Hermite-Hadamard integral inequality

If $f:[a, b] \rightarrow \mathbb{R}$ is convex, then

$$
f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) d x \leqslant \frac{f(a)+f(b)}{2}
$$

Proof: First of all, let's recall that a convex function on a open interval (a, b) is continuous on (a, b) and admits left and right derivative $f_{+}^{\prime}(x)$ and $f_{-}^{\prime}(x)$ for any $x \in(a, b)$. For this reason, it's always possible to construct at least one supporting line for $f(x)$ at any $x_{0} \in(a, b)$: if $f\left(x_{0}\right)$ is differentiable in x_{0}, one has $r(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$; if not, it's obvious that all $r(x)=f\left(x_{0}\right)+c\left(x-x_{0}\right)$ are supporting lines for any $c \in\left[f_{-}^{\prime}\left(x_{0}\right), f_{+}^{\prime}\left(x_{0}\right)\right]$.

Let now $r(x)=f\left(\frac{a+b}{2}\right)+c\left(x-\frac{a+b}{2}\right)$ be a supporting line of $f(x)$ in $x=\frac{a+b}{2} \in(a, b)$. Then, $r(x) \leq f(x)$. On the other side, by convexity definition, having
 defined $s(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)$ the line connecting the points $(a, f(a))$ and $(b, f(b))$, one has $f(x) \leq s(x)$. Shortly,

$$
r(x) \leq f(x) \leq s(x)
$$

Integrating both inequalities between a and b

$$
\begin{equation*}
\int_{a}^{b} r(x) d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b} s(x) d x \tag{1}
\end{equation*}
$$

Now

$$
\begin{aligned}
\int_{a}^{b} r(x) d x & =\int_{a}^{b}\left[f\left(\frac{a+b}{2}\right)+c\left(x-\frac{a+b}{2}\right)\right] d x \\
& =f\left(\frac{a+b}{2}\right)(b-a)+c \int_{a}^{b}\left(x-\frac{a+b}{2}\right) d x \\
& =f\left(\frac{a+b}{2}\right)(b-a)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{a}^{b} s(x) d x & =\int_{a}^{b}\left[f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right] d x \\
& =f(a)(b-a)+\frac{f(b)-f(a)}{b-a} \int_{a}^{b}(x-a) d x \\
& =\frac{f(a)+f(b)}{2}(b-a)
\end{aligned}
$$

Using above value in (1), we have

$$
f\left(\frac{a+b}{2}\right)(b-a) \leq \int_{a}^{b} f(x) d x \leq, \frac{f(a)+f(b)}{2}(b-a)
$$

which is the thesis.

