Hermite-Hadamard integral inequality

If $f : [a, b] \to \mathbb{R}$ is convex, then

$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) dx \leq \frac{f(a)+f(b)}{2}.$$

Proof: First of all, let's recall that a convex function on a open interval (a, b) is continuous on (a, b) and admits left and right derivative $f'_+(x)$ and $f'_-(x)$ for any $x \in (a, b)$. For this reason, it's always possible to construct at least one supporting line for f(x) at any $x_0 \in (a, b)$: if $f(x_0)$ is differentiable in x_0 , one has $r(x) = f(x_0) + f'(x_0)(x - x_0)$; if not, it's obvious that all $r(x) = f(x_0) + c(x - x_0)$ are supporting lines for any $c \in [f'_-(x_0), f'_+(x_0)]$.

Let now $r(x) = f\left(\frac{a+b}{2}\right) + c\left(x - \frac{a+b}{2}\right)$ be a supporting line of f(x) in $x = \frac{a+b}{2} \in (a, b)$. Then, $r(x) \le f(x)$. On the other side, by convexity definition, having defined $s(x) = f(a) + \frac{f(b)-f(a)}{b-a}(x-a)$ the line connecting the points (a, f(a)) and (b, f(b)), one has $f(x) \le s(x)$. Shortly,

$$r(x) \le f(x) \le s(x)$$

Integrating both inequalities between a and b

$$\int_{a}^{b} r(x) dx \leq \int_{a}^{b} f(x) dx \leq \int_{a}^{b} s(x) dx.$$
(1)

Now

$$\int_{a}^{b} r(x) dx = \int_{a}^{b} \left[f\left(\frac{a+b}{2}\right) + c\left(x - \frac{a+b}{2}\right) \right] dx$$
$$= f\left(\frac{a+b}{2}\right)(b-a) + c \int_{a}^{b} \left(x - \frac{a+b}{2}\right) dx$$
$$= f\left(\frac{a+b}{2}\right)(b-a),$$

and

$$\int_{a}^{b} s(x)dx = \int_{a}^{b} \left[f(a) + \frac{f(b) - f(a)}{b - a}(x - a) \right] dx$$

= $f(a)(b - a) + \frac{f(b) - f(a)}{b - a} \int_{a}^{b} (x - a) dx$
= $\frac{f(a) + f(b)}{2}(b - a).$

Using above value in (1), we have

$$f\left(\frac{a+b}{2}\right)(b-a) \le \int_{a}^{b} f(x) \, dx \le \frac{f(a)+f(b)}{2}(b-a)$$

which is the thesis.