Merging man and maths

MathCity.org

1. What do you understand by measures of central tendency?

Solution: the technique that are used to determine the central value is called is called measure of central tendency.

2. Define Arithmetic mean, geometric mean, Harmonic mean, mode and Median? Solution:

i. Arithmetic Means:

Mean is a measure that determine a value of the variable understudy by dividing the Sum of all values of the variable by their number of observations.

$$\bar{X} = \frac{\sum X}{n}$$
 (for ungrouped data) and $\bar{X} = \frac{\sum fX}{\sum f}$ (for grouped data)

ii. Geometric Means

Geometric mean of a variable x is the nth positive root of the product of the

 $x_1, x_2, x_3, \dots, x_n$ observation. G.M = $(x_1, x_2, x_3, \dots, x_n)^{\frac{1}{n}}$

iii. Harmonic Means:

Harmonic mean refers to the value obtained by reciprocating the mean of the reciprocal of $x_1, x_2, x_3, ..., x_n$ observations.

$$H.M = \frac{n}{\Sigma \frac{1}{x}} (for ungrouped data) and H.M = \frac{n}{\Sigma \frac{f}{x}} (for grouped data)$$

iv. <u>Mode:</u>

The most repeated value in an observation is called mode.

v. <u>Median</u>

Median is the middle most observation in an arranged data set. It divides the data set into equal parts.

- 3. Find arithmetic mean by direct method for the following set of data:
 - i. 12,14,17,20,24,29,35,45
 - ii. 200,225,350,375,270,320,290

Solution:

i.
$$A.M = \bar{X} = \frac{\sum X}{n} = \frac{12+14+17+20+24+29+35+45}{8}$$

 $= \frac{196}{8} = 24.5$

ii.
$$A.M = \bar{X} = \frac{\sum X}{n} = \frac{200 + 225 + 350 + 375 + 270 + 320 + 290}{7}$$
$$= \frac{2030}{7} = 290$$

4. For each of the data in Q.No.3 Compute arithmetic mean using indirect method. Solution:

- i. Take any constant say 24 and take deviations from it (24)
 - A = 24

X	D = X - A
12	12 - 24 = -12
14	17 - 24 = -7
17	20 - 24 = -4
24	24 - 24 = 0
29	29 - 24 = 5
35	35 - 24 = 11
45	45 - 24 = 21
<i>n</i> = 8	$\sum D = 4$

$$\overline{X} = A + \frac{\sum D}{n}$$

= 24 + $\frac{4}{8}$ = 24 + $\frac{1}{2}$ = 24 × $\frac{1}{2}$ = 24.5

ii. Take any constant say 270 and take deviations from it (270)

Meraina ma=	270
X	D = X - A
200	200 - 270 = -70
225	225 - 270 = -45
350	350 - 270 = -80
375	375 - 270 = 150
270 pir Ch	270 - 270 = 0
320	320 - 270 = 50
290	290 - 270 = 20
<i>n</i> = 7	$\sum D = 140$

$$\bar{X} = A + \frac{\sum D}{n}$$

= 270 + $\frac{140}{7}$ = 270 + 20 = 290

5. The marks obtained by students of class *XI in mathematics* are given below. Compare arithmetic mean by direct and indirect methods.

2
10
5
9
6
7
1

Solution:

Direct method:

Classes/	Mid points	f	fx
Groups		I	
0 - 90	4.5	2	$4.5 \times 2 = 9.0$
10 - 19	14.5	10	$14.5 \times 10 = 145.0$
20 - 29	24.5	5	$24.5 \times 5 = 122.5$
30 - 39	34.5	9	$34.5 \times 9 = 310.5$
40 - 49	44.5	6	$44.5 \times 6 = 267.0$
50 - 59	54.5	7	$54.5 \times 7 = 381.5$
60 - 69	64.5	1	$64.5 \times 1 = 64.5$
		$n = \sum f = 40$	1300

$$\bar{X} = \frac{\sum fx}{\sum f} = \frac{1300}{40} = 32.5$$

Indirect, short cut method

let A = 34.5

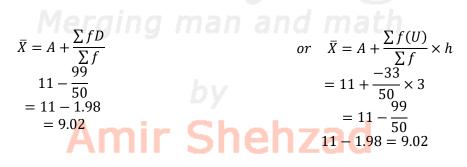
Classes/ Groups	Mid points	f A	D = X - a	$U = \frac{D}{10}$	fD	$f(U) = -\frac{f(d)}{3}$
0 - 90	4.5	2	4.5 - 34.5 = -30	-3	-60	-6
10 - 19	14.5	10	$14.5 \times 34.5 = -20$	-2	-200	-20
20 - 29	24.5	ing 5mai	$24.5 \times 34.5 = -10$	-1	-50	-5
30 - 39	34.5	9	$34.5 \times 34.5 = 0$	0	0	0
40 - 49	44.5	6	$44.5 \times 34.5 = 10$	1	60	6
50 - 59	54.5	7	$54.5 \times 34.5 = 20$	2	140	14
60 - 69	64.5	1 b V	$64.5 \times 34.5 = 30$	3	30	3
Total	A	$n = \sum f = 40$	1300		-80	-8

