

THEOREMS CH#09

10th class Math Science (English medium)

by Bahadar Ali Khan

Prepared by: BAHADAR ALI KHAN

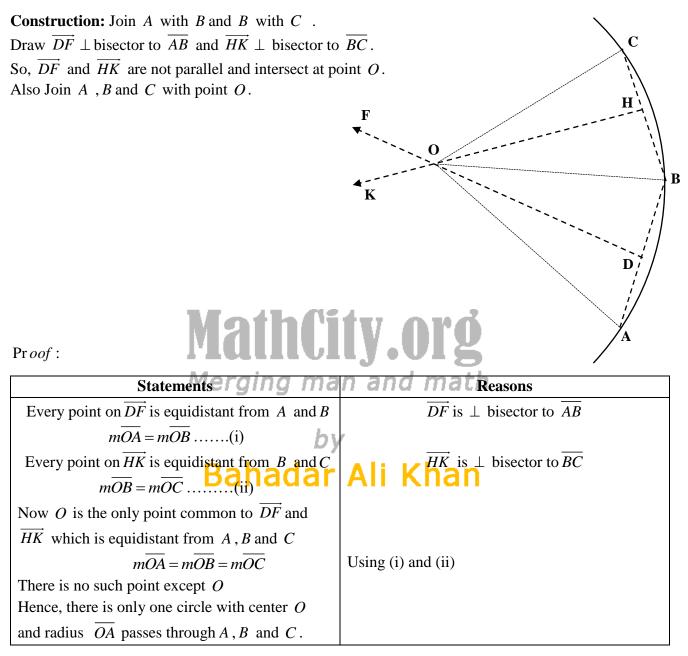
Civil Engineer from University of Engineering & Technology Lahore (Narowal Campus)

Available at https://www.mathcity.org For Home Tuition Contact at 0305-8069878

Theorem 01: One and only one circle can pass through three non-collinear points.

Given: A, B and C are three non collinear points in a plane.

To Prove: One and only one circle can pass through three non-collinear points A, B and C.



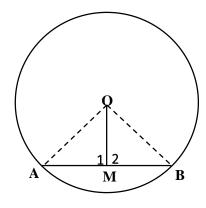
Theorem 02: A straight line, drawn from the centre of a circle to bisect a chord (which is not a diameter) is perpendicular to the chord.

Given: A circle whose centre is O.

M is the mid point of any chord \overline{AB} of the circle Where chord \overline{AB} is not diameter of the circle.

To prove: $\overline{OM} \perp \overline{AB}$

Construction: Join A and B with centre O. Write $\angle 1$ and $\angle 2$.

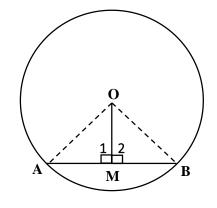


Proof:

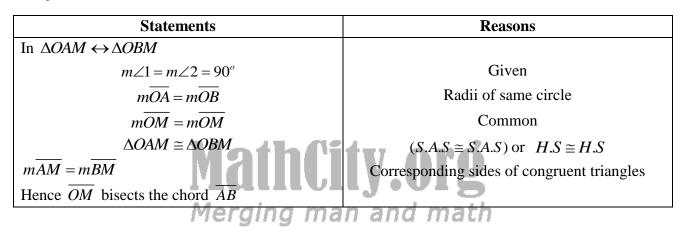
Statements	Reasons
In $\triangle OAM \leftrightarrow \triangle OBM$	
$m\overline{OA} = m\overline{OB}$	Radii of the same circle
$m\overline{AM} = m\overline{BM}$	Given
$m\overline{OM} = m\overline{OM}$	Common
$\Delta OAM \cong \Delta OBM$	$S.S.S \cong S.S.S$
$\Rightarrow m \angle 1 = m \angle 2(i)$	Corresponding angles of congruent triangles
$m \angle 1 + m \angle 2 = 180^{\circ} \dots$ (ii)	Adjacent supplementary angles
$m \angle 1 = m \angle 2 = 90^{\circ}$ by	From (i) and (ii)
Hence, $\overline{OM} \perp \overline{AB}$ Bahadar Ali Khan	

Theorem 03: Perpendicular from the centre of a circle on a chord bisects it.

Given: A circle whose centre is *O* and chord is \overline{AB} . And $\overline{OM} \perp \overline{AB}$ **To Prove:** $m\overline{AM} = m\overline{BM}$ **Construction:** Join *A* and *B* with centre *O*.



Proof:



by Bahadar Ali Khan

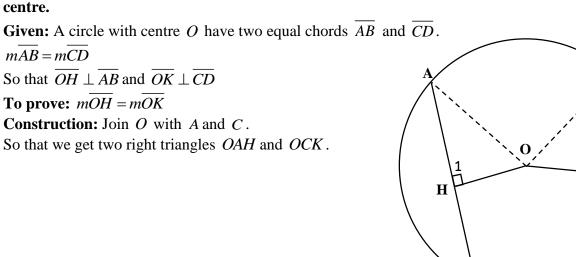
С

K

D

B

Theorem 04: If two chords of a circle are congruent then they will be equidistant from the centre.



Pr oof

Statements	Reasons
In $\triangle OAH \leftrightarrow \triangle OCK$	
$m\overline{OA} = m\overline{OC}$	Radii of same Circle
$m \angle 1 = m \angle 2 = 90^{\circ}$	Given
$m\overline{AH} = \frac{1}{2}m\overline{AB} \dots (1)$ $m\overline{CK} = \frac{1}{2}m\overline{CD} \dots (2)$	$\overrightarrow{OH} \perp \overrightarrow{AB}$ (Perpendicular from the centre of a circle on a chord bisects it)
- 1 - Merging	man and math
$mCK = \frac{1}{2}mCD\dots(2)$	$\overrightarrow{OK} \perp \overrightarrow{CD}$ (Perpendicular from the centre of a circle on a chord bisects it)
	by
$mAB = mCD \dots (3)$	Given
$m\overline{AB} = m\overline{CD}$ (3) $m\overline{AH} = m\overline{CK}$ Bahadar Ali KFrom(1), (2) and (3)	
$\Delta OAH \cong \Delta OCK$	$(S.A.S \cong S.A.S)$ or $H.S \cong H.S$
Hence, $m\overline{OH} = m\overline{OK}$	Corresponding sides of congruent triangles

Theorem 05: Two chords of a circle which are equidistat from the centre, are congruent.

Given: A circle with centre *O* have two chords \overline{AB} and \overline{CD} . $\overline{OH} \perp \overline{AB}$ and $\overline{OK} \perp \overline{CD}$, so that $\overline{mOH} = \overline{mOK}$ **To Prove:** $\overline{mAB} = \overline{mCD}$ **Construction:** Join *O* with *A* and *C*. So that we get two right triangles *OAH* and *OCK*.

