
Hermite-Hadamard integral inequality

If f : [a, b]→ R is convex, then
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Proof: First of all, let’s recall that a convex function on a open interval (a, b) is continuous on

(a, b) and admits left and right derivative f ′+(x) and f ′−(x) for any x ∈ (a, b). For this reason,

it’s always possible to construct at least one supporting line for f (x) at any x0 ∈ (a, b) : if

f (x0) is differentiable in x0, one has r(x) = f (x0) + f ′ (x0) (x − x0); if not, it’s obvious that all

r(x) = f (x0) + c (x − x0) are supporting lines for any c ∈ [f ′−(x0), f ′+(x0)].

Let now r(x) = f
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be a supporting

line of f (x) in x = a+b
2 ∈ (a, b). Then, r (x) ≤ f (x).

On the other side, by convexity definition, having

defined s (x) = f (a) + f (b)−f (a)
b−a (x − a) the line con-

necting the points (a, f (a)) and (b, f (b)) , one has

f (x) ≤ s(x). Shortly,

r (x) ≤ f (x) ≤ s(x)

Integrating both inequalities between a and b∫ b
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Using above value in (1), we have
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which is the thesis.


