9,18.
- (b) Calculate variance for the data 10,8,9,7,5,12,8,6,8,2

Solution:

i.

Х	$X - \overline{X}$	$(X-\bar{X})^2$
12	2.5	6.25

6	-3.5 12.25			
7	-2.5 6.25			
3	-6.5	42.25		
15	5.5	30.25		
10	0.5	0.25		
18	8.5 72.25			
5	-4.5	20.25		

$$\sum X = 76 \qquad \sum_{\bar{X}} (X - \bar{X})^2 = 190, n = 8$$
$$\bar{X} = \frac{76}{8} = 9.5$$
$$S.D(X) = S = \sqrt{\left[\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2\right]}$$
$$= \sqrt{\frac{190}{8}}$$
$$= \sqrt{23.75}$$
$$= 4.87$$

ii.	thfity a	
X	$X - \overline{X}$	$(X-\overline{X})^2$
9	0	0
3	-6	36
8		
8	-1	1
9	0	0
8	-1	1
9	0	0
18 💻	9	81

$$\sum X = 72$$

$$\bar{X} = 72$$

$$\bar{X} = \frac{\Sigma X}{n} = \frac{70}{8} = 9$$

$$S. D(X) = S = \sqrt{\left[\frac{\Sigma X^2}{n} - \left(\frac{\Sigma X}{n}\right)^2\right]}$$

$$= \sqrt{\frac{120}{8}}$$

$$= \sqrt{15} = 3.87$$

(b) Calculate variance for the data 10,8,9,7,5,12,8,6,8,2 Solution:

X	$X-\overline{X}$	$(X-\bar{X})^2$
10	2.5	6.25
8	0.5	25
9	1.5	2.25
7	-0.5	.25
5	-2.5	6.25
12	4.5	20.25
8	0.5	.25

6	-1.5	2.25
8	0.5	.25
2	-5.5	30.25

$$\sum X = 75 \qquad \sum_{\bar{X}} (X - \bar{X})^2 = 68.5, n = 10$$
$$\bar{X} = \frac{\sum X}{n} = \frac{75}{10} = 7.5$$
$$Variance of X = Var(X) = S^2 = \frac{\sum (X - \bar{X})^2}{n}$$
$$= \frac{68.5}{n} = 6.85$$

= $\frac{10}{10} = 6.85$ 6. The length of 32 items are given below. Find the mean length and standard deviation of the distribution.

Leng	th	20 - 22	23 – 25	26 - 28	29 - 31	32 - 34
freque	ency	3	6	12	9	2
Solution:						
С.І	f	Mid points (x)	fx	$X - \overline{X}$	$(X-\bar{X})^2$	$f(X-\bar{X})^2$
20 - 22	3	21	63	-6	36	108
23 - 25	6	24	144	-3	9	54
26 - 28	12	27	324	0	0	0
29 - 31	9	30	g 270 a			81
32 - 34	2	33	66	6	36	72
total	32		$\sum fx = 867$		90	315
				10 A		

$$\bar{X} = \frac{\sum fx}{n} = \frac{867}{32} = 27.093 = 27approx$$
$$\bar{X} = \frac{\sum X}{n} = \frac{75}{10} = 7.5$$
$$S.D(X) = S = \sqrt{\left[\frac{\sum X^2}{n} - \left(\frac{\sum X}{n}\right)^2\right]} = \sqrt{\frac{315}{32}} = \sqrt{9.84375} = 3.3137$$

7. For the following distribution of marks calculator Range

	Frequency/No.
33 - 40	28
41 - 50	31
51 - 60	12
61 - 70	9
71 – 75	5

Solution:

С. І	Class Boundaries	f
33 - 40	32.5 - 40.5	28
41 - 50	40.5 - 50.5	32
51 - 60	50.5 - 60.5	12

61 - 70	60.5 - 70.5	9
71 – 75	70.5 - 75.5	5

Here

 $X_{max} = 75.5$ $X_{min} = 32.5$ $Range = X_{max} - X_{min}$ = 75.5 - 32.5 = 43

by Amir Shehzad