Amir Snenzad

$\bar{X} = h + \frac{\sum fD}{\sum f}$	or $\bar{X} = h + \frac{\sum f(U)}{\sum f} \times h$
$34.5 + \frac{-80}{40}$	$= 34.5 + \frac{-\overline{8}}{40} \times h$
= 34.5 - 2 = 32.55	$= 34.5 + \frac{-8}{40} \times 10$ 34.5 - 2 = 32.55

6. The following data relates to to ages of children in a school. Compute the mean age by direct and short – *cut method taking ant provisonal mean*.

	Class limits	Freque	ency
	4 - 6	10	
	7 – 9	20	
	10 - 12	13	
	13 – 15 7		
	Total	otal 50	
Also Co	Also Compute Geometric mean and Harmonic mean.		
Solutior	1:		
Class limits	Midpoints	Frequency	fx


4 - 6	5	10	$5 \times 10 = 50$	
7 – 9	8	20	$8 \times 20 = 160$	
10 - 12	11	13	$11 \times 13 = 143$	
13 - 15	14	7	$14 \times 7 = 98$	
Total	$n = \sum f = 50$	50	$\sum fx = 451$	
$A.M = \frac{\sum fD}{\sum f} = \frac{451}{50} = 9.02$				

Indirect, short cut method

Let A = 11

Classes/ Groups	f	Midpoint	D = X - a	$U = \frac{D}{10}$	fD	$f(U) = -\frac{f(d)}{3}$
4 - 6	5	5	5 - 11 = -6	-2	-60	-20
7 – 9	8	8	8 - 11 = -3	-1	-60	0
10 - 12	11	11	11 - 11 = -3	0	0	7
13 – 15	14	14	14 - 11 = -3	1	21	-33
Total	$\sum f$				-99	-8

р

Geometric Mean

We proceed as follows:

Class limits	f	Midpoints	logx	flogx
4 - 6	10	5	0.6987	6.9897
7 – 9	20	8	0.90309	18.0618
10 - 12	13	11	1.04139	13.53807
13 – 15	7	14	1.14613	8.02291
	$\sum f = 50$		$\sum f \log x$	= 46.61248

$$G.M = Antilog\left(\frac{\sum f \log x}{\sum f}\right)$$

$$G.M = Antilog\left(\frac{46.61248}{50}\right)$$

Antilog(0.9322496) = 8.553

Harmonic means:

Class limits	f	Midpoints	$\frac{f}{r}$
4-6	10	5	$\frac{10}{5} = 2.0$
7 – 9	20	8	$\frac{20}{8} = 2.5$
10-12	13	11	$\frac{13}{11} = 1.18$
13 – 15	7	14	$\frac{7}{14} = 0.50$
	$\sum f = 50$		$\int f/x = 6.18$

$$H.M = \left(\frac{\sum f}{\sum \frac{f}{x}} = \frac{50}{6.18} = 8.09\right)$$

7. The following data shows the number of children in which in various familiar. Find mode and median.

9,11,4,5,6,8,4,3,7,8,5,5,8,3,4,9,12,8,9,10,6,1,7,11,4,4,8,4,3,2,7,9,10,9,7,6,9,5 Solution:

Writing the observation in Ascending order

2,3,3,3,4,4,4,4,4,5,5,5,5,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9,9,9,9,9,9,10,10,11,11,12

Mode: the most frequent observation = 9.4

Number of observation = 38

Therefore, median is the mean of 19th and 20th observation = $\frac{7+7}{2} = 7$

8. Find Model number of heads for the following distributive showing of heads when 5 coins are tossed. Also determine median.

X(number of heads)	Frequency (number of times)
1	3
2	8
3	5
4	3
5	1

Solution:

Mode:

The most frequent observation = 2

For median, we make cumulative frequency column.

x	frequency	Cumulative frequency
1	3	3
2	8	3+8=11
3	5	11+5=16
4	3	16 + 3 = 19

Median = the class containing $\left(\frac{n}{2}\right)^{th}$ observation = the class containing $\left(\frac{20}{2}\right)^{th}$ observation. = the class containing (10^{th}) observtaion.

