

THEOREMS CH\#09

10th class Math Science (English medium)

Mallictiy.org Merging man and math

by
 Bahadar Ali Khan

Prepared by: BAHADAR ALI KHAN
Civil Engineer from University of Engineering \& Technology Lahore (Narowal Campus)

Available at https://www.mathcity.org
For Home Tuition Contact at 0305-8069878

Theorem 01: One and only one circle can pass through three non-collinear points.

Given: A, B and C are three non collinear points in a plane.
To Prove: One and only one circle can pass through three non-collinear points A, B and C.
Construction: Join A with B and B with C.
Draw $\overrightarrow{D F} \perp$ bisector to $\overline{A B}$ and $\overrightarrow{H K} \perp$ bisector to $\overline{B C}$.
So, $\overrightarrow{D F}$ and $\overrightarrow{H K}$ are not parallel and intersect at point O. Also Join A, B and C with point O.

Proof:

Statements ${ }^{\text {rgllng ma }}$	h and mat Reasons
Every point on $\overrightarrow{D F}$ is equidistant from A and B $m \overline{O A}=m \overline{O B} \ldots \ldots \text { (i) }$ Every point on $\overrightarrow{H K}$ is equidistant from B and C $m \overline{O B}=m \overline{O C} \ldots \ldots . .(\mathrm{ii})$ Now O is the only point common to $\overrightarrow{D F}$ and $\overrightarrow{H K}$ which is equidistant from A, B and C $m \overline{O A}=m \overline{O B}=m \overline{O C}$ There is no such point except O Hence, there is only one circle with center O and radius $\overline{O A}$ passes through A, B and C.	$\overrightarrow{D F}$ is \perp bisector to $\overrightarrow{A B}$ Al\| $\overrightarrow{H K}$ is \perp bisector to $\overline{B C}$ Using (i) and (ii)

Theorem 02: A straight line, drawn from the centre of a circle to bisect a chord (which is not a diameter) is perpendicular to the chord.

Given: A circle whose centre is O.
M is the mid point of any chord $\overline{A B}$ of the circle Where chord $\overline{A B}$ is not diameter of the circle.
To prove: $\overline{O M} \perp \overline{A B}$
Construction: Join A and B with centre O. Write $\angle 1$ and $\angle 2$.

Proof:

Statements	Reasons
$\begin{align*} & \text { In } \triangle O A M \leftrightarrow \Delta O B M \\ & m \overline{O A}=m \overline{O B} \\ & m \overline{A M}=m \overline{B M} \\ & m \overline{O M}=m \overline{O M} \\ & \Delta O A M \cong \Delta O B M \\ & \Rightarrow \quad m \angle 1=m \angle 2 \tag{i}\\ & m \angle 1+m \angle 2=180^{\circ} \ldots . \tag{ii}\\ & m \angle 1=m \angle 2=90^{\circ} \end{align*}$ Hence, $\overline{O M} \perp \overline{A B}$	Radii of the same circle Given Common $S . S . S \cong S . S . S$ Corresponding angles of congruent triangles Adjacent supplementary angles From (i) and (ii) Ali Khan

Theorem 03: Perpendicular from the centre of a circle on a chord bisects it.

Given: A circle whose centre is O and chord is $\overline{A B}$.
And $\overline{O M} \perp \overline{A B}$
To Prove: $m \overline{A M}=m \overline{B M}$
Construction: Join A and B with centre O.

Proof:

Statements	Reasons
In $\triangle O A M \leftrightarrow \Delta O B M$	Given
$m \angle 1=m \angle 2=90^{\circ}$	Radii of same circle
$m \overline{O A}=m \overline{O B}$	Common
$m \overline{O M}=m \overline{O M}$	
$\Delta O A M \cong \Delta O B M$	
$m \overline{A M}=m \overline{B M}$	
Hence $\overline{O M}$ bisects the chord $\overline{A B}$	(S.A.S $\cong S . A . S)$ or $H . S \cong H . S$

Merging man and math

Theorem 04: If two chords of a circle are congruent then they will be equidistant from the centre.
Given: A circle with centre O have two equal chords $\overline{A B}$ and $\overline{C D}$.
$m \overline{A B}=m \overline{C D}$
So that $\overline{O H} \perp \overline{A B}$ and $\overline{O K} \perp \overline{C D}$
To prove: $m \overline{O H}=m \overline{O K}$
Construction: Join O with A and C.
So that we get two right triangles $O A H$ and $O C K$.

Proof

Statements	Reasons
	Radii of same Circle Given $\overline{O H}$ man and math $\overline{O K} \perp \overline{C D}$ (Perpendicular from the centre of a circle on a chord bisects it) by ar Ali KFom(i), (2) and (3) $(S . A . S \cong S . A . S) \text { or } H . S \cong H . S$ Corresponding sides of congruent triangles

Theorem 05: Two chords of a circle which are equidistat from the centre, are congruent.
Given: A circle with centre O have two chords $\overline{A B}$ and $\overline{C D}$.
$\overline{O H} \perp \overline{A B}$ and $\overline{O K} \perp \overline{C D}$, so that $m \overline{O H}=m \overline{O K}$
To Prove: $m \overline{A B}=m \overline{C D}$
Construction: Join O with A and C.
So that we get two right triangles $O A H$ and $O C K$.

Proof:

Statements	Reasons
$\begin{gather*} \text { In } \triangle O A H \cong \triangle O C K \\ m \overline{O A}=m \overline{O C} \\ m \overline{O H}=m \overline{O K} \\ m \angle 1=m \angle 2=90^{\circ} \\ \Delta O A H \cong \Delta O C K \\ m \overline{A H}=m \overline{C K} \ldots \ldots \ldots \text {.(1) } \tag{1}\\ m \overline{A H}=\frac{1}{2} m \overline{A B} \ldots \text { (2) hade } \\ m \overline{C K}=\frac{1}{2} m \overline{C D} \ldots \ldots \text { (3) } \\ m \overline{A H}=m \overline{C K} \tag{3}\\ \frac{1}{2} m \overline{A B}=\frac{1}{2} m \overline{C D} \\ m \overline{A B}=m \overline{C D} \end{gather*}$	Radii of same circle Given Gin and math Given $(S . A . S \cong S . A . S) \text { or } H . S \cong H . S$ Corresponding sides of congruent triangles $\overline{O H} \perp \overline{A B}$ (Perpenficiulara from the centre of a circle on a chord bisects it) $\overline{O K} \perp \overline{C D}$ (Perpendicular from the centre of a circle on a chord bisects it) Already proved From (2) and (3)