9. The following frequency distribution the weight of boys in kilogram. Compute mean, median, mode.

Class intervals	frequency
1-3	2
4-6	3
7 - 9	5
10 - 12	4
13 – 15	6
16 - 18	2
19 – 21	1
Solution:	'ity ord

Class intervals	frequency	Mid points(x)	fx	Class Boundaries	Cumulative Frequency
1 - 3	2	2	4	an a th	2
4 - 6	4-6 3 9 1		15	nath	2+3
7 – 9	5	8	40		5+5=10
10 - 12	4	11	44		10+4=14
13 – 15	6	14	84		14+6=20
16 - 18	2	17	34		20+2=22
19 – 21	1	20	20		22+1=23
	23		241		

$$Mean = \bar{X} = \frac{\sum fx}{\sum f} = \frac{241}{23} = 10.478$$

Median:

Median class = class containg $\left(\frac{n}{2}\right)^{th}$ observation.

$$=\left(\frac{23}{2}\right)^{th} = (11.5)^{th}$$
observation

Median class is
$$9.5 - 12.5$$

Here
$$l = 9.5, c = 10, f = 4, h = 3$$

Median= $l + \frac{h}{f} \left(\frac{n}{c} - c \right)$
 $= 9.5 + \frac{3}{4} \left(\frac{23}{2} - 10 \right) = 9.5 + \frac{3}{4} \left(\frac{3}{2} \right) = 9.5 + \frac{9}{8} = 9.5 + 1.125 = 10.625$

Mode: $Mode = l + \frac{f_m - f_1}{2f_m - f_1 - f_2} \times h$

Here l = 12.5, $f_m = 6$, $f_1 = 4$, f_2 , h = 3

$$\therefore Mode = 12.5 + \frac{6-4}{2(6)-4-2} \times 3 = 12.5 + \frac{2}{6} \times 3 = 12.5 + 1 = 13.5$$

- **10.** A student obtained the following marks at a certain examination: English 73, Urdu 82, Mathematics 80, History 67 and Science 62.
- i. If the Wight accorded these marks are 4,3,3,4 *and* 2. *repectively*. *w*hat is an appropriate average marks?
- ii. What is the average mark if equal weights are used? Solution:

Marks(x)	Weight(w)	xw
73	4	$73 \times 4 = 292$
82	3	$82 \times 3 = 246$
80	3	$80 \times 3 = 240$
67	2	$67 \times 2 = 134$
62	2	$62 \times 2 = 124$
$\sum x = 364$	$\sum w = 14$	$\sum x w = 1036$
	$\Gamma V_{\rm HI} = 1020$	

(*i*)
$$\bar{X}_n = \frac{\sum Xw}{\sum w} = \frac{1036}{14} = 74$$

(*ii*)
$$\bar{X} = \frac{2x}{n} = \frac{364}{5} = 72.8$$

11. On a vacation trip a family bought 21.3 liters of petrol at 39.90 rupees per liter, 18.7 liters at 42.90 rupees per liter, and 23.5 liters at 40.90 rupees per liter find the mean price paid per liter. Solution:

X	W	XW
21.3	39.90	(21.3)(39.90) = 849.87
18.7	42.90	(21.3)(39.90) = 849.87
23.5	40.90	(21.3)(39.90) = 849.87
$\sum x = 63.5$		$\sum x W = 2613.25$
$\Sigma XW = 2613.25$		

Mean price= $\frac{\sum XW}{\sum X} = \frac{2613.25}{63.5} = 41.15 \ rupees \ per \ liter$

12. Calculator simple moving average of 3 years from the following data;

Years	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Valves	102	108	130	140	1158	180	196	210	220	230

Solution:

Years	Values	3-years moving total	3- years moving average
2001	102	-	-
2002	108	340	340/3=113.33
2003	130	378	378/3=126.00
2004	140	428	428/3=142.67

2005	158	478	$\frac{478}{3} = 159.33$
2006	180	534	534/3=178.00
2007	196	586	586/3=195.33
2008	210	626	626/3=208.67
2009	220	660	660/3=220.00
2010	230	-	

13. Determine graphically for the following data and check your answer by using formulae.

Median and Quartiles using cumulative frequency polygon. i.

ii. Mode using Histogram

Class Boundaries	Frequency
10 – 20	2
20 - 30	5
30 - 40	9
40 - 50	6
50 - 60	4
60 - 70	1

00 /	•		_
Solution:	othfi		2
Class Boundaries	Frequency	<i>c</i> . <i>f</i>	
10-20	2	2	
20-30	5	7	N
30-40		16	atr
40 - 50	6	22	
50 - 60	4	26	
60 - 70	1	27	
th	th		

Median Class Q₃Clas

Median Class = $\left(\frac{n}{2}\right)^{th}$ observation = $\left(\frac{27}{2}\right)^{th}$ = $(13.5)^{th}$ observation. Median= $l + \frac{h}{f} \left(\frac{n}{2} - c \right)$ Amir Shehzad

Here l = 30, h = 10, f = 9, n = 2.7, c = 7

Thus median $x = 30 + \frac{10}{9} \left(\frac{27}{2} - 7 \right) = 30 + \frac{10}{9} \left(\frac{13}{2} \right) = 30 + 7.22 = 37.22$

To find Q_1

We have to find $3\left(\frac{n}{4}\right)^{th}$ observation.

Next Not Solved. Not important according to exam